Exposure and Health Effects of Bacteria in Healthcare Units: An Overview
Abstract
:1. Introduction
2. Materials and Methods
2.1. Systematic Review Registration
2.2. Search Strategy and Inclusion and Exclusion Criteria
2.3. Studies Selection and Data Extraction
2.4. Quality Assessment
3. Results
3.1. Characteristics of the Selected Studies
3.1.1. Reference Values for Bacteria
3.1.2. Seasonal Variation
3.1.3. Prevalent Bacteria
3.1.4. Health Effects
Title | Country | Analyzed Environment | Collected Data | Results | Bacteria Found | Health Effects | Affected Population | References | |
---|---|---|---|---|---|---|---|---|---|
PubMed | Does Hospital Work Constitute a Risk Factor for Helicobacter Pylori Infection? | Italy | Hospital | A questionnaire was completed by participants before collection of fecal specimens. | 249 workers tested positive for H. pylori.: 16 out of 47 physicians (endoscopy unit); 18 out of 45 nurses (endoscopy unit); 5 out of 30 physicians (only contact with patients); 30 out of 75 nurses (only contact with patients); 9 out of 52 healthcare personnel (no patient contact). | H. pylori | Helicobacter pyloriinfection likely represents the most common bacterial infection of the human species, with a prevalence of 25–50% in developed countries and up to 90% in developing countries. A vast body of evidence now indicates that H.pylori is the principal etiological agent of chronic active gastritis, as well as gastric and duodenal ulcers, and represents a major risk factor for the development of gastric cancer. | Workers | [40] |
PubMed | Variability of Airborne Microflora in a Hospital Ward Within a Period of One Year | Poland | Hospital (ward) | Air samples | Concentrations of airborne bacteria: 257.1–436.3 CFU/m3, peak values—November and May, lowest values—December to February; Gram-positive cocci: 31.4–46.4% of the total count and 37.2–49.6% of the respirable fraction; Gram-negative bacteria: 11.8–27.5% of the total count and 5.6–30.2% of the respirable fraction. | Staphylococcus epidermidis, Micrococcus, Streptococcus Flavobacterium spp., Acinetobacter calcoaceticus, Pantoea agglomerans, Escherichia coli, Enterobacter spp., Klebsiella oxytoca, Pseudomonas aeruginosa, Branhamella catarrhalis and Neisseria flavescens, Arthrobacter spp., Brevibacterium spp. | The risk of exposure to Staphylococci was diminished by the fact that the isolated strains were coagulase-negative and unlikely to cause infections. Gram-negative bacteria found in the air of the hospital ward could be a source of adverse endotoxin, and Acinetobacter strains may be a potential cause of hospital infections transmitted by air. Some of the Gram-positive isolates belonging to corynebacteria and actinomycetes (Arthrobacter spp., Brevibacterium spp., Streptomyces albus) show allergenic properties. | Patients | [34] |
PubMed | Clostridium Difficile Infection in Hospitalized Children in the United States | United States | Hospital | Data were obtained from the triennial Healthcare Cost and Utilization Project Kids’ Inpatient Database (HCUP-KID) | Clostridium difficile infections increased from 3.565 in 1997 to 7.779 in 2006; Clostridium difficile infections had an increased risk of death with an adjusted odds ratio (95% confidence interval); 1.20 (1.01–1.43), colectomy; 1.36 (1.04–1.79), longer length of stay; 4.34 (3.97–4.83) and higher charges; 2.12 (1.98–2.26). | Clostridium difficile | Clostridium difficile is a Gram-positive, spore-forming, anaerobic bacillus that can colonize the gastrointestinal tract and can lead to C difficile infection (CDI). CDI has a wide variation of severity, ranging from asymptomatic colonization to severe diarrhea, pseudomembranous colitis, toxic megacolon, bowel perforation, and death. | Patients (children) | [42] |
PubMed | Trends in Clostridium Difficile Infection and Risk Factors for Hospital Acquisition of Clostridium Difficile Among Children With Cancer | United States | Hospital | Clostridium difficile infection (CDI) is the most common cause of nosocomial diarrhea and can lead to a range of complications from colitis to toxic megacolon, bowel perforation, and death. CDI is a significant cause of nosocomial and antibiotic-associated diarrhea in adults, with increasing frequency and severity. | Patients (children) | [44] | |||
