Evaluation of the Prospects for the Use of Microalgae in Functional Bread Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of Microalgae
2.2. Preparation of Microalgae Bread Samples
2.3. Organoleptic Analysis of Bread with Microalgae
2.4. Determination of Physico-Chemical Properties of Bread with Microalgae
2.5. Determination of the Total Phenol Content in Bread with Microalgae
2.6. Determination of Antioxidant Activity of Bread with Microalgae
2.7. Determination of Volatile Compounds in Bread with Microalgae
2.8. Statistical analysis
3. Results
3.1. Organoleptic Properties of Bread with Microalgae
3.2. Physicochemical Properties of Bread with Microalgae
3.3. Polyphenol Content and Antioxidant Activity of Bread with Microalgae
3.4. The Content of Volatile Compounds in Bread with Microalgae
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Diprat, A.B.; Silveira Thys, R.C.; Rodrigues, E.; Rech, R. Chlorella sorokiniana: A new alternative source of carotenoids and proteins for gluten-free bread. LWT 2020, 134, 109974. [Google Scholar] [CrossRef]
- Torregrosa-Crespo, J.; Montero, Z.; Fuentes, J.; Reig García-Galbis, M.; Garbayo, I.; Vílchez, C.; Martínez-Espinosa, R.J.M.D. Exploring the valuable carotenoids for the large-scale production by marine microorganisms. Mar. Drugs 2018, 16, 203. [Google Scholar] [CrossRef] [Green Version]
- Andreeva, A.; Budenkova, E.; Babich, O.; Sukhikh, S.; Ulrikh, E.; Ivanova, S.; Prosekov, A.; Dolganyuk, V. Production, Purification, and Study of the Amino Acid Composition of Microalgae Proteins. Molecules 2021, 26, 2767. [Google Scholar] [CrossRef] [PubMed]
- Microalgae—A Promising «Agricultural Crop». Available online: https://ogorodniki.com/article/mikrovodorosli-perspektivnaia-selskokhoziaistvennaia-kultura/ (accessed on 20 March 2022).
- Tabakaev, A.V.; Tabakaeva, O.V.; Wojciech, P.; Kalenik, T.K.; Poznyakovsky, V.M. Antioxidant properties of edible sea weed from the Northern Coast of the Sea of Japan. Foods Raw Mater. 2021, 9, 262–270. [Google Scholar] [CrossRef]
- Bernaerts, T.M.M.; Gheysen, L.; Foubert, I.; Hendrickx, M.E.; Van Loey, A.M. The potential of microalgae and their biopolymers as structuring ingredients in food: A review. Biotechnol. Adv. 2019, 37, 107419. [Google Scholar] [CrossRef] [PubMed]
- Chua, E.T.; Schenk, P.M. A biorefinery for Nannochloropsis: Induction, harvesting, and extraction of EPA-rich oil and high-value protein. Bioresour. Technol. 2017, 244, 1416–1424. [Google Scholar] [CrossRef] [Green Version]
- Verardo, V.; Glicerina, V.; Cocci, E.; Frenich, A.G.; Romani, S.; Caboni, M.F. Determination of free and bound phenolic compounds and their antioxidant activity in buckwheat bread loaf, crust and crumb. LWT 2018, 87, 217–224. [Google Scholar] [CrossRef]
- Witkovsky, A. Microphytobenthos; Korzhenevsky, K., Ed.; Inst. Oceanographic University: Gdansk, Poland, 1993; pp. 395–415. [Google Scholar]
- Qazi, M.W.; de Sousa, I.G.; Nunes, M.C.; Raymundo, A. Improving the Nutritional, Structural, and Sensory Properties of Gluten-Free Bread with Different Species of Microalgae. Foods 2022, 11, 397. [Google Scholar] [CrossRef]
- Lyamin, M.Y.; Soloviev, A.A. Food Energetics: About Microalgae Spirulina Platensis Source of Health and Longevity; MSU: Moscow, Russia, 1996; p. 22. [Google Scholar]
