Cloud Computing Network Empowered by Modern Topological Invariants
Abstract
:1. Introduction
1.1. Research Motivation
1.2. Research Questions
2. Background and Literature Review
2.1. Background
2.2. Literature Review
2.3. Expected Contributions
- The expected contribution of this research is to analyze how existing cloud networks can be improved by optimizing their adaptability.
- During the said research, certain cloud networks were modeled through deduced results by topological invariants. These results will be graphically developed over the solution of networks by freshly prepared topological indices.
- Existing networks will be studied for topological perspectives, and the QSPR and QSAR models will be developed and analyzed.
- The relation between the lower bounds and upper bounds of the network or graph will be discovered. Further, these relationships will be defined through optimization.
- Cloud networks and other certain computer networks are solved and evaluated with the help of topological invariants.
- The outcomes of the research will provide design guidelines for advanced cloud networks and their applications in interconnection networks.
2.4. Scope
3. Research Methodology
4. Experimentation and Results
4.1. Main Results of Cloud Computing Graph
4.1.1. Cloud Computing Graph
4.1.2. Theorem 1
4.1.3. Investigation of Cr,s of the Cloud Computing Network Graph by KBSO Indices
4.1.4. Theorem 2
4.1.5. Theorem 3
4.1.6. Investigation of Cloud Computing Graph by Dharwad Indices
4.2. Discussion
5. Conclusions
6. Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ray, P.P. An introduction to dew computing: Definition, concept and implications. IEEE Access 2018, 6, 723–737. [Google Scholar] [CrossRef]
- Montazerolghaem, A.; Yaghmaee, M.H.; Leon-Garcia, A. Green cloud multimedia networking: NFV/SDN based energy-efficient resource allocation. IEEE Trans. Green Commun. Netw. 2020, 4, 873–889. [Google Scholar] [CrossRef]
- Qian, L.; Luo, Z.; Du, Y.; Guo, L. Cloud computing: An overview. In Cloud Computing; Springer: Berlin/Heidelberg, Germany, 2009; pp. 626–631. [Google Scholar]
- Khan, A.W.; Khan, M.U.; Khan, J.A.; Ahmad, A.; Khan, K.; Zamir, M.; Kim, W.; Ijaz, M.F. Analyzing and evaluating critical challenges and practices for software vendor organizations to secure big data on cloud computing: An AHP-based systematic approach. IEEE Access 2021, 9, 107309–107332. [Google Scholar] [CrossRef]
- Sasubilli, M.K.; Venkateswarlu, R. Cloud computing security challenges, threats and vulnerabilities. In Proceedings of the 2021 6th International Conference on Inventive Computation Technologies (ICICT), Coimbatore, India, 20–22 January 2021; pp. 476–480. [Google Scholar]
- Ahmad, W.; Javed, A.R.A.R.; Baker, T.; Jalil, Z. Cyber security in IoT-based cloud computing: A comprehensive survey. Electronics 2022, 11, 16. [Google Scholar] [CrossRef]
- Lin, Z.; Zou, J.; Liu, S.; Peng, C.; Li, Z.; Wan, X.; Fang, D.; Yin, J.; Gobbo, G.; Chen, Y.; et al. A cloud computing platform for scalable relative and absolute binding free energy predictions: New opportunities and challenges for drug discovery. J. Chem. Inf. Model. 2021, 61, 2720–2732. [Google Scholar] [CrossRef] [PubMed]
- Alouffi, B.; Hasnain, M.; Alharbi, A.; Alosaimi, W.; Alyami, H.; Ayaz, M. A systematic literature review on cloud computing security: Threats and mitigation strategies. IEEE Access 2021, 9, 57792–57807. [Google Scholar] [CrossRef]
- Yahia, H. Comprehensive survey for cloud computing based nature-inspired algorithms optimization scheduling. Asian J. Comput. Sci. Inf. Technol. 2021, 8, 1–16. [Google Scholar] [CrossRef]
- Mekawie, N.; Yehia, K. Challenges of deploying cloud computing in ehealth. Procedia Comput. Sci. 2021, 181, 1049–1057. [Google Scholar] [CrossRef]
- Abubakar, H.; Hashim, N.; Hussain, A. Usability evaluation model for mobile banking applications interface: Model evaluation process using experts’ panel. J. Telecommun. Electron. Comput. Eng. 2016, 8, 53–57. [Google Scholar]