Pubmed | Assessment of the Levels of Airborne Bacteria, Gram- Negative Bacteria, and Fungi in Hospital Lobbies | Korea | Hospital Lobbies | Air samples | Mean level of airborne bacteria: 7.2 × 102 CFU/m3; service hours (08 h–18 h): 9.3 × 102 CFU/m3 (mean); after service hours (18 h–24 h): 4.4 × 102 CFU/m3; winter: 2.3 × 102 CFU/m3 (mean); summer: 9.7 × 102 CFU/m3 (mean); Gram- negative bacteria mean: 1.7 × 10 CFU/m3. | All occupants | [36] | ||
PubMed | Risk Factors and Outcomes of Infections Caused by Extremely Drug-Resistant Gram-Negative Bacilli in Patients Hospitalized in Intensive Care Units | United States | ICUs | A matched case–control (1:2) study was conducted from February 2007 to January 2010 in 16 ICUs. | An immunocompromised state (OR = 1.55, p = 0.047) and exposure to amikacin (OR = 13.81, p < 0.001), levofloxacin (OR = 2.05, p = 0.005), or trimethoprim-sulfamethoxazole (OR = 3.42, p = 0.009) were factors associated with XDR-GNB HAIs. | Extremely drug-resistant Gram-negative bacilli (XDR-GNB) | Antibiotic-resistant, Gram-negative bacilli (GNB) are increasingly common causes of healthcare-associated infections (HAIs) in intensive care units (ICUs) and are associated with higher mortality rates, longer hospitalizations, and increased healthcare expenditures. Effective treatment for extremely drug-resistant (XDR) GNB infections is challenging because of limited therapeutic options. | Patients | [43] |
Web of Science | Staph Aureus as the most common cause of osteoarticular infection in Dost-1 Mayo Hospital, Lahore | Pakistan | Hospital | Patients were followed up in OPD for 24 weeks post operatively to assess the outcome of the procedure | Causative organism (200 patients): Staph Aureus in 96% of the patients, Haemophilus influenzae 1.2%, Escherichia Coli was 2% and Pseudomonas Aeruginosa was 0.8%. | Staph Aureus, Haemophilus influenzae, Escherichia Coli, Pseudomonas Aeruginosa | Staph Aureus was the organism which caused osteoarticular infection in 96% of patients. | Patients | [41] |
Pubmed | Air Contamination in Different Departments of a Tertiary Hospital. Assessment of Microbial Load and of Antimicrobial Susceptibility | Greece | University hospital | Air samples | The highest mean total microbial load was observed in the IMW (689/m3), followed by the SW (596 CFU/m3), the NU (509 CFU/m3) and, finally, the ICU (353 CFU/m3). The load of GN, the highest load, was observed in the IMW (4.16 CFU/m3), followed by the ICU (1.14 CFU/m3), the SW (0.83 CFU/m3), and the NU (0.81 CFU/m3). | In total, 101 samples were collected, from which 158 Gram-positive (GP) and 44 Gram-negative (GN) strains were isolated. The majority of GP isolates were Staphylococcus spp. (n = 100). The highest total microbial load was reported in the IMW (p = 0.005), while the highest Staphylococcus load was observed in the ICU (p = 0.018). | All occupants | [35] | |
PubMed | Contamination of Microbial Pathogens and Their Antimicrobial Pattern in Operating Theatres of Peri- Urban Eastern Uganda: A Cross-Sectional Study | Uganda | Operating theatre | 109 samples (n = 31 air samples and n = 78 swabs) | Gynecology theatre—261.3 ± 131.3 CFU/dm2/h (Pseudomonas spp.—25.8%); main OT—69.5 ± 78.7–38.9% microbial pathogens (Pseudomonas spp.—22%; Bacillus spp.—18.7%); operating bed (E. coli –77.8%), instrument trolley (Pseudomonas spp.—28.6%), door handles (100% of S. aureus) | Pseudomonas spp., coagulase negative staphylococcus, Bacillus spp., E. coli, Staphylococcus aureus | Patients | [38] | |
Web of Science | Assessment of bioaerosol particle characteristics at different hospital wards and operating theatres: A case study in Tehran | Iran | Hospital (CCU, GICU, ICU, NICU, OT, NS) | Passive sampling method (252 plates) | Concentration of bacterial: 127 to 1783 CFUm-2 h-1; Micrococcus luteus: NS (41.5%), WS (72.3%), MS (70.0%), ICU (66.2%); Staphylococcus epidermidis: GICU (46.6%, NICU (50.0%); CCU: Streptococcus spp. (53.8%), Micrococcus luteus (46.2%). | Micrococcus luteus, Staphylococcus epidermidis, Streptococcus spp., Diphtheroid spp., Micrococcus roseus, Bacillus subtilis. | All occupants | [39] | |
