IWGAN: Anomaly Detection in Airport Based on Improved Wasserstein Generative Adversarial Network †
Abstract
:1. Introduction
- The proposed IWGAN model, which combines WGAN and Skip-GANomaly, resolves the issues posed by training difficulty and model collapse.
- We optimized the training parameters of IWGAN, such as the LeakyReLU activation layer, decay learning rate, training times, and label smoothing.
- The proposed model was evaluated using the Fréchet Inception Distance (FID) and Area Under Curve (AUC) values. The experimental results indicate superior performance to that of existing models, such as U-Net, GAN, WGAN, GANomaly, and Skip-GANomaly.
2. Related Works
2.1. AutoEncoder, AE
2.2. Generative Adversarial Network, GAN
2.3. GANs in Anomaly Detection
3. Proposed Model
3.1. Generator Architecture
3.2. Discriminator Architecture
3.3. Image Normalization
3.4. Unilateral Label Smoothing
3.5. Proposed Architecture
4. Experiment
4.1. Environment Setup and Evaluation Metrics
4.2. Dataset
4.3. Data Augmentation
4.4. Difference between ReLU and LeakyReLU
4.5. Difference in Learning Rate
4.6. Training Iterations for Discriminators
4.7. Smoothing Label
4.8. Discussion and Analysis
4.9. Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, Y.; Wang, H.; Hu, Q.; Liu, H.; Liu, L.; Bennamoun, M. Deep learning for 3d point clouds: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 4338–4364. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chen, L.; Wang, L.; Diao, G. Recognition of Audio Depression Based on Convolutional Neural Network and Generative Antagonism Network Model. IEEE Access 2020, 8, 101181–101191. [Google Scholar] [CrossRef]
- Otter, D.W.; Medina, J.R.; Kalita, J.K. A survey of the usages of deep learning for natural language processing. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 604–624. [Google Scholar] [CrossRef] [Green Version]
- Islam, R.U.; Hossain, M.S.; Andersson, K. A Deep Learning Inspired Belief Rule-Based Expert System. IEEE Access 2020, 8, 190637–190651. [Google Scholar] [CrossRef]
- Lv, L.; Zhang, S.; Ding, D.; Wang, Y. Path planning via an improved DQN-based learning policy. IEEE Access 2019, 7, 67319–67330. [Google Scholar] [CrossRef]
- Yu, F.; Koltun, V. Multi-scale context aggregation by dilated convolutions. arXiv 2015, arXiv:1511.07122. [Google Scholar]
- Swarna, S.R.; Boyapati, S.; Dutt, V.; Bajaj, K. Deep Learning in Dynamic Modeling of Medical Imaging: A Review Study. In Proceedings of the 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS), Palladam, India, 3–5 December 2020; pp. 745–749. [Google Scholar]
- Zhong, G.; Zhang, K.; Wei, H.; Zheng, Y.; Dong, J. Marginal deep architecture: Stacking feature learning modules to build deep learning models. IEEE Access 2019, 7, 30220–30233. [Google Scholar] [CrossRef]
- Wilson, E.; Tufts, D.W. Multilayer perceptron design algorithm. In Proceedings of the IEEE Workshop on Neural Networks for Signal Processingm, Valais, Switzerland, 4–6 September 1994; pp. 61–68. [Google Scholar]
- Bebis, G.; Georgiopoulos, M. Feed-forward neural networks. IEEE Potentials 1994, 13, 27–31. [Google Scholar] [CrossRef]
- Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef] [Green Version]
- Baldi, P. Autoencoders, unsupervised learning, and deep architectures. ICML Workshop Unsupervised Transf. Learn. 2012, 27, 37–49. [Google Scholar]
- Li, X.; Zhao, Z.; Song, D.; Zhang, Y.; Niu, C.; Zhang, J.; Li, J. Variational Autoencoder based Latent Factor Decoding of Multichannel EEG for Emotion Recognition. In Proceedings of the 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), San Diego, CA, USA, 18–21 November 2019; pp. 684–687. [Google Scholar]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Bengio, Y. Generative adversarial networks. arXiv 2014, arXiv:1406.2661. [Google Scholar] [CrossRef]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134. [Google Scholar]