- Hussain, Z.; Munir, M.; Rafique, S.; Kang, S.M. Topological characterizations and index-analysis of new degree-based descriptors of honeycomb networks. Symmetry 2018, 10, 478. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.-B.; Peng, X.-B.; Hayat, S. Topological index analysis of a class of networks analogous to alicyclic hydrocarbons and their derivatives. Int. J. Quantum Chem. 2022, 122, e26827. [Google Scholar] [CrossRef]
- Gutman, I. Some basic properties of Sombor indices. Open J. Discret. Appl. Math. 2021, 4, 1–13. [Google Scholar] [CrossRef]
- Khalid, H.; Iqbal, M.W.; Virk, A.U.R.; Ashraf, M.U.; Alghamdi, A.M.; Bahaddad, A.A.; Almarhabi, K.A. K-Banhatti sombor invariants of certain computer networks. Comput. Mater. Contin. 2022, 73, 15–31. [Google Scholar]
- Kulli, V.R. Dharwad index. Int. J. Eng. Sci. Res. Technol. 2021, 10, 17–21. [Google Scholar]
- Havare, Ö.Ç. Quantitative structure analysis of some molecules in drugs used in the treatment of covid-19 with topological indices. Polycycl. Aromat. Compd. 2021, 1, 1–12. [Google Scholar] [CrossRef]
- Mitic, V.V. Graph theory applied to microelectronics intergranular relations. Ferroelectrics 2021, 570, 145–152. [Google Scholar] [CrossRef]
- El Kafhali, S.; El Mir, I.; Hanini, M. Security Threats, Defense Mechanisms, Challenges, and Future Directions in Cloud Computing. Arch. Computat. Methods Eng. 2022, 29, 223–246. [Google Scholar] [CrossRef]
- Khalid, R.; Khaliq, K.; Tariq, M.I.; Tayyaba, S.; Jaffar, M.A.; Arif, M. Cloud computing security challenges and their solutions. In Security and Privacy Trends in Cloud Computing and Big Data; CRC Press: Boca Raton, FL, USA, 2022; pp. 103–118. [Google Scholar]
- Tariq, M.I.; Tayyaba, S.; Jaffar, M.A.; Ashraf, M.W.; Butt, S.A.; Arif, M. Information security framework for cloud and virtualization security. In Security and Privacy Trends in Cloud Computing and Big Data; CRC Press: Boca Raton, FL, USA, 2022; pp. 1–18. [Google Scholar]
- Wei, H. Optical hybrid network structure based on cloud computing and big data technology. J. Sens. 2022, 1, e3936876. [Google Scholar] [CrossRef]
- Palos-Sanchez, P.R.; Arenas-Marquez, F.J.; Aguayo-Camacho, M. Cloud computing (saas) adoption as a strategic technology: Results of an empirical study. Mob. Inf. Syst. 2017, 2017, e2536040. [Google Scholar] [CrossRef] [Green Version]
- Khan, T.; Tian, W.; Zhou, G.; Ilager, S.; Gong, M.; Buyya, R. Machine learning (ML)-centric resource management in cloud computing: A review and future directions. J. Netw. Comput. Appl. 2022, 204, 103405. [Google Scholar] [CrossRef]
- Tuli, S.; Gill, S.S.; Xu, M.; Garraghan, P.; Bahsoon, R.; Rana, O.; Buyya, R.; Casale, G.; Jennings, N.R. HUNTER: AI based holistic resource management for sustainable cloud computing. J. Syst. Softw. 2022, 184, 111124. [Google Scholar] [CrossRef]
- Thakur, A.; Goraya, M.S. RAFL: A hybrid metaheuristic based resource allocation framework for load balancing in cloud computing environment. Simul. Model. Pract. Theory 2022, 116, 102485. [Google Scholar] [CrossRef]
- Iqbal, M.; Ahmad, N.; Shahzad, S.K. Usability evaluation of adaptive features in smartphones. In Proceedings of the International Conference on Knowledge Based and Intelligent Information and Engineering Systems, KES2017, Marseille, France, 6–8 September 2017; pp. 2185–2194. [Google Scholar]
- Bal, P.K.; Mohapatra, S.K.; Das, T.K.; Srinivasan, K.; Hu, Y.C. A joint resource allocation, security with efficient task scheduling in cloud computing using hybrid machine learning techniques. Sensors 2022, 22, 1242. [Google Scholar] [CrossRef] [PubMed]
- Belgacem, A. Dynamic resource allocation in cloud computing: Analysis and taxonomies. Computing 2022, 104, 681–710. [Google Scholar] [CrossRef]
