A Comparative Study of the Treatment Efficiency of Floating and Constructed Wetlands for the Bioremediation of Phenanthrene-Contaminated Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Vitro Screening of the Bacterial Strains
2.2. Development of the FTW Setup
2.3. Development of the CW Setup
2.4. Water Analyses
2.5. Plant Root/Shoot Length and Biomass
2.6. Determination and Persistence of the Inoculated Bacteria
2.7. Phytotoxicity Test
2.8. Data Analysis
3. Results and Discussion
3.1. Phenanthrene Degradation Potential of the Bacterial Strains
3.2. Phenanthrene Degradation Efficiency of the FTWs and CWs
3.3. Persistence of the Augmented Bacterial Strains in the Root and Shoot
3.4. Effect of Different Treatments on the Plant Biomass and Growth
3.5. Toxicity Reduction in the Water Treated by CWs and FTWs
4. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azubuike, C.C.; Chikere, C.B.; Okpokwasili, G.C. Bioremediation techniques–classification based on site of application: Principles, advantages, limitations and prospects. World J. Microbiol. Biotechnol. 2016, 32, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals—Concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Arslan, M.; Imran, A.; Khan, Q.M.; Afzal, M. Plant–bacteria partnerships for the remediation of persistent organic pollutants. Environ. Sci. Pollut. Res. 2017, 24, 4322–4336. [Google Scholar] [CrossRef] [PubMed]
- Aulakh, M.S.; Khurana, M.P.S.; Singh, D. Water Pollution Related to Agricultural, Industrial, and Urban Activities, and its Effects on the Food Chain: Case Studies from Punjab. J. New Seeds 2009, 10, 112–137. [Google Scholar] [CrossRef]
- Xu, P.; Chen, X.; Li, K.; Meng, R.; Pu, Y. Metagenomic Analysis of Microbial Alliances for Efficient Degradation of PHE: Microbial Community Structure and Reconstruction of Metabolic Network. Int. J. Environ. Res. Public Health 2022, 19, 12039. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Wang, Y.; Zheng, X.; Zhu, K.; Long, A.; Wu, X.; Zhang, H. Remediation of phenanthrene contaminated soil by coupling soil washing with Tween 80, oxidation using the UV/S2O82− process and recycling of the surfactant. Chem. Eng. J. 2019, 369, 1014–1023. [Google Scholar] [CrossRef]
- Barlow, M.; Clarke, T. Blue Gold: The Battle against Corporate Theft of the World’s Water; Routledge: London, UK, 2017. [Google Scholar]
- Rodriguez Boluarte, I.A.; Andersen, M.; Pramanik, B.K.; Chang, C.-Y.; Bagshaw, S.; Farago, L.; Jegatheesan, V.; Shu, L. Reuse of car wash wastewater by chemical coagulation and membrane bioreactor treatment processes. Int. Biodeterior. Biodegrad. 2016, 113, 44–48. [Google Scholar] [CrossRef]
- Calheiros, C.S.C.; Rangel, A.O.S.S.; Castro, P.M.L. Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater. Water Res. 2007, 41, 1790–1798. [Google Scholar] [CrossRef] [PubMed]
- Machate, T.; Noll, H.; Behrens, H.; Kettrup, A. Degradation of phenanthrene and hydraulic characteristics in a constructed wetland. Water Res. 1997, 31, 554–560. [Google Scholar] [CrossRef]
- Naidoo, G.; Naidoo, K. Ultrastructural effects of polycyclic aromatic hydrocarbons in the mangroves Avicennia marina and Rhizophora mucronata. Flora 2017, 235, 1–9. [Google Scholar] [CrossRef]
