Ensemble Machine Learning for Monkeypox Transmission Time Series Forecasting
Abstract
:1. Introduction
- i.
- A survey of machine learning algorithms that can be used for the prediction and control of monkeypox was presented.
- ii.
- The study determined the best predictive model for confirmed monkey pox cases in various continents around the world that have become monkey pox hotspots.
- iii.
- A forecasting model for monkeypox outbreaks in countries around the world, focusing on Africa, Europe, and the Americas, was developed using different machine learning models. The models include adaptive boosting regression, gradient boosting regression, random forest regression, the least absolute shrinkage selection operator, ridge regression, ordinary least squares regression, and proposed stacking ensemble learning methods for predicting monkeypox transmission rate.
- iv.
- An evaluation of the performance of the proposed stacking ensemble machine learning technique for monkeypox transmission time series forecasting was done.
Related Works
2. Materials and Methods
2.1. Adaptive Boosting Regression (Adaboost)
2.2. Gradient Boosting Regression (GBOOST)
2.3. Random Forest Regression (RFR)
2.4. Ordinary Least Square Regression (OLS)
2.5. Least Absolute Shrinkage Selection Operator Regression (LASSO)
2.6. Ridge Regression (RIDGE)
2.7. Proposed Model
2.7.1. Stacking Ensemble Learning (SEL)
Architecture of Stacking
- Original data: The dataset is divided into training data and test data.
- Base models: Level-0 models include adaptive boosting regression (Adaboost), gradient boosting regression (GBOOST), random forest regression (RFR), ordinary least square regression (OLS), least absolute shrinkage selection operator regression (LASSO), and ridge regression (RIDGE). These models employ training data to provide assembled predictions (level 0).
- Level-0 Predictions: Each base model produces various level-0 predictions when it is activated on a set of training data.
- Meta Model: To aggregate the predictions of the base models as effectively as possible, the stacking model’s architecture consists of a single meta-model that uses random forest regression. An alternate name for the meta-model is the level-1 model.
- Level-1 Prediction: The meta-model learns how to combine the predictions of the base models in the best way possible and is trained on the various predictions made by individual base models. For instance, data that was not used to train the base models is fed to the meta-model, predictions are made, and these predictions, along with the expected outputs, provide the input and output pairs of the training dataset that was used to fit the meta-model. See Figure 1 (The architecture of the proposed system).
2.7.2. Dataset Description
2.7.3. Experimental Configurations
2.7.4. Performance Metrics
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petersen, E.; Ntoumi, F.; Hui, D.S.; Abubakar, A.; Kramer, L.D.; Obiero, C.; Tambyah, P.A.; Blumberg, L.; Yapi, R.; Al-Abri, S.; et al. Emergence of new SARS-CoV-2 Variant of Concern Omicron (B.1.1.529)-highlights Africa’s research capabilities, but exposes major knowledge gaps, inequities of vaccine distribution, inadequacies in global COVID-19 response and control efforts. Int. J. Infect. Dis. 2022, 114, 268–272. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.P.; Vunnam, S.R.; Patel, P.A.; Krill, K.L.; Korbitz, P.M.; Gallagher, J.P.; Suh, J.E.; Vunnam, R.R. Transmission of SARS-CoV-2: An update of current literature. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 39, 2005–2011. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.; Odd, D.; Harwood, R.; Ward, J.; Linney, M.; Clark, M.; Hargreaves, D.; Ladhani, S.N.; Draper, E.; Davis, P.J.; et al. Deaths in children and young people in England after SARS-CoV-2 infection during the first pandemic year. Nat. Med. 2022, 28, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Sigal, A.; Milo, R.; Jassat, W. Estimating disease severity of Omicron and Delta SARS-CoV-2 infections. Nat. Rev. Immunol. 2022, 22, 267–269. [Google Scholar] [CrossRef]
