Synthesis of C/SiC Mixtures for Composite Anodes of Lithium-Ion Power Sources
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Samples Characterization
3.2. Electrochemical Performance of the Comosite Anodes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kulova, T.L. New Electrode Materials for Lithium-Ion Batteries (Review). Russ. J. Electrochem. 2013, 49, 1–25. [Google Scholar] [CrossRef]
- Luo, H.; Wang, Y.; Feng, Y.-H.; Fan, X.-Y.; Han, X.; Wang, P.-F. Lithium-Ion Batteries under Low-Temperature Environment: Challenges and Prospects. Materials 2022, 15, 8166. [Google Scholar] [CrossRef] [PubMed]
- Mitsch, T.; Kramer, Y.; Feinauer, J.; Gaiselmann, G.; Markotter, H.; Manke, I.; Hintennach, A.; Schmidt, V. Preparation and Charachterization of Li-Ion Graphite Anodes Using Synchrotron Tomography. Materials 2014, 7, 4455–4472. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.-J.; Yang, L.-X.; Lin, G.-Q.; Bu, H.-P.; Wang, W.-J.; Liu, H.-J.; Zeng, C.-L. Superior electrochemcial performances of core-shell structured vanadium oxide@vanadium carbide composites for Li-ion storage. Appl. Surf. Sci. 2022, 588, 152904. [Google Scholar] [CrossRef]
- Bini, M.; Ambrosetti, M.; Spada, D. ZnFe2O4, a Green and High-Capacity Anode Material for Lithium-Ion Batteries: A Review. Appl. Sci. 2021, 11, 11713. [Google Scholar] [CrossRef]
- Purwanto, A.; Muzayanha, S.U.; Yudha, C.S.; Widiyandari, H.; Jumari, A.; Dyartanti, E.R.; Nizam, M.; Putra, M.I. High Performance of Salt-Modified–LTO Anode in LiFePO4 Battery. Appl. Sci. 2020, 10, 7135. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, N.; Bai, Z. The Progress of Cobalt-Based Anode Materials for Lithium Ion Batteries and Sodium Ion Batteries. Appl. Sci. 2020, 10, 3098. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, H.; Li, W.; Fang, L.; Wang, Y. Targeted Synthesis of Novel Hierarchical Sandwiched NiO/C Arays as High-Efficiency Lithium Ion Batteries Anode. J. Power Sources 2016, 301, 78–86. [Google Scholar] [CrossRef]
- Spinner, N.; Mustain, W.E. Nanostructural Effects on the Cycle Life and Li+ Diffusion Coefficient of Nickel Oxide Anodes. J. Electroanal. Chem. 2013, 711, 8–16. [Google Scholar] [CrossRef]
- Gevel, T.; Zhuk, S.; Leonova, N.; Leonova, A.; Trofimov, A.; Suzdaltsev, A.; Zaikov, Y. Electrochemical Synthesis of Nano-Sized Silicon from KCl–K2SiF6 Melts for Powerful Lithium-Ion Batteries. Appl. Sci. 2021, 11, 10927. [Google Scholar] [CrossRef]
- Feng, K.; Li, M.; Liu, W.; Kashkooli, A.G.; Xiao, X.; Cai, M.; Chen, Z. Silicon-Based Anodes for Lithium-Ion Batteries: From Fundamentals to Practical Applications. Small 2018, 14, 1702737. [Google Scholar] [CrossRef] [PubMed]
- Ha, Y.; Schulze, M.C.; Frisco, S.; Trask, S.E.; Teeter, G.; Neale, N.R.; Veith, G.M.; Johnson, C.S. Li2O-Based Cathode Additives Enabling Prelithiation of Si Anodes. Appl. Sci. 2021, 11, 12027. [Google Scholar] [CrossRef]
- Suzdaltsev, A. Silicon Electrodeposition for Microelectronics and Distributed Energy: A Mini-Review. Electrochem 2022, 3, 760–768. [Google Scholar] [CrossRef]
- Yang, X.; Tachikawa, N.; Katayama, Y.; Li, L.; Yan, J. Effect of the Pillar Size on the Electrochemical Performance of Laser-Induced Silicon Micropillars as Anodes for Lithium-Ion Batteries. Appl. Sci. 2019, 9, 3623. [Google Scholar] [CrossRef] [Green Version]
- Stokes, K.; Flynn, G.; Geaney, H.; Bree, G.; Ryan, K.M. Axial Si–Ge Heterostructure Nanowires as Lithium-Ion Battery Anodes. Nano Lett. 2018, 18, 5569–5575. [Google Scholar] [CrossRef] [PubMed]