PubMed | Assessment of Microbiological Aerosol Concentration in Selected Healthcare Facilities in Southern Poland | Poland | Primary healthcare units and hospital wards | Air samples | Mesophilic bacteria ranged 5 CFU/m3 in winter (No. IV)–297 CFU/m3 in autumn (No. V); airborne Staphylococci ranged 1 CFU/m3 in spring–96 CFU/m3 in winter (both No. IX); airborne actinomycetes ranged 7 CFU/m3 in spring and autumn (No. IV)–231 CFU/m3 in winter (No. VII); 55 isolates strains of Staphylococcus spp.: S. saprophyticus 25% (14), S. warneri 24% (13). | Mesophilic Bacteria, Airborne staphylococci, Airborne actinomycetes, Staphylococcus spp., S. saprophyticus, S. warneri | Nosocomial infections and infections in immunocompromised people. | All occupants | [37] |
web of Sience | Potentially pathogenic bacteria isolated from neglected air and surfaces in hospitals | Brazil | Hospital | Air samples, surfaces and uniforms samples | The highest microbial load was found in the PSRR (566 CFU/m3, Hospital B) and the lowest in the ORT (124.5 CFU/m3, Hospital B). | In the aerial microbiota of the sampled areas of both hospitals, M. luteus, S. haemolyticus and S. hominis spp hominis were the prevalent microorganisms, with a percentage greater than 30%. On the surfaces and uniforms, there was a prevalence of M. luteus (40%) and S. hominis spp hominis (20%). | S. hominis subsp. hominis is reported as a potential pathogen isolated in generalized infections. M. luteus, found in several sampled environments, is described as the causative agent in endocarditis and central venous catheter infection. Some microorganisms, isolated in low percentages in this study, are described in some cases of nosocomial infections, as is the case of E. ludwigii, reported as an agent causing an outbreak of bloodstream infection. Bacillus cereus causes bacteremia, infection of skin, bones and joints; S. lugdunensis causes bacteremia. S. warneri causes endocarditis and S. cohnii subsp. urealyticus causes bacteremia. | All occupants | [33] |
Pubmed | Assessment of Bacterial Pathogens and their Antibiotic Resistance in the Air of Different Wards of Selected Teaching Hospitals in Tehran | Tehran | Wards of selected two teaching hospitals | Air samples | The median level of colonies in the wards of hospital 1 was 129.87 (87.46–268.97) CFU/m3 and 297.97 (217.66–431.85) CFU/m3 for hospital 2. | Staphylococcus aureus was identified in most wards of the tow hospital. Acinetobacterlwoffii and Salmonella typhimuriu were the most abundant and least Gram-negative bacteria in hospital 1, respectively. In hospital 2, Pseudomonas aeuringos and Klebsiella pneumonia were the most abundant Gram-negative bacteria in the sampling stations. | All occupants | [32] |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Humphreys, H.; Smyth, E.T.M. Prevalence surveys of healthcare-associated infections: What do they tell us, if anything? Clin. Microbiol. Infect. 2006, 12, 2–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Health Care-Associated Infections Fact Sheet. 2013. Available online: http://www.who.int/gpsc/country_work/gpsc_ccisc_ fact_sheet_en.pdf (accessed on 10 September 2021).
- National Nosocomial Infections Surveillance System. National Nosocomial Infections Surveillance (NNIS) system report, data summary from January 1992 through June 2004, issued October 2004. Am. J. Infect. Control 2004, 32, 470. [Google Scholar] [CrossRef]
- Menachemi, N.; Yeager, V.A.; Welty, E.; Manzella, B. Are physician productivity and quality of care related? J. Healthc. Qual. 2015, 37, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.; Sartelli, M.; McKimm, J.; Abu Bakar, M. Health care-associated infections—An overview. Infect. Drug Resist. 2018, 11, 2321–2333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levy, S.B. Factors impacting on the problem of antibiotic resistance. J. Antimicrob. Chemother. 2002, 49, 25–30. [Google Scholar] [CrossRef] [PubMed]
- National Academies of Sciences, Engineering and Medicine. Microbiomes of the Built Environment: A Research Agenda for Indoor. Microbiology, Human Health, and Buildings; The National Academies Press: Washington, DC, USA, 2017; pp. 95–131. [Google Scholar]
- Qudiesat, K.; Abu-Elteen, K.H.; Elkarmi, A.Z.; Hamad, M.; Abussaud, M. Assessment of airborne pathogens in healthcare settings. Afr. J. Microbiol. Res. 2009, 3, 66–76. Available online: https://www.academicjournals.org/ajmr (accessed on 10 October 2021).