- Gisselquist, D.; Upham, G.; Potterat, J. Efficiency of Human Immunodeficiency Virus Transmission Through Injections and Other Medical Procedures Evidence, Estimates, and Unfinished Business. Infect. Control Hosp. Epidemiol. 2006, 27, 944–952. [Google Scholar] [CrossRef]
- Edward, A. Nardel. Transmission and Institutional Infection Control of Tuberculosis. Cold Spring Harb. Perspect. Med. 2016, 6, a018192. [Google Scholar]
- Nazaroff, W.W.; Nicas, M.; Miller, S.L. Framework for Evaluating Measures to Control Nosocomial Tuberculosis Transmission. IndoorAir 1998, 8, 205–218. [Google Scholar] [CrossRef]
- Cleveland, J.L.; Robison, V.A.; Panlilio, A.L. Tuberculosis Epidemiology, Diagnosis and Infection Control Recommendations for Dental Settings: An Update on the Centers for Disease Control and Prevention Guidelines. J. Am. Dent. Assoc. 2009, 140, 1092–1099. [Google Scholar] [CrossRef]
- Inungu, J.; Iheduru-Anderson, K.; Odio, O.J. Recurrent Ebolavirus disease in the Democratic Republic of Congo: Update and challenges. AIMS Public Health 2019, 6, 502–513. [Google Scholar] [CrossRef]
- Cenciarelli, O.; Pietropaoli, S.; Malizia, A.; Carestia, M.; D’Amico, F.; Sassolini, A.; di Giovanni, D.; Rea, S.; Gabbarini, V.; Tamburrini, A.; et al. Ebola Virus Disease 2013-2014 Outbreak in West Africa: An Analysis of the Epidemic Spread and Response. Int. J. Microbiol. 2015, 2015, 769121. [Google Scholar] [CrossRef]
- Oluwagbemi, O.O.; Oluwagbemi, F.; Abimbola, O. Ebinformatics: Ebola Fuzzy Informatics Systems on the diagnosis, prediction, and recommendation of appropriate treatments for Ebola Virus Disease (EVD). Inform. Med. Unlocked 2016, 2, 12–37. [Google Scholar] [CrossRef]
- Oluwagbemi, O.O.; Fornadel, C.M.; Adebiyi, E.F.; Norris, D.E.; Rasgon, J. AnoSpEx: A Stochastic, Spatially-Explicit Computational Model for Studying Anopheles Metapopulation Dynamics. PLoS ONE 2013, 8, e68040. [Google Scholar] [CrossRef] [PubMed]
- Oluwagbemi, O. A Stochastic Computational Model for Anopheles Metapopulation Dynamics: Towards Malaria Control and Insight for Possible Eradication; VDM Publishing Group: Riga, Latvia, 2013; pp. 1–184. ISBN 978-3-659-41990-4. [Google Scholar]
- Oluwagbemi, O.O.; Oladipo, E.K.; Kolawole, O.M.; Oloke, J.K.; Adelusi, T.I.; Irewolede, B.A.; Dairo, E.O.; Ayeni, A.E.; Kolapo, K.T.; Akindiya, O.E.; et al. Bioinformatics, Computational Informatics and Modeling Approaches to the Design of mRNA COVID-19 vaccine candidates, the Special Issue Computation to Fight SARS-CoV-2 (COVID-19). Computation 2022, 10, 117. [Google Scholar] [CrossRef]
- Oluwagbemi, O.O.; Oladipo, E.K.; Dairo, E.O.; Ayeni, A.E.; Irewolede, B.A.; Oyewole, M.P.; Ogunrinde, B.H.; Olawale, B.M.; Adegoke, H.M.; Jimah, E.M.; et al. Computational construction of a glycoprotein multi-epitope subunit vaccine candidate for old and new South-African SARS-CoV-2 virus strains. Inform. Med. Unlocked J. 2022, 28, 100845. [Google Scholar] [CrossRef] [PubMed]
- Stonbraker, S.; Cho, H.; Hermosi, G.; Pichon, A.; Schnall, R. Usability Testing of a mHealth App to Support Self-Management of HIV-Associated Non-AIDS Related Symptoms. Stud. Health Technol Inform. 2018, 250, 106–110. [Google Scholar]
- Oluwagbemi, O.O.; Oluwagbemi, F.E.; Jatto, A.; Hui, C. MAVSCOT: A fuzzy logic-based HIV diagnostic system with indigenous multi-lingual interfaces for rural Africa. PLoS ONE 2020, 15, e0241864. [Google Scholar] [CrossRef]
- Nasution, M.A.F.; Toepak, E.P.; Alkaff, A.H.; Tambunan, U.S.F. Flexible docking-based molecular dynamics simulation of natural product compounds and Ebola virus Nucleocapsid (EBOV NP): A computational approach to discover new drug for combating Ebola. BMC Bioinform. 2018, 19, 419. [Google Scholar] [CrossRef] [Green Version]
- Tom-Aba, D.; Olaleye, A.; Olayinka, A.T.; Nguku, P.; Waziri, N.; Adewuyi, P.; Adeoye, O.; Oladele, S.; Adeseye, A.; Oguntimehin, O.; et al. Innovative Technological Approach to Ebola Virus Disease Outbreak Response in Nigeria Using the Open Data Kit and Form Hub Technology. PLoS ONE 2015, 10, e0131000. [Google Scholar] [CrossRef] [Green Version]