- Korkinof, D.; Rijken, T.; O’Neill, M.; Yearsley, J.; Harvey, H.; Glocker, B. High-resolution mammogram synthesis using progressive generative adversarial networks. arXiv 2018, arXiv:1807.03401. [Google Scholar]
- Ullah, W.; Ullah, A.; Hussain, T.; Hussain, T.; Muhammad, K.; Heidari, A.A.; Ser, J.D.; Baik, S.W.; Albuquerque, V.H.C.D. Artificial Intelligence of Things-assisted two-stream neural network for anomaly detection in surveillance Big Video Data. Future Gener. Comput. Syst. 2022, 120, 286–297. [Google Scholar] [CrossRef]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ullah, W.; Hussain, T.; Hhan, Z.A.; Haroon, U.; Baik, S.W. Intelligent dual stream CNN and echo state network for anomaly detection. Knowl.-Based Syst. 2022, 253, 190456. [Google Scholar] [CrossRef]
- Ali, N.; Kirchhoff, J.; Onoja, P.I.; Tannert, A.; Neugebauer, U.; Popp, J.; Bocklitz, T. Predictive Modeling of Antibiotic Susceptibility in E. Coli Strains Using the U-Net Network and One-Class Classification. IEEE Access 2020, 8, 167711–167720. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Wang, C.; Xu, C.; Yao, X.; Tao, D. Evolutionary generative adversarial networks. IEEE Trans. Evol. Comput. 2019, 23, 921–934. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232. [Google Scholar]
- Park, T.; Liu, M.Y.; Wang, T.C.; Zhu, J.Y. GauGAN: Semantic image synthesis with spatially adaptive normalization. In Proceedings of the ACM SIGGRAPH 2019 Real-Time Live, Los Angeles, CA, USA, 28 July–1 August 2019. [Google Scholar]
- Nguyen-Phuoc, T.; Li, C.; Theis, L.; Richardt, C.; Yang, Y.L. Hologan: Unsupervised learning of 3d representations from natural images. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 7588–7597. [Google Scholar]
- Wang, J.; Yang, Z.; Zhang, J.; Zhang, Q.; Chien, W.T.K. AdaBalGAN: An improved generative adversarial network with imbalanced learning for wafer defective pattern recognition. IEEE Trans. Semicond. Manuf. 2019, 32, 310–319. [Google Scholar] [CrossRef]
- Fussell, L.; Moews, B. Forging new worlds: High-resolution synthetic galaxies with chained generative adversarial networks. Mon. Not. R. Astron. Soc. 2019, 485, 3203–3214. [Google Scholar] [CrossRef]
- Arjovsky, M.; Bottou, L. Towards principled methods for training generative adversarial networks. arXiv 2017, arXiv:1701.04862. [Google Scholar]
- Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In Proceedings of the International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 214–223. [Google Scholar]
- Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747. [Google Scholar]
- Schlegl, T.; Seeböck, P.; Waldstein, S.M.; Schmidt-Erfurth, U.; Langs, G. Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery. In Proceedings of the International Conference on Information Processing in Medical Imaging (IPMI), Boone, NC, USA, 25–30 June 2017. [Google Scholar]
- Zenati, H.; Foo, C.S.; Lecouat, B.; Manek, G.; Chan-drasekhar, V.R. Efficient Gan-Based Anomaly Detection. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Park, C.; Lim, S.; Cha, D.; Jeong, J. Fv-AD: F-AnoGAN Based Anomaly Detection in Chromate Process for Smart Manufacturing. Appl. Sci. 2022, 12, 7549. [Google Scholar] [CrossRef]
- Akcay, S.; Atapour-Abarghouei, A.; Breckon, T.P. Ganomaly: Semi-supervised anomaly detection via adversarial training. In Proceedings of the Asian Conference on Computer Vision, Perth, Australia, 2–6 December 2018; pp. 622–637. [Google Scholar]
