Content of Lipids, Fatty Acids, Carbohydrates, and Proteins in Continental Cyanobacteria: A Systematic Analysis and Database Application
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huisman, J.; Codd, G.A.; Paerl, H.W.; Ibelings, B.W.; Verspagen, J.M.H.; Visser, P.M. Cyanobacterial blooms. Nat. Rev. Microbiol. 2018, 16, 471–483. [Google Scholar] [CrossRef]
- Sotton, B.; Paris, A.; le Manach, S.; Blond, A.; Duval, C.; Qiao, Q.; Catherine, A.; Combes, A.; Pichon, V.; Bernard, C.; et al. Specificity of the metabolic signatures of fish from cyanobacteria rich lakes. Chemosphere 2019, 226, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Schwarzenbach, R.P.; Egli, T.; Hofstetter, T.B.; von Gunten, U.; Wehrli, B. Global water pollution and human health. Annu. Rev. Environ. Resour. 2010, 35, 109–136. [Google Scholar] [CrossRef]
- Aljohani, A.S.M.; Ahmed, A.A.; Althwab, S.A.; Alkhamiss, A.S.; Rasheed, Z.; Fernández, N.; Al Abdulmonem, W. Gene expression of glutathione S-transferase alpha, glutathione S-transferase rho, glutathione peroxidase, uncoupling protein 2, cytochrome P450 1A, heat shock protein 70 in liver of Oreochromis niloticus upon exposure of microcystin-LR, microcystin-RR and toxic cyanobacteria crude. Gene Rep. 2022, 26, 101498. [Google Scholar] [CrossRef]
- Arismendi-González, L.; Sepúlveda-Sánchez, M.; Arboleda-Baena, C.M.; Palacio-Betancur, H.; Murillo Ramos, E.; Muskus-López, C.E.; Pohlon, E.; Flórez Molina, M.T.; Betancur Uran, J.; Palacio Baena, J. Evidence for toxic cyanobacteria in sediments and the water-sediment interface of a tropical drinking water reservoir. Limnologica 2021, 91, 125924. [Google Scholar] [CrossRef]
- Vilar, M.C.P.; da Silva Ferrão-Filho, A.; Azevedo, S.M.F.O. Single and mixed diets of the toxic cyanobacteria Microcystis aeruginosa and Raphidiopsis raciborskii differently affect Daphnia feeding behavior. Food Webs 2022, 32, e00245. [Google Scholar] [CrossRef]
- Pulz, O.; Gross, W. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 2004, 65, 635–648. [Google Scholar] [CrossRef]
- Tamagnini, P.; Leitão, E.; Oliveira, P.; Ferreira, D.; Pinto, F.; Harris, D.J.; Heidorn, T.; Lindblad, P. Cyanobacterial hydrogenases: Diversity, regulation and applications. FEMS Microbiol. Rev. 2007, 31, 692–720. [Google Scholar] [CrossRef] [Green Version]
- Parmar, A.; Singh, N.K.; Pandey, A.; Gnansounou, E.; Madamwar, D. Cyanobacteria and microalgae: A positive prospect for biofuels. Bioresour. Technol. 2011, 102, 10163–10172. [Google Scholar] [CrossRef]
- Rodolfi, L.; Chini Zittelli, G.; Bassi, N.; Padovani, G.; Biondi, N.; Bonini, G.; Tredici, M.R. Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng. 2009, 102, 100–112. [Google Scholar] [CrossRef]
- Zahra, Z.; Choo, D.H.; Lee, H.; Parveen, A. Cyanobacteria: Review of current potentials and applications. Environments 2020, 7, 13. [Google Scholar] [CrossRef] [Green Version]
- Bortoli, S.; Oliveira-Silva, D.; Krüger, T.; Dörr, F.A.; Colepicolo, P.; Volmer, D.A.; Pinto, E. Growth and microcystin production of a Brazilian Microcystis aeruginosa strain (LTPNA 02) under different nutrient conditions. Rev. Bras. Farmacogn. 2014, 24, 389–398. [Google Scholar] [CrossRef] [Green Version]