- Oluwagbemi, O.; Olaitan, A. A Comparative Computational Genomics of Ebola Virus Disease Strains: In-silico Insight for Ebola Control. Inform. Med. Unlocked 2018, 12, 106–119. [Google Scholar] [CrossRef]
- Rahi, M.; Sharma, R.; Saroha, P.; Chaturvedi, R.; Bharti, P.K.; Sharma, A. Polymerase Chain Reaction-Based Malaria Diagnosis Can Be Increasingly Adopted during Current Phase of Malaria Elimination in India. Am. J. Trop. Med. Hyg. 2022, tpmd210966. [Google Scholar] [CrossRef]
- Oluwagbemi, O.; Oluwagbemi, F.; Fagbore, O. Malavefes A computational fuzzy voice-enabled anti-malarial drug informatics software for correct dosage prescription of anti-malaria drugs. J. King Saud Univ. Comput. Inf. Sci. 2017, 30, 185–197. [Google Scholar] [CrossRef]
- Kuehn, B.M. Vaccine Development Is Charting a New Path in Malaria Control. JAMA 2022, 327, 510–512. [Google Scholar] [CrossRef] [PubMed]
- Magagula, V.; Odhiambo, J.N.; Oluwagbemi, O.; Pandey, S.; Rerolle, F.; Van Ness, S. Modeling the impact of clinical Immunity on Malaria Infection: Insight from the Garki Project. In A Technical Report for the (ICI3D) of the International Clinic on the Meaningful Modeling of Epidemiological Data (ICI3D); 2018 Workshop; African Institute of Mathematical Sciences (AIMS): Cape Town, South Africa, 2018. [Google Scholar]
- Owen, B.N.; Winkel, M.; Bonnington, C.; Nuwa, A.; Achan, J.; Opigo, J.; Tibenderana, J.K.; Pothin, E. Dynamical malaria modeling as a tool for bold policymaking. Nat. Med. 2022, 28, 610–611. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Stewart, K.; Han, K.T.; Han, Z.Y.; Aung, P.P.; Thein, Z.W.; Htay, T.; Chen, D.; Nyunt, M.M.; Plowe, C.V. Understanding spatio-temporal human mobility patterns for malaria control using a multi-agent mobility simulation model. Clin. Infect. Dis. 2022, ciac568. [Google Scholar] [CrossRef]
- Burgert, L.; Reiker, T.; Golumbeanu, M.; Möhrle, J.J.; Penny, M.A. Model-informed target product profiles of long-acting-injectables for use as seasonal malaria prevention. PLoS Glob. Public Health 2022, 2, e0000211. [Google Scholar] [CrossRef]
- Ngowo, H.S.; Okumu, F.O.; Hape, E.E.; Mshani, I.H.; Ferguson, H.M.; Matthiopoulos, J. Using Bayesian state-space models to understand the population dynamics of the dominant malaria vector, Anopheles funestus in rural Tanzania. Malar. J. 2022, 21, 161. [Google Scholar] [CrossRef]
- Oluwagbemi, O.; Clarence, S.Y. Computational Predictive Framework towards the Control and Reduction of Malaria incidences in Africa. Egypt. Comput. Sci. J. 2012, 36, 1–17. [Google Scholar]
- Oluwagbemi, O.; Adewumi, A.; Misra, S.; Mafodkm, L.M. Mobile Application Framework for the management of Omics Data and Knowledge Mining. J. Phys. Conf. Ser. 1566, 2020, 012132. [Google Scholar] [CrossRef]
- Daramola, J.O.; Osamor, V.C.; Oluwagbemi, O.O. A Grid based framework For Pervasive HealthCare Using Wireless Sensors Networks: A Case for Developing Nations. Asian J. Inf. Technol. 2008, 7, 260–267. [Google Scholar]
- Oluwagbemi, O.; Ojutalayo, T.; Nwinyi, O. Development of a Secured Information System to Manage Malaria Related Cases in Southwestern region of Nigeria. Egypt. Comput. Sci. J. 2010, 34, 23–34. [Google Scholar]
- Oluwagbemi, O.; Ofoezie, U.; Nwinyi, O. A Knowledge-based data mining system for diagnosing malaria related cases in Healthcare Management. Egypt. Comput. Sci. J. 2010, 34, 23–34. [Google Scholar]
- Oluwagbemi, O.; Adeoye, E.T.; Fatumo, S. Building a Computer-Based Expert System for Malaria Environmental Diagnosis: An Alternative Malaria Control Strategy. Egypt. Comput. Sci. J. 2009, 33, 55–69. [Google Scholar]
- Oluwagbemi, O.; Oladunni, B. Diagnosis and Recommender System for Some Neglected Tropical Diseases. Int. J. Nat. Appl. Sci. 2010, 6, 181–188. [Google Scholar]
- Fad, S.A.; Revels, J.W.; Gharai, L.R.; Hanneman, K.; Dana, F.; Proffitt, E.K.; Grizzard, J.D. Cardiac MRI of Hereditary Cardiomyopathy. RadioGraphics 2022. [Google Scholar] [CrossRef]