- Chockla, A.M.; Klavetter, K.C.; Mullins, C.B.; Korgel, B.A. Solution-Grown Germanium Nanowire Anodes for Lithium-Ion batteries. ACS Appl. Mater. Interfaces 2012, 4, 4658–4664. [Google Scholar] [CrossRef]
- Kulova, T.L.; Skundin, A.M. Germanium in Lithium-Ion and Sodium-Ion Batteries (A Review). Russ. J. Electrochem. 2022, 57, 1105–1137. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, X.; Pan, D. Solutions for the Problems of Silicon–Carbon Anode Materials for Lithium-Ion Batteries. R. Soc. Open Sci. 2018, 5, 172370. [Google Scholar] [CrossRef] [Green Version]
- Kolosov, D.A.; Glukhova, O.E. Theoretical Study of a New Porous 2D Silicon-Filled Composite Based on Graphene and Single-Walled Carbon Nanotubes for Lithium-Ion Batteries. Appl. Sci. 2020, 10, 5786. [Google Scholar] [CrossRef]
- Abe, Y.; Saito, I.; Tomioka, M.; Kabir, M.; Kumagai, S. Effects of Excessive Prelithiation on Full-Cell Performance of Li-Ion Batteries with a Hard-Carbon/Nanosized-Si Composite Anode. Batteries 2022, 8, 210. [Google Scholar] [CrossRef]
- Hou, Y.; Yang, Y.; Meng, W.; Lei, B.; Ren, M.; Yang, X.; Wang, Y.; Zhao, D. Core-Shell Structured Si@Cu Nanoparticles Encapsulated in Carbon Cages as High-Performance Lithium-Ion Battery Anodes. J. Alloys Compd. 2021, 874, 159988. [Google Scholar] [CrossRef]
- Fan, Z.; Wang, Y.; Zheng, S.; Xu, K.; Wu, J.; Chen, S.; Liang, J.; Shi, A.; Wang, Z. A Submicron Si@C Core-Shell Intertwined with Carbon Nanowires and Graphene Nanosheet as a High-Performance Anode Material for Lithium Ion Battery. Energy Storage Mater. 2021, 39, 1–10. [Google Scholar] [CrossRef]
- Zhang, X.; Min, B.-I.; Wang, Y.; Hayashida, R.; Tanaka, M.; Watanabe, T. Preparation of Carbon-Coated Silicon Nanoparticles with Different Hydrocarbon Gases in Induction Thermal Plasma. J. Phys. Chem. C 2021, 125, 15551–15559. [Google Scholar] [CrossRef]
- Liu, G.; Yang, Y.; Lu, X.; Qi, F.; Liang, Y.; Trukhanov, A.; Wu, Y.; Sun, Z.; Lu, X. Fully Active Bimetallic Phosphide Zn0.5Ge0.5P: A Novel High-Performance Anode for Na-Ion Batteries Coupled with Diglyme-Based Electrolyte. ACS Appl. Mater. Interfaces 2022, 14, 31803–31813. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Wang, N.; Qi, F.; Lu, X.; Liang, Y.; Sun, Z. Novel Ni–Ge–P Anodes for Lithium-Ion Batteries with Enhanced Reversibility and Reduced Redox Potential. Inorg. Chem. Front. 2023, in press. [Google Scholar] [CrossRef]
- Sierra, L.; Gibaja, C.; Torres, I.; Salagre, E.; Avilés Moreno, J.R.; Michel, E.G.; Ocón, P.; Zamora, F. Alpha-Germanium Nanolayers for High-Performance Li-ion Batteries. Nanomaterials 2022, 12, 3760. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Chen, Y.; Ke, X.; Zhang, Z.; Wu, W.; Lin, G.; Zhou, Z.; Shi, Z. Coupling of Triporosity and Strong Au–Li Interaction to Enable Dendrite-Free Lithium Plating/Stripping for Long-Life Lithium Metal Anodes. J. Mater. Chem. A 2020, 8, 18094. [Google Scholar] [CrossRef]
- Sun, X.; Shao, C.; Zhang, F.; Li, Y.; Wu, Q.-H.; Yang, Y. SiC Nanofibers as Long-Life Lithium-Ion Battery Anode Materials. Front. Chem. 2018, 6, 166. [Google Scholar] [CrossRef]
- Huang, X.D.; Zhang, F.; Gan, X.F.; Huang, Q.A.; Yang, J.Z.; Lai, T.; Tang, W.M. Electrochemical Characteristics of Amorphous Silicon Carbide Film as a Lithium-Ion Battery Anode. RSC Adv. 2018, 8, 5189–5196. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, H.; Jerliu, B.; Hüger, E.; Stahnc, J. Volume Expansion of Amorphous Silicon Electrodes During Potentiostatic Lithiation of Li-ion Batteries. Electrochem. Comm. 2020, 115, 106738. [Google Scholar] [CrossRef]