- Qazi, W.M.; Ballance, S.; Uhlen, A.K.; Kousoulaki, K.; Haugen, J.-E.; Rieder, A. Protein enrichment of wheat bread with the marine green microalgae Tetraselmis chuii–Impact on dough rheology and bread quality. LWT 2021, 143, 111115. [Google Scholar] [CrossRef]
- Caporgno, M.P.; Mathys, A. Trends in Microalgae Incorporation into Innovative Food Products With Potential Health Benefits. Front. Nutr. 2018, 5, 58. [Google Scholar] [CrossRef]
- Zanella, L.; Vianello, F. Microalgae of the genus Nannochloropsis: Chemical composition and functional implications for human nutrition. J. Funct. Foods. 2020, 68, 103919. [Google Scholar] [CrossRef]
- Gevorgiz, R.G.; Nekhoroshev, M.V. Quantitative Assessment of the Mass Fraction of Total Carotenoids in the Dry Biomass of Spirulina (Arthrospira) Platensis; Institute of Marine Biological Research, Russian Academy of Sciences: Sevastopol, Russia, 2017; pp. 3–11. [Google Scholar]
- Machu, L.; Misurcova, L.; Vavra Ambrozova, J.; Orsavova, J.; Mlcek, J.; Sochor, J.; Jurikova, T. Phenolic Content and Antioxidant Capacity in Algal Food Products. Molecules 2015, 20, 1118–1133. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, S.; Nikolov, Z. Process for selective extraction of pigments and functional proteins from Chlorella vulgaris. Algal Res. 2018, 35, 185–193. [Google Scholar] [CrossRef]
- Bazarnova, J.; Kuznetsova, T.; Aronova, E.; Popova, L.; Pochkaeva, E. A method for obtaining plastid pigments from the biomass of Chlorella. Agr. Res. 2020, 18, 2317–2327. [Google Scholar] [CrossRef]
- Kotlovker, I.F. Chlorella microalgae is the best natural system for human health! MIS-RT Collect. 2019, 71, 3. [Google Scholar]
- Abdulagatov, I.M.; Alkhasov, A.B.; Dogeev, G.D.; Tumalaev, N.R.; Aliev, R.M.; Badavov, G.B.; Aliev, A.M.; Salikhova, A.S. Microalgae and their technological applications in energy and environmental protection. South Russ. Ecol. Dev. 2018, 13, 166. [Google Scholar] [CrossRef] [Green Version]
- Habashy, N.H.; Abu Serie, M.M.; Attia, W.E.; Abdelgaleil, S.A.M. Chemical characterization, antioxidant and anti-inflammatory properties of Greek Thymus vulgaris extracts and their possible synergism with Egyptian Chlorella vulgaris. J. Funct. Foods 2018, 40, 317–328. [Google Scholar] [CrossRef]
- Lafarga, T. Effect of microalgal biomass incorporation into foods: Nutritional and sensorial attributes of the end products. Algal. Res. 2019, 41, 101566. [Google Scholar] [CrossRef]
- García-Segovia, P.; Pagán-Moreno, M.J.; Lara, I.F.; Martínez-Monzó, J. Effect of microalgae incorporation on physicochemical and textural properties in wheat bread formulation. Food Sci. Technol. Int. 2017, 23, 437–447. [Google Scholar] [CrossRef]
- Aparsheva, V.V.; Efimova, A.A. Bakery products from a mixture of rye and wheat flour with the introduction of microalgae Chlorella vulgaris. Technol. Food Process. Ind. Agro-Ind. Complex—Healthy Food Prod. 2019, 3, 27–31. [Google Scholar] [CrossRef]
- Lafarga, T.; Gallagher, E.; Aluko, R.E.; Auty, M.A.E.; Hayes, M. Addition of an enzymatic hydrolysate of bovine globulins to bread and determination of hypotensive effects in spontaneously hypertensive rats. J. Agric. Food Chem. 2016, 64, 1741–1750. [Google Scholar] [CrossRef] [PubMed]
- Lafarga, T.; Acién-Fernández, F.G.; Castellari, M.; Villaró, S.; Bobo, G.; Aguiló-Aguayo, I. Effect of microalgae incorporation on the physicochemical, nutritional, and sensorial properties of an innovative broccoli soup. Lebensm. -Wiss. Technol. 2019, 111, 167–174. [Google Scholar] [CrossRef]