- Akçay, S.; Atapour-Abarghouei, A.; Breckon, T.P. Skip-ganomaly: Skip connected and adversarially trained encoder-decoder anomaly detection. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–8. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning, Lille, France, 7–9 July 2015; pp. 448–456. [Google Scholar]
- Lu, L.; Shin, Y.; Su, Y.; Karniadakis, G.E. Dying relu and initialization: Theory and numerical examples. arXiv 2019, arXiv:1903.06733. [Google Scholar] [CrossRef]
- Xu, B.; Wang, N.; Chen, T.; Li, M. Empirical evaluation of rectified activations in convolutional network. arXiv 2015, arXiv:1505.00853. [Google Scholar]
- Agarap, A.F. Deep learning using rectified linear units (relu). arXiv 2018, arXiv:1803.08375. [Google Scholar]
- Kingma, F.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- LeCun, Y.A.; Bottou, L.; Orr, G.B.; Müller, K.R. Efficient backprop. In Neural Networks: Tricks of the Trade; Springer: Berlin/Heidelberg, Germany, 2012; pp. 9–48. [Google Scholar]
- Müller, R.; Kornblith, S.; Hinton, G. When does label smoothing help. arXiv 2019, arXiv:1906.02629. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- Mery, D.; Riffo, V.; Zscherpel, U.; Mondragón, G.; Lillo, I.; Zuccar, I.; Carrasco, M. GDXray: The database of X-ray images for nondestructive testing. J. Nondestruct. Eval. 2015, 34, 1–12. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 1–48. [Google Scholar] [CrossRef]
- Smith, L.N. Cyclical learning rates for training neural networks. In Proceedings of the 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), Santa Rosa, CA, USA, 24–31 March 2017; pp. 464–472. [Google Scholar]
- Barratt, S.; Sharma, R. A note on the inception score. arXiv 2018, arXiv:1801.01973. [Google Scholar]
- Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. Gans trained by a two time-scale update rule converge to a local nash equilibrium. arXiv 2017, arXiv:1706.08500. [Google Scholar]
std | min | Q1 | Q2 | Q3 | Max | IQR | |
---|---|---|---|---|---|---|---|
ReLU | 0.0948 | 0.6100 | 0.7200 | 0.7840 | 0.8271 | 0.9048 | 0.1071 |
LeakyReLU | 0.1521 | 0.5228 | 0.6444 | 0.7942 | 0.8745 | 0.9392 | 0.2301 |
std | min | Q1 | Q2 | Q3 | Max | IQR | |
---|---|---|---|---|---|---|---|
Single Label | 0.1100 | 0.6050 | 0.7637 | 0.8127 | 0.8907 | 0.9717 | 0.1270 |
Double Label | 0.1400 | 0.5197 | 0.6553 | 0.7995 | 0.8734 | 0.9373 | 0.2281 |
Methods | Fréchet Inception Distance |
---|---|
U-Net | 116.017 |
GAN | 325.596 |
WGAN | 369.543 |
GANomaly | 304.231 |
Skip-GANomaly | 91.804 |
IWGAN-ReLU | 73.295 |
IWGAN | 56.421 |
Methods | AUC Value | F1-Score |
---|---|---|
GAN | 0.79 | 0.84 |
WGAN | 0.84 | 0.83 |
GANomaly | 0.75 | 0.79 |
Skip-GANomaly | 0.97 | 0.81 |
IWGAN-ReLU | 0.69 | 0.81 |
IWGAN | 0.95 | 0.96 |
Methods | FLOPs(G) |
---|---|
GAN | 2.98 |
WGAN | 3.11 |
GANomaly | 3.04 |
Skip-GANomaly | 3.27 |
IWGAN-ReLU | 3.92 |
IWGAN | 3.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, K.-W.; Chen, G.-W.; Huang, Z.-H.; Lee, S.-H. IWGAN: Anomaly Detection in Airport Based on Improved Wasserstein Generative Adversarial Network. Appl. Sci. 2023, 13, 1397. https://doi.org/10.3390/app13031397
Huang K-W, Chen G-W, Huang Z-H, Lee S-H. IWGAN: Anomaly Detection in Airport Based on Improved Wasserstein Generative Adversarial Network. Applied Sciences. 2023; 13(3):1397. https://doi.org/10.3390/app13031397
Chicago/Turabian StyleHuang, Ko-Wei, Guan-Wei Chen, Zih-Hao Huang, and Shih-Hsiung Lee. 2023. "IWGAN: Anomaly Detection in Airport Based on Improved Wasserstein Generative Adversarial Network" Applied Sciences 13, no. 3: 1397. https://doi.org/10.3390/app13031397
APA StyleHuang, K. -W., Chen, G. -W., Huang, Z. -H., & Lee, S. -H. (2023). IWGAN: Anomaly Detection in Airport Based on Improved Wasserstein Generative Adversarial Network. Applied Sciences, 13(3), 1397. https://doi.org/10.3390/app13031397