- Liu, G.; Wei, Y.; Li, T.; Gu, Y.; Guo, D.; Wu, N.; Qin, A.; Liu, X. Green and Scalable Fabrication of Sandwich-like NG/SiOx/NG Homogenous Hybrids for Superior Lithium-Ion Batteries. Nanomaterials 2021, 11, 2366. [Google Scholar] [CrossRef] [PubMed]
- Lou, D.; Chen, S.; Langrud, S.; Razzaq, A.A.; Mao, M.; Younes, H.; Xing, W.; Lin, T.; Hong, H. Scalable Fabrication of Si-Graphene Composite as Anode for Li-ion Batteries. Appl. Sci. 2022, 12, 10926. [Google Scholar] [CrossRef]
- Jo, M.; Sim, S.; Kim, J.; Oh, P. Micron-Sized SiOx–Graphite Compound as Anode Materials for Commercializable Lithium-Ion Baterries. Nanomaterials 2022, 12, 1956. [Google Scholar] [CrossRef] [PubMed]
- Jumari, A.; Yudha, C.S.; Widiyandari, H.; Lestari, A.P.; Rosada, R.A.; Santosa, S.P.; Purwanto, A. SiO2/C Composite as a High Capacity Anode Material of LiNi0.8Co0.15Al0.05O2 Battery Derived from Coal Combustion Fly Ash. Appl. Sci. 2020, 10, 8428. [Google Scholar] [CrossRef]
- Galashev, A.; Vorob’ev, A. An Ab Initio Study of Lithization of Two-Dimensional Silicon–Carbon Anode Material for Lithium-Ion Batteries. Materials 2021, 14, 6649. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Wang, S.; Li, X. The Effect of Silicon-Containing Minerals on Coal Evolution at High-Temperature Pre-Graphitization Stage. Minerals 2023, 13, 20. [Google Scholar] [CrossRef]
- Lee, K.-J.; Kang, Y.; Kim, Y.H.; Baek, S.W.; Hwang, H. Synthesis of Silicon Carbide Powders from Methyl-Modified Silica Aerogels. Appl. Sci. 2020, 10, 6161. [Google Scholar] [CrossRef]
- Xing, Z.; Lu, J.; Ji, X. A Brief Review of Metallothermic Reduction Reactions for Materials Preparation. Small Methods 2018, 2, 1800062. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, K.; Zhou, Y.; Xia, Y.; Yu, N.; Wu, G.; Zhu, Y.; Wu, Y.; Huang, H. A Facile, One-Step Synthesis of Silicon/Silicon Carbide/Carbon Nanotube Nanocomposite as a Cycling-Stable Anode for Lithium Ion Batteries. Nanomaterials 2019, 9, 1624. [Google Scholar] [CrossRef] [Green Version]
- Lebedev, A.S.; Suzdaltsev, A.V.; Anfilogov, V.N.; Farlenkov, A.S.; Porotnikova, N.M.; Vovkotrub, E.G.; Akashev, L.A. Carbothermal Synthesis, Properties, and Structure of Ultrafine SiC Fibers. Inorg. Mat. 2020, 56, 20–27. [Google Scholar] [CrossRef]
- Anfilogov, V.N.; Lebedev, A.V.; Ryzhkov, V.M.; Blinov, I.A. Carbothermal Synthesis of Nanoparticulate Silicon Carbide in a Self-Contained Protective Atmosphere. Inorg. Mat. 2016, 52, 655–660. [Google Scholar] [CrossRef]
- Gevel, T.; Zhuk, S.; Suzdaltsev, A.V.; Zaikov, Y.P. Study into the Possibility of Silicon Electrodeposition from a Low-Fluoride KCl–K2SiF6 Melt. Ionics 2022, 28, 3537–3545. [Google Scholar] [CrossRef]
- Nakashima, S.; Harima, H. Raman Investigation of SiC Polytypes. Phys. Status Solidi A 1997, 162, 39–64. [Google Scholar] [CrossRef]
- Xing, Z.; Wang, B.; Halsted, J.K.; Subashchandrabose, R.; Stickleb, W.F.; Ji, X. Direct Fabrication of Nanoporous Graphene from Graphene Oxide by Adding a Gasification Agent toa Magnesiothermic Reaction. Chem. Commun. 2015, 51, 1969. [Google Scholar] [CrossRef] [PubMed]