- Jacinavicius, F.R.; Pacheco, A.B.F.; Chow, F.; Verissimo da Costa, G.C.; Kalume, D.E.; Rigonato, J.; Schmidt, E.C.; Sant’Anna, C.L. Different ecophysiological and structural strategies of toxic and non-toxic Microcystis aeruginosa (cyanobacteria) strains assessed under culture conditions. Algal Res. 2019, 41, 101548. [Google Scholar] [CrossRef]
- Passos, L.S.; Almeida, É.C.; de Pereira, C.M.P.; Casazza, A.A.; Converti, A.; Pinto, E. Chemical characterization of Microcystis aeruginosa for feed and energy uses. Energies 2021, 14, 3013. [Google Scholar] [CrossRef]
- Arias, D.M.; Ortíz-Sánchez, E.; Okoye, P.U.; Rodríguez-Rangel, H.; Balbuena Ortega, A.; Longoria, A.; Domínguez-Espíndola, R.; Sebastian, P.J. A Review on cyanobacteria cultivation for carbohydrate-based biofuels: Cultivation aspects, polysaccharides accumulation strategies, and biofuels production scenarios. Sci. Total Environ. 2021, 794, 148636. [Google Scholar] [CrossRef] [PubMed]
- De la Rosa, F.; de Troch, M.; Malanga, G.; Hernando, M. Differential sensitivity of fatty acids and lipid damage in Microcystis aeruginosa (cyanobacteria) exposed to increased temperature. Comp. Biochem. Physiol. 2020, 235, 108773. [Google Scholar] [CrossRef]
- Yadav, G.; Sekar, M.; Kim, S.-H.; Geo, V.E.; Bhatia, S.K.; Sabir, J.S.M.; Chi, N.T.L.; Brindhadevi, K.; Pugazhendhi, A. Lipid content, biomass density, fatty acid as selection markers for evaluating the suitability of four fast growing cyanobacterial strains for biodiesel production. Bioresour. Technol. 2021, 325, 124654. [Google Scholar] [CrossRef] [PubMed]
- Sinensky, M. Homeoviscous adaptation—A homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc. Natl. Acad. Sci. USA 1974, 71, 522–525. [Google Scholar] [CrossRef] [Green Version]
- Keshari, N.; Gugger, M.; Zhu, T.; Lu, X. Compatible solutes profiling and carbohydrate feedstock from diversified cyanobacteria. Algal Res. 2019, 43, 101637. [Google Scholar] [CrossRef]
- Balat, M.; Balat, H. Recent trends in global production and utilization of bio-ethanol fuel. Appl. Energy 2009, 86, 2273–2282. [Google Scholar] [CrossRef]
- Aikawa, S.; Joseph, A.; Yamada, R.; Izumi, Y.; Yamagishi, T.; Matsuda, F.; Kawai, H.; Chang, J.-S.; Hasunuma, T.; Kondo, A. Direct conversion of Spirulina to ethanol without pretreatment or enzymatic hydrolysis processes. Energy Environ. Sci. 2013, 6, 1844–1849. [Google Scholar] [CrossRef]
- Grossmann, L.; Hinrichs, J.; Weiss, J. Cultivation and downstream processing of microalgae and cyanobacteria to generate protein-based technofunctional food ingredients. Crit. Rev. Food Sci. Nutr. 2020, 60, 2961–2989. [Google Scholar] [CrossRef]
- Chagas, B.M.E.; Mullen, C.A.; Dorado, C.; Elkasabi, Y.; Boateng, A.A.; Melo, M.A.F.; Ataíde, C.H. Stable bio-oil production from proteinaceous cyanobacteria: Tail gas reactive pyrolysis of Spirulina. Ind. Eng. Chem. Res. 2016, 55, 6734–6741. [Google Scholar] [CrossRef]