- Lafarga, T.; Gallagher, E.; Bademunt, A.; Viñas, I.; Bobo, G.; Villaró, S. Bioaccessibility, physicochemical, sensorial, and nutritional characteristics of bread containing broccoli co-products. J. Food Process Preserv. 2019, 43, e13861. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Corredig, M.; Dupont, D.; Dufour, C.; Egger, L.; et al. A standardised static in vitro digestion method suitable for food–an international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez, M.; Antolín, B.; Román, L.; Gómez, M.; Bernal, J. Analysis of volatile compounds in gluten-free bread crusts with an optimised and validated SPME-GC/QTOF methodology. Food Res. Int. 2018, 106, 686–695. [Google Scholar] [CrossRef]
- Figueira, F.D.S.; Crizel, T.D.M.; Silva, C.R.; Salas-Mellado, M.D.L.M. Elaboration of gluten-free bread enriched with the microalgae Spirulina platensis. Braz. J. Food Technol. 2011, 14, 308–316. [Google Scholar] [CrossRef]
- Menezes, B.; Coelho, M.; Meza, S.; Salas-Mellado, M.; Souza, M. Macroalgal biomass as an additional ingredient of bread. Int. Food Res. J. 2015, 22, 819–824. [Google Scholar]
- Batista, A.P.; Niccolai, A.; Fradinho, P.; Fragoso, S.; Bursic, I.; Rodolfi, L.; Biondib, N.; Tredicib, M.R.; Sousaa, I.; Raymundo, A. Microalgae biomass as an alternative ingredient in cookies: Sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal. Res. 2017, 26, 161–171. [Google Scholar] [CrossRef]
- Gouveia, L.; Batista, A.P.; Miranda, A.; Empis, J.; Raymundo, A. Chlorella vulgaris biomass used as colouring source in traditional butter cookies. Innov. Food Sci. Emerg. Technol. 2007, 8, 433–436. [Google Scholar] [CrossRef]
- Gouveia, L.; Coutinho, C.; Mendonça, E.; Batista, A.P.; Sousa, I.; Bandarra, N.M. Functional biscuits with PUFA-ω3 from Isochrysis galbana. J. Sci. Food Agric. 2008, 88, 891–896. [Google Scholar] [CrossRef] [Green Version]
- De Marco, E.R.; Steffolani, M.E.; Martínez, C.S.; León, A.E. Effects of spirulina biomass on the technological and nutritional quality of bread wheat pasta. LWT-Food Sci. Technol. 2014, 58, 102–108. [Google Scholar] [CrossRef]
- Murray, M.; Dordevic, A.L.; Ryan, L.; Bonham, M.P. An emerging trend in functional foods for the prevention of cardiovascular disease and diabetes: Marine algal polyphenols. Crit. Rev. Food Sci. Nutr. 2018, 58, 1342–1358. [Google Scholar] [CrossRef]
- Goiris, K.; Muylaert, K.; Fraeye, I.; Foubert, I.; De Brabanter, J.; De Cooman, L. Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. J. Appl. Phycol 2012, 24, 1477–1486. [Google Scholar] [CrossRef]
- Ko, S.-C.; Heo, S.-Y.; Choi, S.-W.; Qian, Z.-J.; Heo, S.-J.; Kang, D.-H. A heptameric peptide isolated from the marine microalga Pavlova lutheri suppresses PMA-induced secretion of matrix metalloproteinase-9 through the inactivation of the JNK, p38, and NF-κB pathways in human fibrosarcoma cells. J. Appl. Phycol. 2018, 30, 2367–2378. [Google Scholar] [CrossRef]
- Wu, H.; Xu, N.; Sun, X.; Yu, H.; Zhou, C. Hydrolysis and purification of ACE inhibitory peptides from the marine microalga Isochrysis galbana. J. Appl. Phycol. 2015, 27, 351–361. [Google Scholar] [CrossRef]
- Barba, F.J.; Mariutti, L.R.B.; Bragagnolo, N.; Mercadante, A.Z.; Barbosa-Cánovas, G.V.; Orlien, V. Bioaccessibility of bioactive compounds from fruits and vegetables after thermal and nonthermal processing. Trends Food Sci. Technol. 2017, 67, 195–206. [Google Scholar] [CrossRef]