- Brodova, I.; Yolshina, L.; Razorenov, S.; Rasposienko, D.; Petrova, A.; Shirinkina, I.; Shorokhov, E.; Muradymov, R.; Garkushin, G.; Savinykh, A. Effect of Grain Size on the Properties of Aluminum Matrix Composites with Graphene. Metals 2022, 12, 1054. [Google Scholar] [CrossRef]
- Hossain, S.T.; Johra, F.T.; Jung, W.-G. Fabrication of Silicon Carbide from Recycled Silicon Wafer Cutting Sludge and Its Purification. Appl. Sci. 2018, 8, 1841. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Periñán, E.; Foster, C.W.; Down, M.P.; Zhang, Y.; Ji, X.; Lorenzo, E.; Kononovs, D.; Saprykin, A.I.; Yakovlev, V.N.; Pozdnyakov, G.A.; et al. Graphene Encapsulated Silicon Carbide Nanocomposites for High and Low Power Energy Storage Applications. J. Carbon Res. 2017, 3, 20. [Google Scholar] [CrossRef] [Green Version]
- Masias, A.; Marcicki, J.; Paxton, W.A. Opporttunities and Challenges of Lithium Ion Batteries in Automotive Applications. ACS Energy Lett. 2021, 6, 621–630. [Google Scholar] [CrossRef]
- Hosen, M.S.; Gopalakrishnan, R.; Kalogiannis, T.; Jaguemont, J.; Van Mierlo, J.; Berecibar, M. Impact of Relaxation Time on Electrochemical Impedance Spectroscopy Characterization of the Most Common Lithium Battery Technologies—Experimental Study and Chemistry-Neutral Modeling. World Electr. Veh. J. 2021, 12, 77. [Google Scholar] [CrossRef]
- Maddipatla, R.; Loka, C.; Choi, W.J.; Lee, K.-S. Nanocomposite of Si/C Anode Material Prepared by Hybrid Process of High-Energy Mechanical Milling and Carbonization for Li-Ion Secondary Batteries. Appl. Sci. 2018, 8, 2140. [Google Scholar] [CrossRef]
- Choi, J.-H.; Choi, S.; Cho, J.S.; Kim, H.-K.; Jeong, S.M. Efficient Synthesis of High Areal Capacity Si@Graphite@SiC Composite Anode Material via One-Step Electro-deoxidation. J. Alloys Compd. 2022, 896, 163010. [Google Scholar] [CrossRef]
- Galashev, A.Y.; Vorob’ev, A.S. First Principle Modeling of a Silicene Anode for Lithium Ion Batteries. Electrochim. Acta 2021, 378, 138143. [Google Scholar] [CrossRef]
- Uxa, D.; Huger, E.; Dorrer, L.; Schmidt, H. Lihium-Silicon Compounds as Electrode Material for Lithium-Ion batteries. J. Electrochem. Soc. 2020, 167, 130522. [Google Scholar] [CrossRef]
- Jiang, Y.; Offer, G.; Jiang, J.; Marinescu, M.; Wang, H. Voltage Hysteresis Model for Silicon Electrodes for Lithium Ion Batteries, Including Multi-Step Phase Transformations, Cristallization and Amorphization. J. Electrochem. Soc. 2020, 167, 130533. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leonova, A.M.; Bashirov, O.A.; Leonova, N.M.; Lebedev, A.S.; Trofimov, A.A.; Suzdaltsev, A.V. Synthesis of C/SiC Mixtures for Composite Anodes of Lithium-Ion Power Sources. Appl. Sci. 2023, 13, 901. https://doi.org/10.3390/app13020901
Leonova AM, Bashirov OA, Leonova NM, Lebedev AS, Trofimov AA, Suzdaltsev AV. Synthesis of C/SiC Mixtures for Composite Anodes of Lithium-Ion Power Sources. Applied Sciences. 2023; 13(2):901. https://doi.org/10.3390/app13020901
Chicago/Turabian StyleLeonova, Anastasia M., Oleg A. Bashirov, Natalia M. Leonova, Alexey S. Lebedev, Alexey A. Trofimov, and Andrey V. Suzdaltsev. 2023. "Synthesis of C/SiC Mixtures for Composite Anodes of Lithium-Ion Power Sources" Applied Sciences 13, no. 2: 901. https://doi.org/10.3390/app13020901
APA StyleLeonova, A. M., Bashirov, O. A., Leonova, N. M., Lebedev, A. S., Trofimov, A. A., & Suzdaltsev, A. V. (2023). Synthesis of C/SiC Mixtures for Composite Anodes of Lithium-Ion Power Sources. Applied Sciences, 13(2), 901. https://doi.org/10.3390/app13020901