- Kebelmann, K.; Hornung, A.; Karsten, U.; Griffiths, G. Intermediate pyrolysis and product identification by TGA and Py-GC/MS of green microalgae and their extracted protein and lipid components. Biomass Bioenergy 2013, 49, 38–48. [Google Scholar] [CrossRef]
- Pagels, F.; Guedes, A.C.; Amaro, H.M.; Kijjoa, A.; Vasconcelos, V. Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. Biotechnol. Adv. 2019, 37, 422–443. [Google Scholar] [CrossRef]
- Gao, P.; Li, Z.; Gibson, M.; Gao, H. Ecological risk assessment of nonylphenol in coastal waters of China based on species sensitivity distribution model. Chemosphere 2014, 104, 113–119. [Google Scholar] [CrossRef]
- Boutarfa, S.; Senoussi, M.M.; González-Silvera, D.; López-Jiménez, J.Á.; Aboal, M. Fatty acids profile of Mastigocladus laminosus Cohn ex Kichner isolated from Algerian hot springs as a biofuel feedstock. Biocatal. Agric. Biotechnol. 2022, 42, 102373. [Google Scholar] [CrossRef]
- Bolatkhan, K.; Sadvakasova, A.K.; Zayadan, B.K.; Kakimova, A.B.; Sarsekeyeva, F.K.; Kossalbayev, B.D.; Bozieva, A.M.; Alwasel, S.; Allakhverdiev, S.I. Prospects for the creation of a waste-free technology for wastewater treatment and utilization of carbon dioxide based on cyanobacteria for biodiesel production. J. Biotechnol. 2020, 324, 162–170. [Google Scholar] [CrossRef]
- Li, R.; Watanabe, M.M. Fatty acid profiles and their chemotaxonomy in planktonic species of Anabaena (Cyanobacteria) with straight trichomes. Phytochemistry 2001, 57, 727–731. [Google Scholar] [CrossRef]
- Devi, N.D.; Sun, X.; Hu, B.; Goud, V.V. Bioremediation of domestic wastewater with microalgae-cyanobacteria co-culture by nutritional balance approach and its feasibility for biodiesel and animal feed production. Chem. Eng. J. 2023, 454, 140197. [Google Scholar] [CrossRef]
- Syrpas, M.; Bukauskaitė, J.; Paškauskas, R.; Bašinskienė, L.; Venskutonis, P.R. Recovery of lipophilic products from wild cyanobacteria (Aphanizomenon flos-aquae) isolated from the Curonian Lagoon by means of supercritical carbon dioxide extraction. Algal Res. 2018, 35, 10–21. [Google Scholar] [CrossRef]
- Anahas, A.M.P.; Muralitharan, G. Isolation and screening of heterocystous cyanobacterial strains for biodiesel production by evaluating the fuel properties from fatty acid methyl ester (FAME) profiles. Biores. Technol. 2015, 184, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Anahas, A.M.P.; Muralitharan, G. Characterization of heterocystous cyanobacterial strains for biodiesel production based on fatty acid content analysis and hydrocarbon production. Energy Convers. Manag. 2018, 157, 423–437. [Google Scholar] [CrossRef]
- Gayathria, M.; Shunmugama, S.; Vanmathi, A.; Rahman, P.K.S.M.; Muralitharan, G. Growth kinetic and fuel quality parameters as selective criterion for screening biodiesel producing cyanobacterial strains. Biores. Technol. 2018, 247, 453–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Oliveira, D.T.; Vasconcelos, C.T.; Feitosa, A.M.; Aboim, J.B.; de Oliveira, A.D.; Xavier, L.P.; Santos, A.S.; Gonçalves, E.C.; da Rocha Filho, G.N.; do Nascimento, L.A. Lipid profile analysis of three new amazonian cyanobacteria as potential sources of biodiesel. Fuel 2018, 234, 785–788. [Google Scholar] [CrossRef]
