Backdoor Attacks on Deep Neural Networks via Transfer Learning from Natural Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Backdoored ImageNet Models
2.2. Transfer Learning
2.2.1. Pneumonia Classification from Chest X-ray Images
2.2.2. Emergency Response Monitoring from Aerial Images
2.2.3. Facial Recognition
2.2.4. Age Classification from Face Images
2.3. Performance of Backdoor Attacks
2.4. Backdoor Detection
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stallkamp, J.; Schlipsing, M.; Salmen, J.; Igel, C. Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition. Neural Netw. 2012, 32, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.S.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.; Yan, F.; et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 2018, 172, 1122–1131. [Google Scholar] [CrossRef] [PubMed]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlini, N.; Wagner, D. Towards evaluating the robustness of neural networks. In Proceedings of the 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22 May 2017; pp. 39–57. [Google Scholar] [CrossRef] [Green Version]
- Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards deep learning models resistant to adversarial attacks. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Eykholt, K.; Evtimov, I.; Fernandes, E.; Li, B.; Rahmati, A.; Xiao, C.; Prakash, A.; Kohno, T.; Song, D. Robust Physical-World Attacks on Deep Learning Visual Classification. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 8–23 June 2018; pp. 1625–1634. [Google Scholar]
- Sato, T.; Shen, J.; Wang, N.; Jia, Y.; Lin, X.; Chen, Q.A. Dirty Road Can Attack: Security of Deep Learning based Automated Lane Centering under {Physical-World} Attack. In Proceedings of the 30th USENIX Security Symposium (USENIX Security 21), USENIX Association, Virtual, 11–13 August 2021; pp. 3309–3326. [Google Scholar]
- Finlayson, S.G.; Bowers, J.D.; Ito, J.; Zittrain, J.L.; Beam, A.L.; Kohane, I.S. Adversarial attacks on medical machine learning. Science 2019, 363, 1287–1289. [Google Scholar] [CrossRef] [PubMed]
- Hirano, H.; Minagi, A.; Takemoto, K. Universal adversarial attacks on deep neural networks for medical image classification. BMC Med. Imaging 2021, 21, 9. [Google Scholar] [CrossRef] [PubMed]
- Minagi, A.; Hirano, H.; Takemoto, K. Natural Images Allow Universal Adversarial Attacks on Medical Image Classification Using Deep Neural Networks with Transfer Learning. J. Imaging 2022, 8, 38. [Google Scholar] [CrossRef]
- Koga, K.; Takemoto, K. Simple Black-Box Universal Adversarial Attacks on Deep Neural Networks for Medical Image Classification. Algorithms 2022, 15, 144. [Google Scholar] [CrossRef]
- Hirano, H.; Koga, K.; Takemoto, K. Vulnerability of deep neural networks for detecting COVID-19 cases from chest X-ray images to universal adversarial attacks. PLoS ONE 2020, 15, e0243963. [Google Scholar] [CrossRef] [PubMed]
- Gu, T.; Liu, K.; Dolan-Gavitt, B.; Garg, S. BadNets: Evaluating backdooring attacks on deep neural networks. IEEE Access 2019, 7, 47230–47244. [Google Scholar] [CrossRef]
- Matsuo, Y.; Takemoto, K. Backdoor Attacks to Deep Neural Network-Based System for COVID-19 Detection from Chest X-ray Images. Appl. Sci. 2021, 11, 9556. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, Y.; Li, Z.; Xia, S.-T. Backdoor Learning: A Survey. IEEE Trans. Neural Netw. Learn. Syst. 2022, 1, 1–18. [Google Scholar] [CrossRef]
- Wang, B.; Yao, Y.; Shan, S.; Li, H.; Viswanath, B.; Zheng, H.; Zhao, B.Y. Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks. In Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 20 May 2019; pp. 707–723. [Google Scholar]
- Liu, Y.; Lee, W.-C.; Tao, G.; Ma, S.; Aafer, Y.; Zhang, X. ABS: Scanning Neural Networks for Back-doors by Artificial Brain Stimulation. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, London, UK, 11–15 November 2019; ACM: New York, NY, USA, 2019; pp. 1265–1282. [Google Scholar]
- Chen, H.; Fu, C.; Zhao, J.; Koushanfar, F. DeepInspect: A Black-box Trojan Detection and Mitigation Framework for Deep Neural Networks. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, Macao, China, 10–16 August 2019; International Joint Conferences on Artificial Intelligence Organization: Macao, China, 2019; pp. 4658–4664. [Google Scholar]
- Yao, Y.; Li, H.; Zheng, H.; Zhao, B.Y. Latent Backdoor Attacks on Deep Neural Networks. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, London, UK, 11–15 November 2019; ACM: New York, NY, USA, 2019; pp. 2041–2055. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar]