- Cavonius, L.R.; Albers, E.; Undeland, I. In vitro bioaccessibility of proteins and lipids of pH-shift processed Nannochloropsis oculata microalga. Food Funct. 2016, 7, 2016–2024. [Google Scholar] [CrossRef] [Green Version]
- Kopec, M.L.; Failla, M.L. Recent advances in the bioaccessibility and bioavailability of carotenoids and effects of other dietary lipophiles. J. Food Compost. Anal. 2018, 68, 16–30. [Google Scholar] [CrossRef]
- Mildner-Szkudlarz, S.; Zawirska-Wojtasiak, R.; Szwengiel, A.; Pacyński, M. Use of grape by-product as a source of dietary fibre and phenolic compounds in sourdough mixed rye bread. Int. J. Food Sci. Technol. 2011, 46, 1485–1493. [Google Scholar] [CrossRef]
- Pacyński, M.; Wojtasiak, R.Z.; Mildner-Szkudlarz, S. Improving the aroma of gluten-free bread. LWT 2015, 63, 706–713. [Google Scholar] [CrossRef]
- Parker, J.K. Thermal generation or aroma. In Flavour Development, Analysis and Perception in Food and Beverages; Parker, J.K., Elmore, S., Methven, L., Eds.; Elsevier: Cambridge, MA, USA, 2015; pp. 151–186. [Google Scholar]
Gene | Primer F | Primer R | Segment |
---|---|---|---|
ITS1 + 5.8 S + ITS2 | 5′-GTCGCTCCTACCGA TTGGGTGTG-3′ | 5′-TCCCTTTTCGCTC GCCGTTACTA-3′ | Green algae |
Tu (tufA) | 5′-GGNGCNGCNCAAAT GGAYGG-3′ | 5′-CCTTCNCGAATMGCRA AWCGC-3′ | Green algae |
Stages | Stage | Incubation Temperature, °C | Time, s |
---|---|---|---|
1 | Pre-denaturation | 95 | 60 |
2 * | Denaturation | 95 | 30 |
3 * | Annealing | 55–60 | 30 |
4 * | Elongation | 72 | 60 |
5 | Final elongation | 72 | 300 |
Stages | Stage | Incubation Temperature, °C | Time, s |
---|---|---|---|
1 | Pre-denaturation | 96 | 60 |
2 * | Denaturation | 96 | 10 |
3 * | Annealing | 50 | 4 |
4 * | Elongation | 72 | 240 |
5 | Final elongation | 72 | 300 |
Component, kg | Formulation | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Baking wheat flour, top-grade | 21.0 | 20.0 | 20.0 | 20.0 |
Baking wheat flour, first-grade | 72.0 | 72.0 | 70.0 | 68.0 |
Pressed yeast | 2.5 | 2.5 | 2.5 | 2.5 |
Salt | 1.5 | 1.5 | 1.5 | 1.5 |
Sugar | 3.0 | 3.0 | 3.0 | 3.0 |
Dry biomass of microalgae | 0.0 | 1.0 | 3.0 | 5.0 |
Total: | 100.0 | 100.0 | 100.0 | 100.0 |
Microalgae | Content in the Sample, % |
---|---|
Chlorella vulgaris | 36.4 ± 1.1 |
Chlorella fusca | 12.0 ± 0.3 |
Arthrospira platensis | 21.4 ± 0.6 |
Pleurochrysis carterae | 15.3 ± 0.5 |
Dunaliella salina | 8.6 ± 0.4 |
Ankistrodesmus acicularis Korsch | 6.3 ± 0.4 |
Values | Samples | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Appearance | ||||
Form | Corresponds to the bread form | Corresponds to the bread form | Corresponds to the bread form | Corresponds to the bread form |
Surface | Smooth | Smooth | Smooth | Smooth |
Color | Corresponds to wheat bread | Yellow | Greenish | Green |
Crumb condition | ||||
Mixing | Without lumps and traces of under-mixing | Without lumps and traces of undermixing | Without lumps and traces of undermixing | A small number of lumps and traces of undermixing |
Doneness | Well-done, elastic | Well-done, elastic | Poorly done, inelastic | |
Taste and smell | Characteristic of this type of bread, without foreign taste and smell | Characteristic of this type of bread, without foreign taste and smell | Characteristic of this type of bread, with a slight “fishy” smell, with a sour taste |