- Marchand, G.; Duchaine, C.; Lavoie, J.; Veillette, M.; Cloutier, Y. Bacteria emitted in ambient air during bronchoscopy—A risk to health care workers? Am. J. Infect. Control 2016, 44, 1634–1638. [Google Scholar] [CrossRef] [PubMed]
- Douwes, J.; Torne, P.; Pearce, N.; Heederik, D. Bioaerosol health effects and exposure assessment: Progress and prospects. Ann. Occup. Hyg. 2003, 47, 187–200. [Google Scholar] [CrossRef] [Green Version]
- Cross, A.S. What is a virulence factor? Crit. Care 2008, 12, 196. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.J.; Wang, A.H.; Jennings, M.P. Discovery of virulence factors of pathogenic bacteria. Curr. Opin. Chem. Biol. 2008, 12, 93–101. [Google Scholar] [CrossRef]
- Actor, J.A.J. 11—Basic Bacteriology. Elsevier’s Integrated Review; Elsevier/Saunders: Philadelphia, PA, USA, 2012; pp. 93–103. [Google Scholar] [CrossRef]
- Huslage, K.; Rutala, W.; Sickbert-Bennett, E.; Weber, D. A quantitative approach to defining “high-touch” surfaces in hospitals. Infect. Control Hosp. Epidemiol. 2010, 31, 850–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, D.; Rutala, W.; Miller, M.; Huslage, K.; Sickbert-Bennett, E. Role of hospital surfaces in the transmission of emerging health care-associated pathogens: Norovirus, Clostridium difficile, and Acinetobacter species. Am. J. Infect. Control 2010, 38, S25–S33. [Google Scholar] [CrossRef] [PubMed]
- Luksamijarulkul, P.; Aiempradit, N.; Vatanasomboon, P. Microbial Contamination on Used Surgical Masks among Hospital Personnel and Microbial Air Quality in their Working Wards: A Hospital in Bangkok. Oman Med. J. 2014, 29, 346–350. [Google Scholar] [CrossRef] [PubMed]
- Drees, M.; Snydman, D.; Schmid, C.; Barefoot, L.; Hansjosten, K.; Vue, P.; Cronin, M.; Nasraway, S.; Golan, Y. Prior environmental contamination increases the risk of acquisition of vancomycin-resistant enterococci. Clin. Infect. Dis. 2008, 46, 678–685. [Google Scholar] [CrossRef]
- Malamou-Ladas, H.; O’Farrell, S.; Nash, J.; Tabaqchali, S. Isolation of Clostridium difficile from patients and the environment of hospital wards. J. Clin. Pathol. 1983, 36, 88–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neely, A.; Maley, M. Survival of enterococci and staphylococci on hospital fabrics and plastic. J. Clinic. Microbiol. 2000, 38, 724–726. [Google Scholar] [CrossRef] [Green Version]
- Shaughnessy, M.; Micielli, R.; DePestel, D.; Arndt, J.; Strachan, C.; Welch, K.; Chenoweth, C. Evaluation of hospital room assignment and acquisition of Clostridium difficile infection. Infect. Control Hosp. Epidemiol. 2011, 32, 201–206. [Google Scholar] [CrossRef]
- Allegranzi, B.; Bagheri Nejad, S.; Combescure, C.; Graafmans, W.; Attar, H.; Pittet, D.L.D. Burden of endemic health-care-associated infection in developing countries: Systematic review and meta-analysis. Lancet 2011, 377, 228–241. [Google Scholar] [CrossRef]
- Burke, J.P. Infection control—A problem for patient safety. N. Engl. J. Med. 2003, 348, 651–656. [Google Scholar] [CrossRef] [Green Version]
- Goyer, N.; Lavoie, J.; Lazure, L.; Marchand, G. Bioaerosols in the Workplace: Evaluation, Control and Prevention Guide; Institut de Reserche en Santé et en Sécurité du Travail du Québec: Quebéc, QC, Canada, 2001. [Google Scholar]
- Huff, W.; Kubena, L.; Harvey, R.; Doerr, J. Mycotoxin interactions in poultry and swine. J. Anim. Sci. 1988, 66, 2351–2355. [Google Scholar] [CrossRef] [Green Version]
- Dizbay, M.; Tunccan, O.; Sezer, B.; Aktas, F.; Arman, D. Nosocomial Burkholderia cepacia infections in a Turkish university hospital: A five-year surveillance. J. Infect. Dev. Ctries. 2009, 3, 273–277. [Google Scholar] [CrossRef] [Green Version]
- Gautam, V.; Singhal, L.; Ray, P. Burkholderia cepacia complex: Beyond pseudomonas and acinetobacter. Indian J. Med. Microbiol. 2011, 29, 4–12. [Google Scholar] [CrossRef]
- Gautam, V.; Patil, P.; Kumar, S.; Midha, S.; Kaur, M.; Kaur, S.; Singh, M.; Mali, S.; Shastri, J.; Arora, A.; et al. Multilocus sequence analysis reveals high genetic diversity in clinical isolates of Burkholderia cepacia complex from India. Sci. Rep. 2016, 6, 35769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, L.; Hegde, A.; Pai, T.; Shetty, S.; Baliga, S.; Shenoy, S. An Outbreak of Burkholderia cepacia Bacteremia in a Neonatal Intensive Care Unit. Indian J. Pediatr. 2016, 83, 285–288. [Google Scholar] [CrossRef] [PubMed]
