Disks of Oxygen Vacancies on the Surface of TiO2 Nanoparticles
Abstract
:1. Introduction
2. Experimental
2.1. Synthesis of Oxide Nanopowders
2.2. Methods of Nuclear Reactions and Deuterium Probes
3. Results and Discussion
3.1. Number of Oxygen Vacancies in a Defect
3.2. Spatial Distribution of Defects Ti6 in Nanoparticles
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48, 53–229. [Google Scholar] [CrossRef]
- Vykhodets, V.B.; Kurennykh, T.E. Characterization of the defect structure of oxide nanoparticles with the use of deuterium probes. RSC Adv. 2020, 10, 3837–3843. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Nambissan, P. Evidence of oxygen and Ti vacancy induced ferromagnetism in post-annealed undoped anatase TiO2 nanocrystals: A spectroscopic analysis. J. Solid State Chem. 2019, 275, 174–180. [Google Scholar] [CrossRef]
- Mikhalev, K.N.; Germov, A.Y.; Ermakov, A.E.; Uimin, M.A.; Buzlukov, A.L.; Samatov, O.M. Crystal structure and magnetic properties of Al2O3 nanoparticles by 27Al NMR data. Phys. Solid State 2017, 59, 514–519. [Google Scholar] [CrossRef]
- Qin, X.B.; Zhang, P.; Liang, L.H.; Zhao, B.Z.; Yu, R.S.; Wang, B.Y.; Wu, W.M. Vacancy identification in Co+doped rutile TiO2crystal with positron annihilation spectroscopy. J. Physics: Conf. Ser. 2011, 262, 012051. [Google Scholar] [CrossRef]
- Bouzerar, G.; Ziman, T. Model for Vacancy-Inducedd0d0Ferromagnetism in Oxide Compounds. Phys. Rev. Lett. 2006, 96, 207602–207605. [Google Scholar] [CrossRef] [Green Version]
- Sundaresan, A.; Bhargavi, R.; Rangarajan, N.; Siddesh, U.; Rao, C.N.R. Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys. Rev. B 2006, 74, 161306. [Google Scholar] [CrossRef]
- Grosh, S.; Khan, G.G.; Mandal, K.; Samanta, A.; Nambissan, M.G. Evolution of Vacancy-Type Defects, Phase Transition, and Intrinsic Ferromagnetism during Annealing of Nanocrystalline TiO2 Studied by Positron Annihilation Spectroscopy. J. Phys. Chem. C 2013, 117, 8458–8467. [Google Scholar] [CrossRef]
- Sudakar, C.; Kharela, P.; Suryanarayanan, R.; Thakurc, J.S.; Naikd, V.M.; Naika, R.; Lawesa, G. Room temperature ferromagnetism in vacuum-annealed TiO2 thin films. J. Magn. Magn. Mater. 2008, 320, L31–L36. [Google Scholar] [CrossRef]
- Hong, N.H.; Sakai, J.; Poirot, N.; Brizé, V. Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films. Phys. Rev. B 2006, 73, 132404. [Google Scholar] [CrossRef]
- Coey, J.M.D. High-temperature ferromagnetism in dilute magnetic oxides. J. Appl. Phys. 2005, 97, 10D313. [Google Scholar] [CrossRef]
- Murakami, H.; Onizuka, N.; Sasaki, J.; Thonghai, N. Ultra-fine particles of amorphous TiO2 studied by means of positron annihilation spectroscopy. J. Mater. Sci. 1998, 33, 5811–5814. [Google Scholar] [CrossRef]
- Gaberle, J.; Shluger, A. The role of surface reduction in the formation of Ti interstitials. RSC Adv. 2019, 9, 12182–12188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, X.; Zhang, Y.; Jiang, J.; Rong, Y.; Wang, Y.; Wu, Y.; Pan, C. Characterization of Oxygen Vacancy Associates within Hydrogenated TiO2: A Positron Annihilation Study. J. Phys. Chem. C 2012, 116, 22619–22624. [Google Scholar] [CrossRef]
- Xu, N.N.; Li, G.P.; Pan, X.D.; Wang, Y.B.; Chen, J.S.; Bao, L.M. Oxygen vacancy-induced room-temperature ferromagnetism in D—D neutron irradiated single-crystal TiO2 (001) rutile. Chin. Phys. B 2014, 23, 106101. [Google Scholar] [CrossRef]
- Doeuff, S.; Henry, M.; Sanchez, C.; Livage, J. The gel route to Cr3+-doped TiO2, an ESR study. J. Non-Cryst. Solids 1987, 89, 84–97. [Google Scholar] [CrossRef]
- Coey, J.M.D.; Venkatesan, M.; Stamenov, P. Surface magnetism of strontium titanate. J. Phys.: Condens. Matter. 2016, 28, 485001. [Google Scholar] [CrossRef] [Green Version]