- Phale, P.S.; Sharma, A.; Gautam, K. 11-Microbial degradation of xenobiotics like aromatic pollutants from the terrestrial environments. In Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology; Prasad, M.N.V., Vithanage, M., Kapley, A., Eds.; Butterworth-Heinemann: Oxford, UK, 2019; pp. 259–278. [Google Scholar]
- Kang, S.; Xing, B. Phenanthrene Sorption to Sequentially Extracted Soil Humic Acids and Humins. Environ. Sci. Technol. 2005, 39, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Liu, Y.; Cheng, W.; Zhang, W.; Xue, G.; Ognier, S. Study on remediation of phenanthrene contaminated soil by pulsed dielectric barrier discharge plasma: The role of active species. Chem. Eng. J. 2016, 296, 132–140. [Google Scholar] [CrossRef]
- Desai, P.; Kore, V. Performance evaluation of effluent treatment plant for textile industry in Kolhapur of Maharashtra. Univ. J. Environ. Res. Technol. 2011, 1, 560–565. [Google Scholar]
- Massoud, M.A.; Tarhini, A.; Nasr, J.A. Decentralized approaches to wastewater treatment and management: Applicability in developing countries. J. Environ. Manag. 2009, 90, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Colares, G.S.; Dell’Osbel, N.; Wiesel, P.G.; Oliveira, G.A.; Lemos, P.H.Z.; da Silva, F.P.; Lutterbeck, C.A.; Kist, L.T.; Machado, Ê.L. Floating treatment wetlands: A review and bibliometric analysis. Sci. Total Environ. 2020, 714, 136776. [Google Scholar] [CrossRef]
- Afzal, M.; Arslan, M.; Müller, J.A.; Shabir, G.; Islam, E.; Tahseen, R.; Anwar-ul-Haq, M.; Hashmat, A.J.; Iqbal, S.; Khan, Q.M. Floating treatment wetlands as a suitable option for large-scale wastewater treatment. Nat. Sustain. 2019, 2, 863–871. [Google Scholar] [CrossRef]
- Jilani, S.; Khan, M. Marine pollution due to discharge of untreated waste water in Karachi coast. J. Biodivers. Environ. Sci. 2013, 3, 146–153. [Google Scholar]
- Ijaz, A.; Shabir, G.; Khan, Q.M.; Afzal, M. Enhanced remediation of sewage effluent by endophyte-assisted floating treatment wetlands. Ecol. Eng. 2015, 84, 58–66. [Google Scholar] [CrossRef]
- Afzal, M.; Rehman, K.; Shabir, G.; Tahseen, R.; Ijaz, A.; Hashmat, A.J.; Brix, H. Large-scale remediation of oil-contaminated water using floating treatment wetlands. NPJ Clean Water 2019, 2, 3. [Google Scholar] [CrossRef] [Green Version]
- Shehzadi, M.; Afzal, M.; Khan, M.U.; Islam, E.; Mobin, A.; Anwar, S.; Khan, Q.M. Enhanced degradation of textile effluent in constructed wetland system using Typha domingensis and textile effluent-degrading endophytic bacteria. Water Res. 2014, 58, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.-Y.; Zhang, T.; Fang, H.H.-P. Bacteria-mediated PAH degradation in soil and sediment. Appl. Microbiol. Biotechnol. 2011, 89, 1357–1371. [Google Scholar] [CrossRef] [PubMed]
- Sandoval, L.; Zamora-Castro, S.A.; Vidal-Álvarez, M.; Marín-Muñiz, J.L. Role of Wetland Plants and Use of Ornamental Flowering Plants in Constructed Wetlands for Wastewater Treatment: A Review. Appl. Sci. 2019, 9, 685. [Google Scholar] [CrossRef]
- Wang, M.; Liu, C.; Zhang, J.; Xiao, K.; Pan, T. Synergistic effects of a functional bacterial consortium on enhancing phenanthrene biodegradation and counteracting rare earth biotoxicity in liquid and slurry systems. Lett. Appl. Microbiol. 2022, 75, 1515–1525. [Google Scholar] [CrossRef]