- Oluwagbemi, O.; Oluwagbemi, F.; Ughamadu, C. Android Mobile Informatics Application for some Hereditary Diseases and Disorders (AMAHD): A Complementary framework for medical practitioners and patients. Inform. Med. Unlocked 2016, 2, 38–69. [Google Scholar] [CrossRef] [Green Version]
- Qin Yuan, Q.; Wen, Z.; Yang, K.; Zhang, S.; Zhang, N.; Song, Y.; Chen, F. Identification of Key CircRNAs Related to Pulmonary Tuberculosis Based on Bioinformatics Analysis. BioMed Res. Int. 2022, 2022, 1717784. [Google Scholar] [CrossRef]
- Peter van Heusden, P.; Mashologu, Z.; Lose, T.; Warren, R.; Christoffels, A. The COMBAT-TB Workbench: Making Powerful Mycobacterium tuberculosis Bioinformatics Accessible. mSphere 2022, 7, e00991-21. [Google Scholar] [CrossRef]
- Harouna Hamidou, Z.; Morsli, M.; Mamadou, S.; Drancourt, M.; Saad, J. Emergence of multi-drug-resistant Mycobacterium tuberculosis in Niger: A snapshot based on whole-genome sequencing. PLoS Negl. Trop. Dis. 2022, 16, e0010443. [Google Scholar] [CrossRef]
- Tomas, N.; Leonelli, D.; Campoy, M.; Marthey, S.; Le, N.H.; Rengel, D.; Martin, V.; Pál, A.; Korduláková, J.; Eynard, N.; et al. Bioinformatic Mining and Structure-Activity Profiling of Baeyer-Villiger Monooxygenases from Mycobacterium tuberculosis. Msphere 2022, 7, e00482-21. [Google Scholar] [CrossRef]
- Ishikawa, S.; Ozeki, Y.; Suga, S.; Mukai, Y.; Kobayashi, H.; Inouchi, E.; Kaboso, S.A.; Gebretsadik, G.; Dewi, D.N.S.S.; Nishiyama, A.; et al. Monitoring IgG against Mycobacterium tuberculosis proteins in an Asian elephant cured of tuberculosis that developed from long-term latency. Sci. Rep. 2022, 12, 4310. [Google Scholar] [CrossRef]
- Sweileh, W.M. Global research activity on mathematical modeling of transmission and control of 23 selected infectious disease outbreak. Glob. Health 2022, 18, 4. [Google Scholar] [CrossRef] [PubMed]
- Oluwagbemi, O.; Ogeh, D.; Adewumi, A.; Fatumo, S. Computational and Mathematical Modeling: Applicability to Infectious Disease Control in Africa. Asian J. Sci. Res. 2016, 9, 88–105. [Google Scholar] [CrossRef] [Green Version]
- Ojo, M.M.; Gbadamosi, B.; Benson, T.O.; Adebimpe, O.; Georgina, A.L. Modeling the dynamics of Lassa fever in Nigeria. J. Egypt Math. Soc. 2021, 29, 16. [Google Scholar] [CrossRef]
- Birger, R.; Antillón, M.; Bilcke, J.; Dolecek, C.; Dougan, G.; Pollard, A.J.; Neuzil, K.M.; Frost, I.; Laxminarayan, R.; Pitzer, V.E. Estimating the effect of vaccination on antimicrobial-resistant typhoid fever in 73 countries supported by Gavi: A mathematical modelling study. Lancet Infect. Dis. 2022, 22, 679–691. [Google Scholar] [CrossRef] [PubMed]
- Peter, O.J.; Abioye, A.I.; Oguntolu, F.A.; Owolabi, T.A.; Ajisope, M.O.; Zakari, A.G.; Shaba, T.G. Modelling and optimal control analysis of Lassa fever disease. Inform. Med. Unlocked 2020, 20, 100419. [Google Scholar] [CrossRef]
- Grant, R.; Nguyen, L.L.; Breban, R. Modelling human-to-human transmission of monkeypox. Bull. World Health Organ. 2020, 98, 638–640. [Google Scholar] [CrossRef]
- Isidro, J.; Borges, V.; Pinto, M.; Sobral, D.; Santos, J.D.; Nunes, A.; Mixão, V.; Ferreira, R.; Santos, D.; Duarte, S.; et al. Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypox virus. Nat. Med. 2022. [Google Scholar] [CrossRef]
- Antinori, A.; Mazzotta, V.; Vita, S.; Carletti, F.; Tacconi, D.; Lapini, L.E.; D’Abramo, A.; Cicalini, S.; Lapa, D.; Pittalis, S.; et al. Epidemiological, clinical and virological characteristics of four cases of monkeypox support transmission through sexual contact, Italy. Eurosurveillance 2022, 27, 2200421. [Google Scholar] [CrossRef] [PubMed]
- Vandenbogaert, M.; Kwasiborski, A.; Gonofio, E.; Descorps-Declère, S.; Selekon, B.; Nkili Meyong, A.A.; Ouilibona, R.S.; Gessain, A.; Manuguerra, J.C.; Caro, V.; et al. Nanopore sequencing of a monkeypox virus strain isolated from a pustular lesion in the Central African Republic. Sci. Rep. 2022, 12, 10768. [Google Scholar] [CrossRef]
- WHO. 2022. Available online: https://www.who.int/europe/news/item/23-07-2022-who-director-general-declares-the-ongoing-monkeypox-outbreak-a-public-health-event-of-international-concern (accessed on 30 July 2022).