- Ermakov, A.E.; Uimin, M.A.; Korolev, A.V.; Volegov, A.S.; Byzov, I.V.; Shchegoleva, N.N.; Minin, A.S. Anomalous Magnetism of the Surface of TiO2 Nanocrystalline Oxides. Fizika Tverdogo Tela 2017, 59, 458–473. [Google Scholar] [CrossRef]
- Ahmed, S.A. Annealing effects on structure and magnetic properties of Mn-doped TiO2. J. Magn. Magn. Mater. 2016, 402, 178–183. [Google Scholar] [CrossRef]
- Sokovnin, S.Y.; Balezin, M.E. Production of nanopowders using nanosecond electron beam. Ferroelectrics 2012, 436, 108–111. [Google Scholar] [CrossRef]
- Kamat, P.V. TiO2 Nanostructures: Recent Physical Chemistry Advances. J. Phys. Chem. C 2012, 116, 11849. [Google Scholar] [CrossRef]
- Akdogan, N.; Nefedov, A.; Zabel, H.; Westerholt, K.; Becker, H.-W.; Somsen, C.; Gök, S.; Bashir, A.; Khaibullin, R.; Tagirov, L. High-temperature ferromagnetism in Co-implanted TiO2 rutile. J. Phys. D Appl. Phys. 2009, 42, 115005. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Zhao, Y.S.; Ma, J.; Liu, C.; Ma, Y. Detailed XPS analysis and anomalous variation of chemical state for Mn- and V-doped TiO2 coated on magnetic particles. Ceram. Int. 2017, 43, 16763–16772. [Google Scholar] [CrossRef]
- Cuaila, J.L.S.; Alayo, W.; Avellaneda, C. Ferromagnetism in spin-coated cobalt-doped TiO2 thin films and the role of crystalline phases. J. Magn. Magn. Mater. 2017, 442, 212. [Google Scholar] [CrossRef]
- Li, D.; Li, D.K.; Wu, H.Z.; Liang, F.; Xie, W.; Zou, C.W.; Chao, L.X. Defects related room temperature ferromagnetism in Cu-implanted ZnO nanorod arrays. J. Alloy. Comp. 2014, 591, 80–84. [Google Scholar] [CrossRef]
- Vykhodets, V.; Johnson, K.G.; Kurennykh, T.E.; Beketov, I.V.; Samatov, O.M.; Medvedev, A.I.; Jarvis, E.A.A. Direct Observation of Tunable Surface Structure and Reactivity in TiO2 Nanopowders. Surf. Sci. 2017, 665, 10–19. [Google Scholar] [CrossRef]
- Vykhodets, V.B.; Jarvis, E.A.A.; Kurennykh, T.E.; Beketov, I.V.; Obukhov, S.I.; Samatov, O.M.; Medvedev, A.I.; Davletshin, A.E.; Whyte, T. Inhomogeneous depletion of oxygen ions in oxide nanoparticles. Surf. Sci. 2016, 644, 141–147. [Google Scholar] [CrossRef]
- Vykhodets, V.B.; Jarvis, E.A.A.; Kurennykh, T.E.; Davletshin, A.E.; Obukhov, S.I.; Beketov, I.V.; Samatov, O.M.; Medvedev, A.I. Extreme deviations from stoichiometry in alumina nanopowders. Surf. Sci. 2014, 630, 182–186. [Google Scholar] [CrossRef]
- Uymin, M.A.; Minin, A.S.; Yermakov, A.Y.; Korolyov, A.V.; Balezin, M.Y.; Sokovnin, S.Y.; Konev, A.S.; Konev, S.F.; Molochnikov, L.S.; Gaviko, V.S.; et al. Magnetic properties and structure of TiO2 -Mn (0.73%) nanopowders: The effects of electron irradiation and vacuum annealing. Lett. Mater. 2019, 9, 91–96. [Google Scholar] [CrossRef]
- Jarvis, E.A.A.; Carter, E.A. Metallic Character of the Al2O3(0001)-(√31 × √31)R ± 9° Surface Reconstruction. J. Phys. Chem. B 2001, 105, 4045–4052. [Google Scholar] [CrossRef]
- Jarvis, E.A.A.; Carter, E.A. A nanoscale mechanism of fatigue in ionic solids. Nano Lett. 2006, 6, 505–509. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vykhodets, V.B.; Kurennykh, T.E.; Vykhodets, E.V. Disks of Oxygen Vacancies on the Surface of TiO2 Nanoparticles. Appl. Sci. 2022, 12, 11963. https://doi.org/10.3390/app122311963
Vykhodets VB, Kurennykh TE, Vykhodets EV. Disks of Oxygen Vacancies on the Surface of TiO2 Nanoparticles. Applied Sciences. 2022; 12(23):11963. https://doi.org/10.3390/app122311963
Chicago/Turabian StyleVykhodets, Vladimir B., Tatiana E. Kurennykh, and Evgenia V. Vykhodets. 2022. "Disks of Oxygen Vacancies on the Surface of TiO2 Nanoparticles" Applied Sciences 12, no. 23: 11963. https://doi.org/10.3390/app122311963
APA StyleVykhodets, V. B., Kurennykh, T. E., & Vykhodets, E. V. (2022). Disks of Oxygen Vacancies on the Surface of TiO2 Nanoparticles. Applied Sciences, 12(23), 11963. https://doi.org/10.3390/app122311963