- Yousaf, S.; Andria, V.; Reichenauer, T.G.; Smalla, K.; Sessitsch, A. Phylogenetic and functional diversity of alkane degrading bacteria associated with Italian ryegrass (Lolium multiflorum) and Birdsfoot trefoil (Lotus corniculatus) in a petroleum oil-contaminated environment. J. Hazard. Mater. 2010, 184, 523–532. [Google Scholar] [CrossRef]
- Shome, R. Role of microbial enzymes in Bioremediation. ELifePress 2020, 1, 15–20. [Google Scholar]
- Hussain, Z.; Arslan, M.; Shabir, G.; Malik, M.H.; Mohsin, M.; Iqbal, S.; Afzal, M. Remediation of textile bleaching effluent by bacterial augmented horizontal flow and vertical flow constructed wetlands: A comparison at pilot scale. Sci. Total Environ. 2019, 685, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Gandaseca, S.; Rosli, N.; Ngayop, J.; Arianto, C.I. Status of water quality based on the physico-chemical assessment on river water at Wildlife Sanctuary Sibuti Mangrove Forest, Miri Sarawak. Am. J. Environ. Sci. 2011, 7, 269. [Google Scholar] [CrossRef] [Green Version]
- Rehman, K.; Imran, A.; Amin, I.; Afzal, M. Enhancement of oil field-produced wastewater remediation by bacterially-augmented floating treatment wetlands. Chemosphere 2019, 217, 576–583. [Google Scholar] [CrossRef]
- Wang, J.; Song, X.; Li, Q.; Bai, H.; Zhu, C.; Weng, B.; Yan, D.; Bai, J. Bioenergy generation and degradation pathway of phenanthrene and anthracene in a constructed wetland-microbial fuel cell with an anode amended with nZVI. Water Res. 2019, 150, 340–348. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, J.; Xie, H.; Sun, B.; Liang, S.; Wu, H.; Hu, Z.; Ngo, H.H.; Guo, W.; Lu, J. Electron shuttles enhance phenanthrene removal in constructed wetlands filled with manganese oxides-coated sands. Chem. Eng. J. 2021, 426, 131755. [Google Scholar] [CrossRef]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.-I.; Knowler, D.J.; Lévêque, C.; Naiman, R.J.; Prieur-Richard, A.-H.; Soto, D.; Stiassny, M.L.J.; et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 2005, 81, 163–182. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, A.; Imran, A.; Anwar ul Haq, M.; Khan, Q.M.; Afzal, M. Phytoremediation: Recent advances in plant-endophytic synergistic interactions. Plant Soil 2016, 405, 179–195. [Google Scholar] [CrossRef]
- Park, J.; Lee, S.; Choi, J.; Ahn, K.; Park, B.; Park, J.; Kang, S.; Lee, Y.-H. Fungal cytochrome P450 database. BMC Genom. 2008, 9, 402. [Google Scholar] [CrossRef] [PubMed]
- Hussain, F.; Tahseen, R.; Arslan, M.; Iqbal, S.; Afzal, M. Removal of hexadecane by hydroponic root mats in partnership with alkane-degrading bacteria: Bacterial augmentation enhances system’s performance. Int. J. Environ. Sci. Technol. 2019, 16, 4611–4620. [Google Scholar] [CrossRef]
- Tara, N.; Iqbal, M.; Mahmood Khan, Q.; Afzal, M. Bioaugmentation of floating treatment wetlands for the remediation of textile effluent. Water Environ. J. 2019, 33, 124–134. [Google Scholar] [CrossRef] [Green Version]
- Rehman, K.; Imran, A.; Amin, I.; Afzal, M. Inoculation with bacteria in floating treatment wetlands positively modulates the phytoremediation of oil field wastewater. J. Hazard. Mater. 2018, 349, 242–251. [Google Scholar] [CrossRef]