- Gispen, R. Smallpox reinfections in Indonesia. Ned T Geneesk 1949, 93, 3686–3695. [Google Scholar]
- Arita, I.; Henderson, D.A. Smallpox and monkeypox in non-human primates. Bull. World Health Organ. 1968, 39, 277. [Google Scholar] [PubMed]
- Magnus, P.V.; Andersen, E.K.; Petersen, K.B.; Birch-Andersen, A. A pox-like disease in cynomolgus monkeys. Acta Pathol. Microbiol. Scand. 1959, 46, 156–176. [Google Scholar] [CrossRef]
- Shchelkunov, S.N.; Totmenin, A.V.; Babkin, I.V.; Safronov, P.F.; Ryazankina, O.I.; Petrov, N.A.; Gutorov, V.V.; Uvarova, E.A.; Mikheev, M.V.; Sisler, J.R.; et al. Human monkeypox and smallpox viruses: Genomic comparison. FEBS Lett. 2001, 509, 66–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alakunle, E.; Moens, U.; Nchinda, G.; Okeke, M.I. Monkeypox virus in Nigeria: Infection biology, epidemiology, and evolution. Viruses 2020, 12, 1257. [Google Scholar] [CrossRef] [PubMed]
- Weaver, J.R.; Isaacs, S.N. Monkeypox virus and insights into its immunomodulatory proteins. Immunol. Rev. 2008, 225, 96–113. [Google Scholar] [CrossRef] [Green Version]
- Ježek, Z.; Fenner, F. Hum. Monkeypox; S. Karger Ag: Basel, Switzerland, 1988; Volume 17. [Google Scholar]
- Ngambika, G.K.; Mbembo-wa-Mbembo, B.; Séraphin, K.P.; Fabrice, K.K.; Bongo, G.N.; Colette, M.A.; Ruphin, D.D. First Report on Three Cases of Monkey pox in Nord Ubangi Province (Democratic Republic of the Congo). Br. Int. Exact Sci. (BIoEx) J. 2020, 2, 120–125. [Google Scholar]
- Damon, I.K. Status of human monkeypox: Clinical disease, epidemiology and research. Vaccine 2011, 29, D54–D59. [Google Scholar] [CrossRef]
- Marennikova, S.S.; Šeluhina, E.M.; Mal’Ceva, N.N.; Čimiškjan, K.L.; Macevič, G.R. Isolation and properties of the causal agent of a new variola-like disease (monkeypox) in man. Bull. World Health Organ. 1972, 46, 599. [Google Scholar]
- Di Giulio, D.B.; Eckburg, P.B. Human monkeypox: An emerging zoonosis. Lancet Infect. Dis. 2004, 4, 15–25. [Google Scholar] [CrossRef]
- Bunge, E.M.; Hoet, B.; Chen, L.; Lienert, F.; Weidenthaler, H.; Baer, L.R.; Steffen, R. The changing epidemiology of human monkeypox—A potential threat? A systematic review. PLoS Negl. Trop. Dis. 2022, 16, e0010141. [Google Scholar] [CrossRef]
- Rimoin, A.W.; Mulembakani, P.M.; Johnston, S.C.; Lloyd Smith, J.O.; Kisalu, N.K.; Kinkela, T.L.; Blumberg, S.; Thomassen, H.A.; Pike, B.L.; Fair, J.N.; et al. Major increase in human monkeypox incidence 30 years after smallpox vaccination campaigns cease in the Democratic Republic of Congo. Proc. Natl. Acad. Sci. USA 2010, 107, 16262–16267. [Google Scholar] [CrossRef] [PubMed]
- Gilsdorf, J.R.; Zilinskas, R.A. New considerations in infectious disease outbreaks: The threat of genetically modified microbes. Clin. Infect. Dis. 2005, 40, 1160–1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhn, J.H.; Leitenberg, M. The Soviet biological warfare program. In Biological Threats in the 21st Century: The Politics, People, Science and Historical Roots; Harvard University Press: Cambridge, MA, USA; London, UK, 2016; pp. 79–102. [Google Scholar]
- Tucker, J.B. Biological weapons in the former Soviet Union: An interview with Dr. Kenneth Alibek. Nonproliferation Rev. 1999, 6, 1–10. [Google Scholar] [CrossRef]