- Sousa, S.; Feliciano, J.; Pita, T.; Guerreiro, S.; Leitão, J.H. Burkholderia cepacia Complex Regulation of Virulence Gene Expression: A Review. Genes 2017, 8, 43. [Google Scholar] [CrossRef] [Green Version]
- Antony, B.; Cherian, E.; Boloor, R.S.K. A sporadic outbreak of Burkholderia cepacia complex bacteremia in pediatric inten-sive care unit of a tertiary care hospital in coastal Karnataka, South India. Indian J. Pathol. Microbiol. 2016, 59, 197–199. [Google Scholar] [CrossRef] [PubMed]
- Singhal, T.; Shah, S. Naik, R. Outbreak of Burkholderia cepacia complex bacteremia in a chemotherapy day care unit due to intrinsic contamination of an antiemetic drug. Indian J. Med. Microbiol. 2015, 33, 117–119. [Google Scholar] [CrossRef]
- Montazer, M.; Soleimani, N.; Vahabi, M.; Abtahi, M.; Etemad, K.; Zendehdel, R. Assessment of Bacterial Pathogens and their Antibiotic Resistance in the Air of Different Wards of Selected Teaching Hospitals in Tehran. Indian J. Occup. Environ. Med. 2011, 25, 78–83. [Google Scholar] [CrossRef]
- Oliveira, M.; Cunha, L.; Cruz, F.; Batista, N.; Gil, E.; Alves, V.; Bara, M.; Torres, I. Potentially pathogenic bacteria isolated from neglected air and surfaces in hospitals. J. Pharm. Sci. 2011, 57. [Google Scholar] [CrossRef]
- Augustowska, M.; Dutkiewicz, J. Variability of airborne micro-flora in a hospital ward within a period of one year. AAEM 2006, 13, 99–106. [Google Scholar]
- Tselebonis, A.; Nena, E.; Panopoulou, M.; Kontogiorgis, C.; Bezirtzoglou, E.; Constantinidis, T. Air Contamination in Different Departments of a Tertiary Hospital. Assessment of Microbial Load and of Antimicrobial Susceptibility. Biomedecines 2020, 8, 163. [Google Scholar] [CrossRef] [PubMed]
- Park, D.; Yeom, J.; Lee, W.; Lee, K. Assessment of the levels of airborne bacteria, Gram-negative bacteria, and fungi in hospital lobbies. Int. J. Environ. Res. Public Health 2013, 10, 541–555. [Google Scholar] [CrossRef] [PubMed]
- Stec, J.; Lenart-Boroń, A. Assessment of microbiological aerosol concentration in selected healthcare facilities in southern Poland. Cent. Eur. J. Public Health 2019, 27, 239–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matinyi, S.; Enoch, M.; Akia, D.; Byaruhanga, V.; Masereka, E.; Ekeu, I.; Atuheire, C. Contamination of microbial pathogens and their an-timicrobial pattern in operating theatres of peri-urban eastern Uganda: A cross-sectional study. BMC Infect. Dis. 2018, 18, 460. [Google Scholar] [CrossRef]
- Bolookat, F.; Hassanvand, M.S.; Faridi, S.; Hadei, M.; Rahmatinia, M.; Alimohammadi, M. Assessment of bioaerosol particle characteristics at different hospital wards and operating theaters: A case study in Tehran. MethodsX 2018, 5, 1588–1596. [Google Scholar] [CrossRef]
- Mastromarino, P.; Conti, C.; Donato, K.; Strappini, P.; Cattaruzza, M.; Orsi, G. Does hospital work constitute a risk factor for Helicobacter pylori infection? J. Hosp. Infect. 2005, 60, 261–268. [Google Scholar] [CrossRef]
- Chaudhry, A.; Rafiq, A.; Raza, J.; Gillani, S.-U.-H.; Malik, A.; Farqaleet, S.; Sami, A.; Awais, S. Staph Aureus as the most common cause of osteoarticular infection in dost †“1 Mayo Hospital, Lahore”. Ann. King Edw. Med. Univ. 2015, 21, 136. [Google Scholar] [CrossRef]
- Nylund, C.; Goudie, A.; Garza, J.; Fairbrother, G.; Cohen, M. Clostridium difficile infection in hospitalized children in the United States. Arch. Pediatr. Adolesc. Med. 2011, 165, 451–457. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.J.; Oliveira, A.P.; Zhou, J.J.; Alba, L.; Furuya, E.Y.; Weisenberg, S.A.; Jia, H.; Clock, S.A.; Kubin, C.J.; Jenkins, S.G.; et al. Risk factors and outcomes of infections caused by extremely drug-resistant gram-negative bacilli in patients hospitalized in intensive care units. Am. J. Infect. Control 2014, 42, 626–631. [Google Scholar] [CrossRef] [Green Version]
- de Blank, P.; Zaoutis, T.; Fisher, B.; Troxel, A.; Aplenc, K.J.R. Trends in Clostridium difficile infection and risk factors for hospital acquisition of Clostridium difficile among children with cancer. J. Pediatr. 2013, 163, 699–705.e1. [Google Scholar] [CrossRef] [Green Version]
- Cabo Verde, S.; Almeida, S.; Matos, J.; Guerreiro, D.M.M.; Faria, T.; Botelho, D.; Santos, M.; Viegas, C. Microbiological assessment of indoor air quality at different hospital sites. Res. Microbiol. 2015, 166, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Sivagnanasundaram, P.; Amarasekara, R.; Madegedara, R.; Magana-Arachchi, E.A.D. Assessment of Airborne Bacterial and Fungal Communities in Selected Areas of Teaching Hospital, Kandy, Sri Lanka. Biomed. Res. Int. 2019, 2019, 7393926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteiro, A.; Almeida, B.; Paciência, I.; Cavaleiro Rufo, J.; Ribeiro, E.; Carolino, E.; Viegas, C.; Uva, A.; Cabo Verde, S. Bacterial Contamination in Health Care Centers: Differences between Urban and Rural Settings. Atmosphere 2021, 12, 450. [Google Scholar] [CrossRef]