- Hussain, Z.; Arslan, M.; Malik, M.H.; Mohsin, M.; Iqbal, S.; Afzal, M. Treatment of the textile industry effluent in a pilot-scale vertical flow constructed wetland system augmented with bacterial endophytes. Sci. Total Environ. 2018, 645, 966–973. [Google Scholar] [CrossRef]
- Tara, N.; Arslan, M.; Hussain, Z.; Iqbal, M.; Khan, Q.M.; Afzal, M. On-site performance of floating treatment wetland macrocosms augmented with dye-degrading bacteria for the remediation of textile industry wastewater. J. Clean. Prod. 2019, 217, 541–548. [Google Scholar] [CrossRef]
- Peterson, H.G. Use of constructed wetlands to process agricultural wastewater. Can. J. Plant Sci. 1998, 78, 199–210. [Google Scholar] [CrossRef]
- Afzal, M.; Khan, Q.M.; Sessitsch, A. Endophytic bacteria: Prospects and applications for the phytoremediation of organic pollutants. Chemosphere 2014, 117, 232–242. [Google Scholar] [CrossRef]
- Fatima, K.; Afzal, M.; Imran, A.; Khan, Q.M. Bacterial Rhizosphere and Endosphere Populations Associated with Grasses and Trees to be Used for Phytoremediation of Crude Oil Contaminated Soil. Bull. Environ. Contam. Toxicol. 2015, 94, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Shafy, H.I.; Mansour, M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Saleem, H.; Arslan, M.; Rehman, K.; Tahseen, R.; Afzal, M. Phragmites australis—A helophytic grass—Can establish successful partnership with phenol-degrading bacteria in a floating treatment wetland. Saudi J. Biol. Sci. 2019, 26, 1179–1186. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Afzal, M.; Iqbal, S.; Khan, Q.M. Plant–bacteria partnerships for the remediation of hydrocarbon contaminated soils. Chemosphere 2013, 90, 1317–1332. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-N.; Song, H.-L.; Li, W.; Lu, X.-W.; Nishimura, O. An integrated ecological floating-bed employing plant, freshwater clam and biofilm carrier for purification of eutrophic water. Ecol. Eng. 2010, 36, 382–390. [Google Scholar] [CrossRef]
- Masi, F.; Rizzo, A.; Regelsberger, M. The role of constructed wetlands in a new circular economy, resource oriented, and ecosystem services paradigm. J. Environ. Manag. 2018, 216, 275–284. [Google Scholar] [CrossRef]
Time (Days) | C1 | C1* | T1 | T1* | T2 | T2* | T3 | T3* | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | EC | pH | EC | pH | EC | pH | EC | pH | EC | pH | EC | pH | EC | pH | EC | |
0 | 7.33 ± 1.4 | 4.78 ± 1.3 | 7.26 ± 1.4 | 4.79 ± 1.3 | 7.36 ± 1.8 | 4.8 ± 1.1 | 7.27 ± 1.9 | 4.8 ± 1.2 | 7.36 ± 1.9 | 4.79 ± 1.2 | 7.26 ± 1.9 | 4.8 ± 1.1 | 7.36 ± 1.7 | 4.79 ± 1.1 | 7.35 ± 1.8 | 4.82 ± 1.1 |
10 | 7.32 ± 1.9 | 4.77 ± 1.1 | 7.27 ± 1.9 | 4.79 ± 1.1 | 7.23 ± 2.3 | 4.75 ± 1.1 | 7.23 ± 1.7 | 4.79 ± 1.1 | 7.21 ± 1.9 | 4.76 ± 1.22 | 7.22 ± 1.9 | 4.79 ± 1.2 | 7.17 ± 2.1 | 4.66 ± 1.1 | 7.18 ± 1.9 | 4.78 ± 0.9 |
20 | 7.32 ± 1.9 | 4.78 ± 1.1 | 7.27 ± 1.8 | 4.78 ± 0.8 | 7.19 ± 1.6 | 4.61 ± 0.8 | 7.14 ± 1.6 | 4.77 ± 1.1 | 7.09 ± 1.7 | 4.63 ± 1.2 | 7.17 ± 2.1 | 4.78 ± 1.1 | 6.87 ± 1.1 | 4.61 ± 1.2 | 6.91 ± 2.1 | 4.56 ± 1.2 |
30 | 7.31 ± 1.9 | 4.77 ± 1.1 | 7.28 ± 1.7 | 4.78 ± 1.1 | 6.95 ± 1.7 | 4.4 ± 0.6 | 6.92 ± 1.5 | 4.74 ± 0.8 | 6.87 ± 0.9 | 4.52 ± 1.2 | 6.77 ± 1.9 | 4.76 ± 1.1 | 6.72 ± 1.8 | 4.42 ± 0.6 | 6.78 ± 2.1 | 4.37 ± 0.6 |