- Henderson, D.A.; Inglesby, T.V.; Bartlett, J.G.; Ascher, M.S.; Eitzen, E.; Jahrling, P.B.; Hauer, J.; Layton, M.; McDade, J.; Osterholm, M.T.; et al. Smallpox as a biological weapon: Medical and public health management. JAMA 1999, 281, 2127–2137. [Google Scholar] [CrossRef]
- Cieslak, T.J.; Kortepeter, M.G.; Wojtyk, R.J.; Jansen, H.J.; Reyes, R.A.; Smith, J.O.; NATO Biological Medical Advisory Panel. Beyond the dirty dozen: A proposed methodology for assessing future bioweapon threats. Mil. Med. 2018, 183, e59–e65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozlov, M. Monkeypox goes global: Why scientists are on alert. Nature 2022, 606, 15–16. [Google Scholar] [CrossRef]
- Green, M.S.; Swartz, T.; Mayshar, E.; Lev, B.; Leventhal, A.; Slater, P.E.; Shemer, J. When is an epidemic an epidemic? Isr. Med. Assoc. J. IMAJ 2002, 4, 3–6. [Google Scholar]
- Assessment, R.R. Monkeypox Multi-Country Outbreak. 2022. Available online: https://www.ecdc.europa.eu/en/publications-data/risk-assessment-monkeypox-multi-country-outbreak (accessed on 30 June 2022).
- World Health Organization. Surveillance, Case Investigation and Contact Tracing for Monkeypox: Interim Guidance; World Health Organization: Geneva, Switzerland, 22 May 2022; No. WHO/MPX/Surveillance/2022.1. [Google Scholar]
- Makridakis, S.; Wakefield, A.; Kirkham, R. Predicting medical risks and appreciating uncertainty. Foresight Int. J. Appl. Forecast. 2019, 1, 28–35. [Google Scholar]
- Meraj, T.; Rauf, H.T.; Zahoor, S.; Hassan, A.; Lali, M.I.; Ali, L.; Bukhari, S.A.C.; Shoaib, U. Lung nodules detection using semantic segmentation and classification with optimal features. Neural Comput. Appl. 2021, 33, 10737–10750. [Google Scholar] [CrossRef]
- Roda, W.C.; Varughese, M.B.; Han, D.; Li, M.Y. Why is it difficult to accurately predict the COVID-19 epidemic? Infect. Dis. Model. 2020, 5, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Hughes, C.M.; Liu, L.; Davidson, W.B.; Radford, K.W.; Wilkins, K.; Monroe, B.; Metcalfe, M.G.; Likafi, T.; Lushima, R.S.; Kabamba, J.; et al. A Tale of Two Viruses: Coinfections of Monkeypox and Varicella Zoster Virus in the Democratic Republic of Congo. Am. J. Trop. Med. Hyg. 2021, 104, 604. [Google Scholar] [CrossRef]
- Lash, R.R.; Carroll, D.S.; Hughes, C.M.; Nakazawa, Y.; Karem, K.; Damon, I.K.; Peterson, A.T. Effects of georeferencing effort on mapping monkeypox case distributions and transmission risk. Int. J. Health Geogr. 2012, 11, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nolen, L.D.; Osadebe, L.; Katomba, J.; Likofata, J.; Mukadi, D.; Monroe, B.; Doty, J.; Hughes, C.M.; Kabamba, J.; Malekani, J.; et al. Extended human-to-human transmission during a monkeypox outbreak in the Democratic Republic of the Congo. Emerg. Infect. Dis. 2016, 22, 1014. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Jain, A.; Eng, C.; Way, D.H.; Lee, K.; Bui, P.; Kanada, K.; de Oliveira Marinho, G.; Gallegos, J.; Gabriele, S.; et al. A deep learning system for differential diagnosis of skin diseases. Nat. Med. 2020, 26, 900–908. [Google Scholar] [CrossRef] [PubMed]
- Tom, J.J.; Anebo, N.P. A Neuro-Fussy Based Model for Diagnosis of Monkeypox Diseases. Int. J. Comput. Sci. Trends Technol. (IJCST) 2018, 6, 143–153. [Google Scholar]