- Solomon, F.; Wadilo, F.; Arota, A.; Abraham, Y. Antibiotic resistant airborne bacteria and their multidrug resistance pattern at University teaching referral Hospital in South Ethiopia. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 29. [Google Scholar] [CrossRef]
- Allen, K.D.; Green, H. Hospital outbreak of multi-resistant Acinetobacter anitratus: An airborne mode of spread? J. Hosp. Infect. 1987, 9, 110–119. [Google Scholar] [CrossRef]
- Dutkiewicz, J.; Mackiewicz, B.; Lemieszek, M.K.; Golec, M.; Milanowski, J. Pantoea agglomerans: A mysterious bacterium of evil and good. Part IV. Beneficial effects. Ann. Agric. Environ. Med. 2016, 23, 206–222. [Google Scholar] [CrossRef] [PubMed]
- Dakić, I.; Morrison, D.; Vuković, D.; Savić, B.; Shittu, A.; Jezek, P.; Hauschild, T.; Stepanović, S. Isolation and molecular characterization of Staphylococcus sciuri in the hospital environment. J. Clin. Microbiol. 2005, 43, 2782–2785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drozenová, J.; Petrás, P. Vlastnosti koaguláza-negativních stafylokoků izolovaných z hemokultur [Characteristics of coagulase-negative staphylococci isolated from hemocultures]. Epidemiol. Mikrobiol. Imunol. 2000, 49, 51–58. [Google Scholar] [PubMed]
- Shittu, A.; Lin, J.; Morrison, D.; Kolawole, D. Isolation and molecular characterization of multiresistant Staphylococcus sciuri and Staphylococcus haemolyticus associated with skin and soft-tissue infec-tions. J. Med. Microbiol. 2004, 53, 51–55. [Google Scholar] [CrossRef]
- Castellazzi, L.; Mantero, M.; Esposito, S. Update on the Management of Pediatric Acute Osteomyelitis and Septic Arthritis. Int. J. Mol. Sci. 2016, 17, 855. [Google Scholar] [CrossRef] [Green Version]
- Taylor, T.A.; Unakal, C.G. Staphylococcus Aureus. [Updated 2021 Jul 21]. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Hodgson, S.H.; Atkins, B.; Bejon, P.; Byren, I.; Whyllic, D.; Athanason, N.A.; Berendt, A.; McNally, M. The microbiology of chronic osteomyelitis: Prevalence of resistance to common empirical anti-microbial regimens. J. Infect. 2010, 60, 338–343. [Google Scholar] [CrossRef]
- Inoue, S.; Moriyama, T.; Horinouchi, Y.; Tachibana, T.; Okada, F.; Maruo, K.; Yoshiya, S. Comparison of clinical features and outcomes of staphylococcus aureus vertebral osteomyelitis caused by methicillin-resistant and methicillin-sensitive strains. Springerplus 2013, 2, 283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beronius, M.; Bergman, B.; Andersson, R. Vertebral osteomyelitis in Göteborg, Sweden: A retrospective study of patients during 1990–1995. Scand. J. Infect. Dis. 2001, 33, 527–532. [Google Scholar] [CrossRef]
- Corrah, T.W.; Enoch, D.A.; Aliyu, S.H.; Lever, A.M. Bacteraemia and subsequent vertebral osteomyelitis: A retrospective review of 125 patients. QJM 2011, 104, 201–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clerc, O.; Prod’hom, G.; Greub, G.; Zanetti, G.; Senn, L. Adult native septic arthritis: A review of 10 years of experience and lessons for empirical antibiotic therapy. J. Antimicrob. Chemother. 2011, 66, 1168–1173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoesser, N.; Pocock, J.; Moore, C.E.; Soeng, S.; Hor, P.; Sar, P.; Limmathurotsakul, D.; Day, N.; Kumar, V.; Khan, S.; et al. The epidemiology of pediatric bone and joint infections in Cambodia, 2007–2011. J. Trop. Pediatr. 2013, 59, 36–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howard-Jones, A.R.; Isaacs, D.; Gibbons, P.J. Twelve-month outcome following septic arthritis in children. J. Pediatr. Orthop. B 2013, 22, 486–490. [Google Scholar] [CrossRef]
- Khan, F.Y.; Abu-Khattab, M.; Baagar, K.; Mohamed, S.F.; Elgendy, I.; Anand, D.; Malallah, H.; Sanjay, D. Characteristics of patients with definite septic arthritis at Hamad General Hospital, Qatar: A hospital-based study from 2006 to 2011. Clin. Rheumatol. 2013, 32, 969–973. [Google Scholar] [CrossRef]