40 | 7.33 ± 2.1 | 4.76 ± 1.1 | 7.27 ± 1.1 | 4.77 ± 1.1 | 6.89 ± 2.3 | 4.36 ± 0.6 | 6.84 ± 1.8 | 4.66 ± 1.2 | 6.7 ± 1.9 | 4.41 ± 1.1 | 6.68 ± 1.8 | 4.7 ± 0.4 | 6.31 ± 1.8 | 4.27 ± 0.5 | 6.51 ± 2.1 | 4.28 ± 0.5 |
50 | 7.34 ± 1.8 | 4.75 ± 1.1 | 7.29 ± 1.4 | 4.75 ± 1.2 | 6.8 ± 2.1 | 4.29 ± 1.1 | 6.81 ± 1.8 | 4.5 ± 0.8 | 6.58 ± 1.8 | 4.34 ± 0.6 | 6.65 ± 1.8 | 4.59 ± 1.1 | 6.09 ± 1.8 | 3.97 ± 0.5 | 6.29 ± 2.1 | 4.17 ± 0.6 |
60 | 7.31 ± 1.9 | 4.74 ± 0.8 | 7.28 ± 1.1 | 4.73 ± 0.6 | 6.68 ± 1.8 | 4.21 ± 1.1 | 6.65 ± 1.9 | 4.23 ± 0.6 | 6.42 ± 1.7 | 4.27 ± 1.1 | 6.56 ± 0.8 | 4.4 ± 0.5 | 5.93 ± 2.1 | 3.69 ± 0.5 | 6.07 ± 2.1 | 3.98 ± 1.2 |
Treatment | Time (Days) | |||||||
---|---|---|---|---|---|---|---|---|
0 | 20 | 40 | 60 | |||||
Colony-Forming Units (107 CFU mL−1 water) | ||||||||
CWs | FTWs | CWs | FTWs | CWs | FTWs | CWs | FTWs | |
T2/T2* | 8.21 (2.78) | 8.28 (2.32) | 7.62 (2.50) | 7.55 (2.58) | 5.95 (2.65) | 6.12 (2.62) | 5.08 (2.28) | 5.25 (2.35) |
T3/T3* | 7.72 (2.52) | 8.27 (2.42) | 7.53 (2.84) | 7.65 (2.56) | 7.23 (2.74) | 6.57 (2.35) | 6.29 (2.35) | 5.17 (1.92) |
Colony-Forming Units (107 CFU g−1 root) | ||||||||
T2/T2* | -- | -- | 3.68 (0.58) | 3.65 (0.57) | 4.96 (0.68) | 4.93 (0.58) | 5.82 (0.64) | 5.79 (0.43) |
Colony-Forming Units (107 CFU g−1 shoot) | ||||||||
T3/T3* | -- | -- | 2.37 (0.68) | 2.34 (0.62) | 2.46 (0.37) | 2.43 (0.37) | 2.54 (0.61) | 2.53 (0.54) |
Constructed Wetlands | Floating Treatment Wetlands | |||
---|---|---|---|---|
Fresh Biomass (g) | Dried Biomass (g) | Fresh Biomass (g) | Dried Biomass (g) | |
C2/C2* | 166 (10) | 123 (14) | 163 (12) | 118 (11) |
T1/T1* | 99 (11) | 56 (14) | 95 (13) | 53 (9) |
T3/T3* | 158 (9) | 117 (14) | 155 (11) | 113 (10) |
CWs | FTWs | |||
---|---|---|---|---|
SL (cm) | RL (cm) | SL (cm) | RL (cm) | |
C2 | 70.8 (9.2) | 27.6 (4.8) | 67.2 (9.5) | 30.6 (7.4) |
T1/T1* | 40.3 (8.7) | 15.7 (2.4) | 39.5 (8.2) | 18.8 (3.7) |
T3/T3* | 61.5 (10.9) | 20.8 (3.4) | 57.6 (9.8) | 23.2 (5.1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asghar, I.; Younus, S.; Islam, E.; Iqbal, S.; Afzal, M.; Boopathy, R.; Amin, M.; Jambi, E.J.; Mehmood, M.A. A Comparative Study of the Treatment Efficiency of Floating and Constructed Wetlands for the Bioremediation of Phenanthrene-Contaminated Water. Appl. Sci. 2022, 12, 12122. https://doi.org/10.3390/app122312122
Asghar I, Younus S, Islam E, Iqbal S, Afzal M, Boopathy R, Amin M, Jambi EJ, Mehmood MA. A Comparative Study of the Treatment Efficiency of Floating and Constructed Wetlands for the Bioremediation of Phenanthrene-Contaminated Water. Applied Sciences. 2022; 12(23):12122. https://doi.org/10.3390/app122312122
Chicago/Turabian StyleAsghar, Iqra, Salman Younus, Ejazul Islam, Samina Iqbal, Muhammad Afzal, Ramaraj Boopathy, Mahwish Amin, Ebtihaj J. Jambi, and Muhammad Aamer Mehmood. 2022. "A Comparative Study of the Treatment Efficiency of Floating and Constructed Wetlands for the Bioremediation of Phenanthrene-Contaminated Water" Applied Sciences 12, no. 23: 12122. https://doi.org/10.3390/app122312122
APA StyleAsghar, I., Younus, S., Islam, E., Iqbal, S., Afzal, M., Boopathy, R., Amin, M., Jambi, E. J., & Mehmood, M. A. (2022). A Comparative Study of the Treatment Efficiency of Floating and Constructed Wetlands for the Bioremediation of Phenanthrene-Contaminated Water. Applied Sciences, 12(23), 12122. https://doi.org/10.3390/app122312122