Value | Samples | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Weight, g | 49.4 ± 0.2 | 47.8 ± 0.1 | 47.1 ± 0.1 | 50.2 ± 0.2 |
Maximum height, mm | 58.1 ± 0.2 | 56.6 ± 0.2 | 55.1 ± 0.2 | 52.1 ± 0.2 |
Specific crumb volume, mL/g | 3.5 ± 0.01 | 3.5 ± 0.01 | 3.7 ± 0.01 | 3.2 ± 0.01 |
Crumb density, g/mL | 0.27 ± 0.0008 | 0.29 ± 0.0009 | 0.27 ± 0.0008 | 0.34 ± 0.0010 |
Crumb moisture content, % | 28.0 ± 0.08 | 29.8 ± 0.09 | 32.4 ± 0.10 | 39.2 ± 0.10 |
Crumb porosity, % | 71.8 ± 0.2 | 69.7 ± 0.2 | 68.4 ± 0.2 | 55.6 ± 0.2 |
pH | 6.6 ± 0.02 | 6.6 ± 0.02 | 6.6 ± 0.02 | 6.2 ± 0.02 |
aw | 0.975 ± 0.003 | 0.953 ± 0.003 | 0.938 ± 0.003 | 0.918 ± 0.003 |
Values | Samples | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Density, kg/m3 | 0.88 ± 0.27a | 0.90 ± 0.27a | 0.93 ± 0.28a | 0.98 ± 0.29a |
Elasticity coefficient | 0.28 ± 0.08a | 0.28 ± 0.08a | 0.28 ± 0.08a | 0.24 ± 0.07a |
Chewiness coefficient | 1.9 ± 0.6a | 2.0 ± 0.6a | 2.0 ± 0.06a | 2.0 ± 0.06a |
Stickiness coefficient | 2.1 ± 0.6a | 2.1 ± 0.6a | 2.1 ± 0.06a | 2.6 ± 0.8b |
Crumpling resistance coefficient | 0.33 ± 0.1a | 0.33 ± 0.1a | 0.33 ± 0.1a | 0.25 ± 0.08a |
Amount of Microalgae, % | Polyphenol Content, mg/100 g Dry Weight | FRAP, mg/100 g Dry Weight | DPPH, mg/100 g Dry Weight |
---|---|---|---|
0.0 | 80.5 ± 25.2a | 0.836 ± 0.27a | 0.779 ± 0.26a |
1.0 | 85.2 ± 25.6a | 0.894 ± 0.27a | 0.874 ± 0.26a |
3.0 | 92.4 ± 27.7b | 0.998 ± 0.30a | 0.999 ± 0.30ab |
5.0 | 93.4 ± 28.0b | 1.000 ± 0.30a | 1.100 ± 0.33b |
Compounds | Content, % | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
Alcohols | 0.29 ± 0.1a | 0.33 ± 0.1a | 0.35 ± 0.12a | 0.38 ± 0.11a |
Aldehydes | 0.001 ± 0.0006a | 0.002 ± 0.0006a | 0.002 ± 0.0006a | 0.003 ± 0.0009a |
Ketones | 0.0006 ± 0.0002a | 0.0007 ± 0.0002a | 0.0009 ± 0.0003a | 0.001 ± 0.0003a |
Esters | 0.0003 ± 0.0002a | 0.0005 ± 0.0002a | 0.0007 ± 0.0002a | 0.0009 ± 0.0003a |
Sulfur compounds | 0.12 ± 0.05a | 0.15 ± 0.05a | 0.23 ± 0.07a | 0.26 ± 0.08a |
Terpenes | 0.0001 ± 0.00003a | 0.0001 ± 0.00003a | 0.0001 ± 0.00003a | 0.0001 ± 0.00003a |
Acids | 23.6 ± 8.82a | 29.4 ± 8.82b | 30.1 ± 9.03b | 32.6 ± 9.78b |
Hydrocarbons | 0.0001 ± 0.00006a | 0.0002 ± 0.0000 a | 0.0002 ± 0.00006a | 0.0003 ± 0.00003a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sukhikh, S.; Ivanova, S.; Dolganyuk, V.; Pilevinova, I.; Prosekov, A.; Ulrikh, E.; Noskova, S.; Michaud, P.; Babich, O. Evaluation of the Prospects for the Use of Microalgae in Functional Bread Production. Appl. Sci. 2022, 12, 12563. https://doi.org/10.3390/app122412563
Sukhikh S, Ivanova S, Dolganyuk V, Pilevinova I, Prosekov A, Ulrikh E, Noskova S, Michaud P, Babich O. Evaluation of the Prospects for the Use of Microalgae in Functional Bread Production. Applied Sciences. 2022; 12(24):12563. https://doi.org/10.3390/app122412563
Chicago/Turabian StyleSukhikh, Stanislav, Svetlana Ivanova, Vyacheslav Dolganyuk, Inna Pilevinova, Alexander Prosekov, Elena Ulrikh, Svetlana Noskova, Philippe Michaud, and Olga Babich. 2022. "Evaluation of the Prospects for the Use of Microalgae in Functional Bread Production" Applied Sciences 12, no. 24: 12563. https://doi.org/10.3390/app122412563
APA StyleSukhikh, S., Ivanova, S., Dolganyuk, V., Pilevinova, I., Prosekov, A., Ulrikh, E., Noskova, S., Michaud, P., & Babich, O. (2022). Evaluation of the Prospects for the Use of Microalgae in Functional Bread Production. Applied Sciences, 12(24), 12563. https://doi.org/10.3390/app122412563