- Peel, T.N.; Cheng, A.C.; Choong, P.F.; Buising, K.L. Early onset prosthetic hip and knee joint infection: Treatment and outcomes in Victoria, Australia. J. Hosp. Infect. 2012, 82, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Westberg, M.; Grøgaard, B.; Snorrason, F. Early prosthetic joint infections treated with debridement and implant retention: 38 primary hip arthroplasties prospectively recorded and followed for median 4 years. Acta Orthop. 2012, 83, 227–232. [Google Scholar] [CrossRef] [Green Version]
- Bejon, P.; Berendt, A.; Atkins, B.; Green, N.; Parry, H.; Masters, S.; McLardy-Smith, P.; Gundle, R.; Byren, I. Two-stage revision for prosthetic joint infection: Predictors of outcome and the role of reimplantation microbiology. J. Antimicrob. Chemother. 2010, 65, 569–575, Erratum in J. Antimicrob. Chemother. 2011, 66, 1204.. [Google Scholar] [CrossRef] [Green Version]
- Byren, I.; Bejon, P.; Atkins, B.L.; Angus, B.; Masters, S.; McLardy-Smith, P.; Gundle, R.; Berendt, A. One hundred and twelve infected arthroplasties treated with ‘DAIR’ (debridement, antibiotics and implant retention): Antibiotic duration and outcome. J. Antimicrob. Chemother. 2009, 63, 1264–1271, Erratum in: J. Antimicrob. Chemother. 2011, 66, 1203; Erratum in: J. Antimicrob. Chemother. 2013, 68, 2964–2965. [Google Scholar] [CrossRef] [Green Version]
- Wertheim, H.F.; Melles, D.C.; Vos, M.C.; van Leeuwen, W.; van Belkum, A.; Verbrugh, H.A.; Nouwen, J.L. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect. Dis. 2005, 5, 751–762. [Google Scholar] [CrossRef]
- Mathieu, L.; Mottier, F.; Bertani, A.; Danis, J.; Rongiéras, F.; Chauvin, F. Management of neglected open extremity fractures in low-resource settings: Experience of the French Army Medical Service in Chad. Orthop. Traumatol. Surg. Res. 2014, 100, 815–820. [Google Scholar] [CrossRef] [Green Version]
- Eidelman, M.; Bialik, V.; Miller, Y.; Kassis, I. Plantar puncture wounds in children: Analysis of 80 hospitalized patients and late sequelae. Isr. Med. Assoc. J. 2003, 5, 268–271. [Google Scholar] [PubMed]
- Laughlin, R.T.; Reeve, F.; Wright, D.G.; Mader, J.T.; Calhoun, J.H. Calcaneal osteomyelitis caused by nail puncture wounds. Foot Ankle Int. 1997, 18, 575–577. [Google Scholar] [CrossRef] [PubMed]
- Imoisili, M.A.; Bonwit, A.M.; Bulas, D.I. Toothpick puncture injuries of the foot in children. J. Pediatr. Infect. Dis. 2004, 23, 80–82. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Palmer, R.; Chipungu, P.E.G. Reducing bacterial con-tamination in an Orthopedic Theatre ventilated by natural ventilation in a Developing Country. J. Infect. Dev. Ctries. 2016, 10, 518–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bielawska-Drózd, A.; Cieślik, P.; Bohacz, J.; Korniłłowicz-Kowalska, T.; Żakowska, D.; Bartoszcze, M.; Kocik, J. Microbiological analysis of bioaerosols collected from Hospital Emergency Depart-ments and ambulances. Ann. Agric. Environ. Med. 2018, 25, 274–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azimi, F.; Nabizadeh, R.; Alimohammadi, M.; Naddafi, K. Bacterial Bioaerosols in the Operating Rooms: A Case Study in Tehran Shariati Hospital. J. Air Pollut. Health 2016, 1, 215–218. [Google Scholar]
- Mentese, S.; Rad, A.Y.; Arısoy, M.; Güllü, G. Seasonal and Spatial Variations of Bioaerosols in Indoor Urban Environments, Ankara, Turkey. Indoor Built Environ. 2012, 21, 797–810. [Google Scholar] [CrossRef]
- Polednik, B. Aerosol and bioaerosol particles in a dental office. Environ. Res. 2014, 134, 405–409. [Google Scholar] [CrossRef] [PubMed]
- Rendon, R.; Garcia, B.C.; Vital, P.G. Assessment of airborne bacteria in selected occupational environments in Quezon City, Philippines. Arch. Environ. Occup. Health 2017, 72, 178–183. [Google Scholar] [CrossRef]
- Bartlett, J.G. Antibiotic-associated pseudomembranous colitis. Rev. Infect. Dis. 1979, 1, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.A.; Chen, L.F.; Sexton, D.J.; Anderson, D.J. Comparison of the burdens of hospital-onset, healthcare facility-associated Clostridium difficile Infection and of healthcare-associated infection due to methicillin-resistant Staphylococcus aureus in community hospitals. Infect. Control Hosp. Epidemiol. 2011, 32, 387–390. [Google Scholar] [CrossRef]
- Smits, W.K.; Lyras, D.; Lacy, D.B.; Wilcox, M.H.; Kuijper, E.J. Clostridium difficile infection. Nat. Rev. 2016, 2, 16020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crobach, M.J.T.; Vernon, J.J.; Loo, V.G.; Kong, L.Y.; Péchiné, S.; Wilcox, M.H.; Kuijper, E.J. Understanding Clostridium difficile Colonization. Clin. Microbiol. Rev. 2018, 31, e00021-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eyre, D.W.; Griffiths, D.; Vaughan, A.; Golubchik, T.; Acharya, M.; O’Connor, L.; Crook, D.W.; Walker, A.S.; Peto, T.E. Asymptomatic Clostridium difficile colonisation and onward transmission. PLoS ONE 2013, 8, e78445. [Google Scholar] [CrossRef]