- Umer, A.; Nazir, B.; Ahmad, Z. Adaptive market-oriented combinatorial double auction resource allocation model in cloud computing. J. Supercomputing. 2022, 78, 1244–1286. [Google Scholar] [CrossRef]
- Haris, M.; Khan, R.Z. A systematic review on load balancing tools and techniques in cloud computing. In Inventive Systems and Control; Springer: Singapore, 2022; pp. 503–521. [Google Scholar]
- Nazir, J.; Iqbal, M.W.; Alyas, T.; Hamid, M.; Saleem, M.; Malik, S.; Tabassum, N. Load balncing framework for cross-region tasks in cloud computing. Comput. Mater. Contin. 2022, 70, 1479–1490. [Google Scholar]
- Kumar, P.; Kumar, R. Issues and challenges of load balancing techniques in cloud computing: A survey. ACM Comput. Surv. 2019, 51, 1–35. [Google Scholar] [CrossRef]
- Arif, M.; Wang, G. Cloud-based service oriented architecture for social vehicular ad hoc network communications. Int. J. Commun. Netw. Distrib. Syst. 2020, 24, 143–166. [Google Scholar] [CrossRef]
- Hamid, K.; Iqbal, M.W.; Arif, E.; Mahmood, Y.; Khan, A.S.; Kama, N.; Azmi, A.; Ikram, A. K-Banhatti invariants empowered topological investigation of bridge networks. Comput. Mater. Contin. 2022, 73, 5423–5440. [Google Scholar] [CrossRef]
- Sadeghieh, A.; Ghanbari, N.; Alikhani, S. Computation of gutman index of some cactus chains. Electron. J. Graph Theory Appl. 2018, 6, 138. [Google Scholar] [CrossRef] [Green Version]
- Hamid, K.; Iqbal, M.W.; Ashraf, M.U.; Gardezi, A.A.; Ahmad, S.; Alqahtani, M.; Shafiq, M. Intelligent systems and photovoltaic cells empowered topologically by sudoku networks. Comput. Mater. Contin. 2023, 74, 4221–4238. [Google Scholar] [CrossRef]
- Alghamdi, A.M.; Hamid, K.; Iqbal, M.W.; Ashraf, M.U.; Alshahrani, A.; Alshamrani, A. Topological evaluation of certain computer networks by contraharmonic-quadratic indices. Comput. Mater. Contin. 2023, 74, 3795–3810. [Google Scholar] [CrossRef]
- Khalid, H.; Iqbal, M.W.; Muhammad, H.A.B.; Bhatti, S. Topological analysis empowered bridge network variants by dharwad indices. Online Open Access 2022, 41, 53–67. [Google Scholar]
- Hamid, K.; Iqbal, M.W.; Abbas, Q.; Arif, M.; Brezulianu, A.; Geman, O. Discovering Irregularities from Computer Networks by Topological Mapping. Appl. Sci. 2022, 12, 12051. [Google Scholar] [CrossRef]
- Arshed, J.U.; Ahmed, M.; Muhammad, T.; Afzal, M.; Arif, M.; Bazezew, B. GA-IRACE: Genetic Algorithm-Based Improved Resource Aware Cost-Efficient Scheduler for Cloud Fog Computing Environment. Wirel. Commun. Mob. Comput. 2022, 2022, 6355192. [Google Scholar] [CrossRef]
- Li, C.; Zhang, J.; Luo, Y. Real-time scheduling based on optimized topology and communication traffic in distributed real-time computation platform of storm. J. Netw. Comput. Appl. 2017, 87, 100–115. [Google Scholar] [CrossRef]
Ε | ε (du, dv) | De | ε(du, de) | Recurrence |
---|---|---|---|---|
ε1 | ε(s – 1, s – 1) | 2s – 4 | ε(s – 1, 2s – 4) | (r(s – 1)(s – 2))/2 |
ε2 | ε(s – 1, r + s – 2) | r + 2s – 5 | ε(s – 1, r + 2s – 5) | r(s – 1) |
ε3 | ε(r + s – 2, r + s – 2) | 2r + 2s – 6 | ε(r + s−2, 2r + 2s – 6) | R(s – 1)/2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamid, K.; Iqbal, M.W.; Abbas, Q.; Arif, M.; Brezulianu, A.; Geman, O. Cloud Computing Network Empowered by Modern Topological Invariants. Appl. Sci. 2023, 13, 1399. https://doi.org/10.3390/app13031399
Hamid K, Iqbal MW, Abbas Q, Arif M, Brezulianu A, Geman O. Cloud Computing Network Empowered by Modern Topological Invariants. Applied Sciences. 2023; 13(3):1399. https://doi.org/10.3390/app13031399
Chicago/Turabian StyleHamid, Khalid, Muhammad Waseem Iqbal, Qaiser Abbas, Muhammad Arif, Adrian Brezulianu, and Oana Geman. 2023. "Cloud Computing Network Empowered by Modern Topological Invariants" Applied Sciences 13, no. 3: 1399. https://doi.org/10.3390/app13031399
APA StyleHamid, K., Iqbal, M. W., Abbas, Q., Arif, M., Brezulianu, A., & Geman, O. (2023). Cloud Computing Network Empowered by Modern Topological Invariants. Applied Sciences, 13(3), 1399. https://doi.org/10.3390/app13031399