- Kyrkou, C.; Theocharides, T. EmergencyNet: Efficient Aerial Image Classification for Drone-Based Emergency Monitoring Using Atrous Convolutional Feature Fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1687–1699. [Google Scholar] [CrossRef]
- Huang, G.B.; Ramesh, M.; Berg, T.; Learned-Miller, E. Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments. In Workshop on Faces in ‘Real-Life’Images: Detection, Alignment, and Recognition; HAL-Inria: Marseille, France, 2008. [Google Scholar]
- Zhang, Z.; Song, Y.; Qi, H. Age Progression/Regression by Conditional Adversarial Autoencoder. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 9 November 2017. [Google Scholar]
- Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015-Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception architecture for computer vision. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 12 December 2016; pp. 2818–2826. [Google Scholar]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, inception-ResNet and the impact of residual connections on learning. In Proceedings of the 31st AAAI Conference on Artificial Intelligence, AAAI 2017, San Francisco, CA, USA, 4–9 February 2017. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Zelenkova, R.; Swallow, J.; Chamikara, M.A.P.; Liu, D.; Chhetri, M.B.; Camtepe, S.; Grobler, M.; Almashor, M. Resurrecting Trust in Facial Recognition: Mitigating Backdoor Attacks in Face Recognition to Prevent Potential Privacy Breaches. arXiv 2022, arXiv:2202.10320. [Google Scholar]
- Liu, K.; Dolan-Gavitt, B.; Garg, S. Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks. In International Symposium on Research in Attacks, Intrusions, and Defenses; Springer: Cham, Switzerland, 2018; pp. 273–294. [Google Scholar]
- Raghu, M.; Zhang, C.; Kleinberg, J.; Bengio, S. Transfusion: Understanding Transfer Learning for Medical Imaging. In Advances in Neural Information Processing Systems 32; Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2019; pp. 3347–3357. [Google Scholar]
- Gao, Y.; Xu, C.; Wang, D.; Chen, S.; Ranasinghe, D.C.; Nepal, S. STRIP. In Proceedings of the 35th Annual Computer Security Applications Conference, San Juan, PR, USA, 9–13 December 2019; ACM: New York, NY, USA, 2019; pp. 113–125. [Google Scholar]
- Nguyen, T.A.; Tran, A.T. WaNet-Imperceptible warping-based backdoor attack. In Proceedings of the International Conference on Learning Representations, Virtual Event, Austria, 3–7 May 2021. [Google Scholar]
- Liu, Y.; Ma, X.; Bailey, J.; Lu, F. Reflection backdoor: A natural backdoor attack on deep neural networks. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2020; pp. 182–199. [Google Scholar]
Model/Task | ChestX | Emergency | Face | Age | ||||
---|---|---|---|---|---|---|---|---|
ER | ASR *1 | ER | ASR *2 | ER | ASR *3 | ER | ASR *4 | |
Xception | 4.1 (3.5) | 100 (48.9) | 2.8 (2.5) | 98.4 (71.8) | 0.9 (1.8) | 100 (50.0) | 13.3 (14.1) | 99.7 (51.3) |
VGG-16 | 6.7 (5.0) | 56.9 (54.8) | 3.7 (3.1) | 69.6 (71.2) | 1.4 (0.9) | 50.0 (50.0) | 9.4 (8.6) | 52.7 (51.3) |
VGG-19 | 2.2 (2.4) | 51.9 (48.3) | 4.2 (2.7) | 70.3 (71.7) | 1.4 (0.9) | 50.5 (50.0) | 9.3 (8.6) | 55.6 (51.3) |
InceptionV3 | 2.4 (2.2) | 100 (50.9) | 2.6 (2.5) | 99.3 (71.9) | 2.7 (1.4) | 99.5 (49.1) | 13.3 (15.4) | 93.6 (52.7) |
InceptionResNetV2 | 2.8 (3.0) | 100 (51.3) | 2.8 (2.4) | 88.8 (71.2) | 0.9 (0.9) | 100 (50.0) | 10.7 (12.0) | 100 (51.9) |
ResNet50 | 2.8 (2.2) | 87.4 (50.2) | 3.1 (2.6) | 85.8 (71.5) | 1.4 (1.4) | 85.5 (50.5) | 12.6 (11.3) | 89.6 (53.0) |
MobileNet | 2.4 (3.0) | 50.2 (48.5) | 2.8 (2.6) | 72.8 (70.9) | 0.9 (0.9) | 51.4 (50.0) | 12.4 (16.9) | 59.1 (36.6) |
DenseNet121 | 2.6 (3.9) | 96.3 (53.5) | 2.8 (2.7) | 99.2 (70.4) | 1.8 (0.9) | 99.5 (50.0) | 14.6 (10.3) | 88.4 (51.3) |
DenseNet169 | 2.4 (2.4) | 100 (49.4) | 3.1 (2.7) | 77.2 (70.8) | 0.9 (1.8) | 98.2 (48.2) | 9.7 (9.3) | 81.6 (51.1) |
DenseNet201 | 1.3 (2.0) | 97.9 (51.3) | 2.6 (2.0) | 75.6 (71.3) | 0.5 (0.5) | 99.5 (50.5) | 9.7 (8.9) | 96.6 (51.4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsuo, Y.; Takemoto, K. Backdoor Attacks on Deep Neural Networks via Transfer Learning from Natural Images. Appl. Sci. 2022, 12, 12564. https://doi.org/10.3390/app122412564
Matsuo Y, Takemoto K. Backdoor Attacks on Deep Neural Networks via Transfer Learning from Natural Images. Applied Sciences. 2022; 12(24):12564. https://doi.org/10.3390/app122412564
Chicago/Turabian StyleMatsuo, Yuki, and Kazuhiro Takemoto. 2022. "Backdoor Attacks on Deep Neural Networks via Transfer Learning from Natural Images" Applied Sciences 12, no. 24: 12564. https://doi.org/10.3390/app122412564
APA StyleMatsuo, Y., & Takemoto, K. (2022). Backdoor Attacks on Deep Neural Networks via Transfer Learning from Natural Images. Applied Sciences, 12(24), 12564. https://doi.org/10.3390/app122412564