- Kong, L.Y.; Eyre, D.W.; Corbeil, J.; Raymond, F.; Walker, A.S.; Wilcox, M.H.; Crook, D.W.; Michaud, S.; Toye, B.; Frost, E.; et al. Clostridium difficile: Investigating Transmission Patterns Between Infected and Colonized Patients Using Whole Genome Sequencing. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2019, 68, 204–209. [Google Scholar] [CrossRef]
- Zacharioudakis, I.M.; Zervou, F.N.; Pliakos, E.E.; Ziakas, P.D.; Mylonakis, E. Colonization with toxinogenic C. difficile upon hospital admission, and risk of infection: A systematic review and meta-analysis. Am. J. Gastroenterol. 2015, 110, 381–390. [Google Scholar] [CrossRef]
- Leffler, D.A.; Lamont, J.T. Clostridium difficile infection. N. Engl. J. Med. 2015, 372, 1539–1548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angtuaco, T.; Sharma, V.; Corder, F.; Raufman, J.; Howden, C. Seroprevalence of H. pylori infection and symptoms of up-per gastrointestinal tract disease in two groups of healthcare workers. Dig. Dis. Sci. 2002, 47, 292–297. [Google Scholar] [CrossRef]
- Napoli, C.; Marcotrigiano, V.; Montagna, M. Air sampling procedures to evaluate microbial contamination: A comparison between active and passive methods in operating theatres. BMC Public Health 2012, 12, 594. [Google Scholar] [CrossRef] [Green Version]
- Nasser, A.; Zhang, X.; Yang, L.; Sawafta, F.; Salah, B. Assessment of Surgical Site Infections from Signs & Symptoms of the Wound and Associated Factors in Public Hospitals of Hodeidah City, Yemen. Int. J. Appl. Sci. 2013, 3, 101–110. [Google Scholar]
- Ensayef, S.; Al Shalchi, S.; Sabbar, M. Microbial contamination in the operating theatre: A study in a hospital in Baghdad. East. Mediterr. Health J. 2009, 15, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Bellido, F.; Hancock, R. Susceptibility and Resistance of P. aeruginosa to Antimicrobial Agents em in Pseudomona aeruginosa as an Opportunistic Pathogen; Campa, M., Bendinelli, M.F.H., Eds.; Springer: Boston, MA, USA, 1993; pp. 321–348. [Google Scholar]
- Peña, C.; Dominguez, M.A.; Pujol, M.; Vardarguer, R.; Gudiol, F.; Ariza, J. An outbreak of carbapenem-resistant Pseudomonas aeruginosa in a urology ward. Clin. Microbiol. Infect. 2003, 9, 938–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peleg, A.; Seifert, H.; Paterson, D. Acinetobacter baumannii: Emergence of a successful pathogen. Clin. Microbiol. Rev. 2008, 21, 538–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paterson, D. Resistance in gram-negative bacteria: Enterobacteriaceae. Am. J. Med. 2006, 119, S20–S70. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Articles in the English language | Articles in other languages (for articles) |
Articles published from 1 January 2000 to 31 October 2021 | Articles published before 2000 |
Articles related to bacteria contamination in healthcare units | Articles related to biological samples from patients or workers(exclusive) |
Articles related to health effects of bacteria on humans | Abstract of congress, reviews/state-of-the art, reports |
Articles related exclusively to humans | Articles related exclusively to animals |
Bacterial identification to the genera level and if possible, to the species level. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monteiro, A.; Cardoso, J.; Guerra, N.; Ribeiro, E.; Viegas, C.; Cabo Verde, S.; Sousa-Uva, A. Exposure and Health Effects of Bacteria in Healthcare Units: An Overview. Appl. Sci. 2022, 12, 1958. https://doi.org/10.3390/app12041958
Monteiro A, Cardoso J, Guerra N, Ribeiro E, Viegas C, Cabo Verde S, Sousa-Uva A. Exposure and Health Effects of Bacteria in Healthcare Units: An Overview. Applied Sciences. 2022; 12(4):1958. https://doi.org/10.3390/app12041958
Chicago/Turabian StyleMonteiro, Ana, Jéssica Cardoso, Nuno Guerra, Edna Ribeiro, Carla Viegas, Sandra Cabo Verde, and António Sousa-Uva. 2022. "Exposure and Health Effects of Bacteria in Healthcare Units: An Overview" Applied Sciences 12, no. 4: 1958. https://doi.org/10.3390/app12041958
APA StyleMonteiro, A., Cardoso, J., Guerra, N., Ribeiro, E., Viegas, C., Cabo Verde, S., & Sousa-Uva, A. (2022). Exposure and Health Effects of Bacteria in Healthcare Units: An Overview. Applied Sciences, 12(4), 1958. https://doi.org/10.3390/app12041958