- Beer, E.M.; Rao, V.B. A systematic review of the epidemiology of human monkeypox outbreaks and implications for outbreak strategy. PLoS Neglect. Trop. Dis. 2019, 13, e0007791. [Google Scholar] [CrossRef] [Green Version]
- Barrow, D.K.; Crone, S.F. A comparison of AdaBoost algorithms for time series forecast combination. Int. J. Forecast. 2016, 32, 1103–1119. [Google Scholar] [CrossRef] [Green Version]
- Oyewola, D.O.; Dada, E.G.; Misra, S.; Damaševičius, R. Predicting COVID-19 Cases in South Korea with All K-Edited Nearest Neighbors Noise Filter and Machine Learning Techniques. Information 2021, 12, 528. [Google Scholar] [CrossRef]
- Oyewola, D.O.; Dada, E.G.G.; Olaoluwa, O.E.; Al-Mustapha, K.A. Predicting Nigerian stock returns using technical analysis and machine learning. Eur. J. Electr. Comput. Eng. 2019, 3, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Oyewola, D.; Hakimi, D.; Adeboye, K.; Shehu, M.D. Using five machine learning for breast cancer biopsy predictions based on mammographic diagnosis. Int. J. Eng. Technol. IJET 2016, 2, 142–145. [Google Scholar] [CrossRef] [Green Version]
- Bilginol, K.; Denli, H.H.; Şeker, D.Z. Ordinary least squares regression method approach for site selection of automated teller machines (ATMs). Procedia Environ. Sci. 2015, 26, 66–69. [Google Scholar] [CrossRef] [Green Version]
- Oyewola, D.O.; Dada, E.G.; Omotehinwa, O.O.; Ibrahim, I.A. Comparative Analysis of Linear, Non-Linear and Ensemble Machine Learning Algorithms for Credit Worthiness of Consumers. Comput. Intell. Wirel. Sens. Netw. 2019, 1, 1–11. [Google Scholar]
- Al-Hassan, Y.M. Performance of a new ridge regression estimator. J. Assoc. Arab Univ. Basic Appl. Sci. 2010, 9, 23–26. [Google Scholar] [CrossRef] [Green Version]
- Oyewola, D.O.; Dada, E.G. Exploring machine learning: A scientometrics approach using bibliometrix and VOSviewer. SN Appl. Sci. 2022, 4, 143. [Google Scholar] [CrossRef] [PubMed]
- Dada, E.G.; Yakubu, H.J.; Oyewola, D.O. Artificial Neural Network Models for Rainfall Prediction. Eur. J. Electr. Eng. Comput. Sci. 2021, 5, 30–35. [Google Scholar] [CrossRef]
- Dada, E.G.; Oyewola, D.O.; Joseph, S.B.; Duada, A.B. Ensemble Machine Learning Model for Software Defect Prediction. Adv. Mach. Learn. Artif. Intell. 2021, 2, 11–21. [Google Scholar] [CrossRef]
- Oyewola, D.O.; Ibrahim, A.; Kwanamu, J.A.; Dada, E.G. A new auditory algorithm in stock market prediction on oil and gas sector in Nigerian stock exchange. Soft Comput. Lett. 2021, 3, 100013. [Google Scholar] [CrossRef]
- Oyewola, D.O.; Al-Mustapha, K.A.; Ibrahim, A.; Dada, E.G. High-Performing Machine Learning Algorithms for Predicting the Spread of COVID-19. In Socioeconomic Dynamics of the COVID-19 Crisis; Springer: Cham, Switzerland, 2022; pp. 371–401. [Google Scholar] [CrossRef]
- Oyewola, D.O.; Dada, E.G.; Ndunagu, J.N.; Umar, T.A.; Akinwunmi, S.A. COVID-19 Risk Factors, Economic Factors, and Epidemiological Factors nexus on Economic Impact: Machine Learning and Structural Equation Modelling Approaches. J. Niger. Soc. Phys. Sci. 2021, 3, 395–405. [Google Scholar] [CrossRef]
- Cryptocurrencies. 2022. Available online: https://finance.yahoo.com/cryptocurrencies (accessed on 10 May 2022).
- Monkeypox Dataset (Daily Updated). 2022. Available online: https://www.kaggle.com/datasets/deepcontractor/monkeypox-dataset-daily-updated (accessed on 25 June 2022).
- Oyewola, D.O.; Dada, E.G.; Al-Mustapha, K.A.; Fadele, A.A.; Joseph, S.B.; Ibrahim, A. Predicting Transmission Rate of Coronavirus (COVID-19) Pandemic Using Machine Learning Techniques. In Computational Intelligence for COVID-19 and Future Pandemics; Springer: Singapore, 2022; pp. 45–69. [Google Scholar] [CrossRef]
Author and Year | Technique | Contributions | Research Gap |
---|---|---|---|
Hughes et al. [78]. | Define the clinical characteristics of MPX/VZV. | MPX/VZV coinfections were investigated using clinical, epidemiological, and analytical outcomes. | Lack of spatial or temporal connections between coinfections. Risk of cross contamination between different samples from the same case. |
Lash et al. [79]. | Georeferencing attempt on modeling monkeypox case data distribution and propagation risk. | Discovered macrogeographic variances in environmental niche predictions. | Study is limited to Congo Basin. Additionally, the performance of the proposed technique is poor because of high error rate. |
Nolen et al. [80]. | Human-to-human transmission during a monkeypox using laboratory analysis. | In 48% of the cases, PCR verified the presence of the MPXV virus. | Lack of specimen collection in the current monitoring program. Inability to determine the incubation time for many sufferers since they failed to properly identify a specific cause of the illness or a date of infection. |
Liu et al. [81]. | Deep learning for diagnosis of skin disorders. | DLS distinguishes between 26 of the most common skin disorders, which account for around 80% of all skin issues seen in healthcare system. | Proposed system was not evaluated against existing deep learning systems. Additionally, monkeypox is not one of the skin diseases that the proposed system is designed to identify |
Tom and Anebo [82] | Neuro-fussy based model for diagnosis of monkeypox virus. | Was able to differentiate Monkeypox from other pox families Authors took into account 18 symptoms linked to it. | The system only use 3 out of the 18 monkeypox symptoms as inputs. Additionally, the dataset used was kept a secret. The system’s performance is also mediocre. |
Bunge et al. [83]. | Analysis of the peer-reviewed and unpublished literature on the evolution of the monkeypox epidemiology | Proposed increased surveillance and case detection are crucial for comprehending the epidemiology of this resurgent disease, which is changing continuously. | Inability to conduct a thorough investigation of the percentage of instances that were transmitted from person to person. Additionally, data quantity and quality differed by jurisdiction, No information on the number of reported, suspected, and/or possible cases. |
All Models Were Trained Using Scikit Learn Package Machine Learning Model | Hyperparameter | Values |
---|---|---|
Adaboost | n_estimators | 50 |
learning_rate | 0.2 | |
Loss | Exponential | |
RFR | n_estimators | 400 |
Random_state | 0 | |
OLS | Alpha | 0.1 |
LASSO | Alpha | 0.1 |
GBOOST | n_estimators | 400 |
max_depth | 5 | |
Loss | Squared_error | |
min_samples_split | 2 | |
learning_rate = 0.1 | 0.1 | |
RIDGE | Alpha | 0.1 |
SEL | n_estimators | 400 |
Random_state | 0 |
Algorithm | RMSE | MSE | MAE |
---|---|---|---|
Adaboost | 100.7981 | 10,160.2726 | 68.5727 |
GBOOST | 115.8856 | 13,429.4795 | 75.7660 |
Random Forest | 111.1798 | 12,360.9503 | 73.9469 |
OLS | 108.4988 | 11,772.0099 | 74.2072 |
LASSO | 124.5257 | 15,506.6696 | 82.3904 |
RIDGE | 113.4759 | 12,876.7957 | 70.2174 |
SEL | 33.1075 | 1096.1068 | 22.4214 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dada, E.G.; Oyewola, D.O.; Joseph, S.B.; Emebo, O.; Oluwagbemi, O.O. Ensemble Machine Learning for Monkeypox Transmission Time Series Forecasting. Appl. Sci. 2022, 12, 12128. https://doi.org/10.3390/app122312128
Dada EG, Oyewola DO, Joseph SB, Emebo O, Oluwagbemi OO. Ensemble Machine Learning for Monkeypox Transmission Time Series Forecasting. Applied Sciences. 2022; 12(23):12128. https://doi.org/10.3390/app122312128
Chicago/Turabian StyleDada, Emmanuel Gbenga, David Opeoluwa Oyewola, Stephen Bassi Joseph, Onyeka Emebo, and Olugbenga Oluseun Oluwagbemi. 2022. "Ensemble Machine Learning for Monkeypox Transmission Time Series Forecasting" Applied Sciences 12, no. 23: 12128. https://doi.org/10.3390/app122312128
APA StyleDada, E. G., Oyewola, D. O., Joseph, S. B., Emebo, O., & Oluwagbemi, O. O. (2022). Ensemble Machine Learning for Monkeypox Transmission Time Series Forecasting. Applied Sciences, 12(23), 12128. https://doi.org/10.3390/app122312128