- Nagappan, S.; Bhosale, R.; Duc Nguyen, D.; Pugazhendhi, A.; Tsai, P.-C.; Chang, S.W.; Ponnusamy, V.K.; Kumar, G. Nitrogen-fixing cyanobacteria as a potential resource for efficient biodiesel production. Fuel 2020, 279, 118440. [Google Scholar] [CrossRef]
- Termina, M.; Rezankova, H.; Rezanka, T.; Dembitsky, V.M. Diversity of the fatty acids of the Nostoc species and their statistical analysis. Microbiol. Res. 2007, 162, 308–321. [Google Scholar] [CrossRef]
- Iliev, I.; Petkov, G.; Lukavsky, J.; Furnadzhieva, S.; Andreeva, R. Do cyanobacterial lipids contain fatty acids longer than 18 carbon atoms? Z. Für Nat. C 2011, 66, 267–276. [Google Scholar] [CrossRef]
- Dembitsky, V.M.; Shkrob, I.; Go, J.V. Dicarboxylic and Fatty acid compositions of cyanobacteria of the genus Aphanizomenon. Biochemistry 2001, 66, 72–76. [Google Scholar] [CrossRef]
- Sahu, A.; Pancha, I.; Jain, D.; Paliwal, C.; Ghosh, T.; Patidar, S.; Bhattacharya, S.; Mishra, S. Fatty acids as biomarkers of microalgae. Phytochemistry 2013, 89, 53–58. [Google Scholar] [CrossRef]
- Kim, S.M.; Kim, J.Y.; Park, J.; Bae, E.H.; Kang, J.-S.; Kim, K.Y.; Choi, Y.-E. Volatile fatty acid-treated mixotrophic cultivation of lipid/carbohydrate-rich cyanobacterial species, Pseudanabaena mucicola GO0704, for the enhancement of biofuel production. Bioresour. Technol. 2023, 367, 128066. [Google Scholar] [CrossRef] [PubMed]
- Hernando, M.; De Troch, M.; De la Rosa, F.; Giannuzzi, L. Fatty acid response of the invasive bivalve Limnoperna fortunei fed with Microcystis aeruginosa exposed to high temperature. Comp. Biochem. Physiol. 2021, 240, 108925. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.; Zhao, H.; Lu, X.; Wang, C.; Yang, M.; Bai, F. Quantitative analysis of fatty-acid-based biofuels produced by wild-type and genetically engineered cyanobacteria by gas chromatography–mass spectrometry. J. Chromatogr. A 2011, 1218, 8289–8293. [Google Scholar] [CrossRef] [PubMed]
- Steinhoff, F.S.; Karlberg, M.; Graeve, M.; Wulff, A. Cyanobacteria in Scandinavian coastal waters—A potential source for biofuels and fatty acids? Algal Res. 2014, 5, 42–51. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Zhuo, C.; Li, Y.; Li, H.; Yang, M.; Xu, D.; He, H. Evaluation of filamentous heterocystous cyanobacteria for integrated pig-farm biogas slurry treatment and bioenergy production. Biores. Technol. 2020, 297, 122418. [Google Scholar] [CrossRef]
- De Morais, E.G.; Druzian, J.I.; Nunes, I.L.; De Morais, M.G.; Costa, J.A.V. Glycerol increases growth, protein production and alters the fatty acids profile of Spirulina (Arthrospira) sp LEB 18. Proc. Biochem. 2019, 76, 40–45. [Google Scholar] [CrossRef]
- Fuad Hossain, M.; Ratnayake, R.R.; Mahbub, S.; Kumara, K.L.W.; Magana-Arachchi, D.N. Identification and culturing of cyanobacteria isolated from freshwater bodies of Sri Lanka for biodiesel production. Saudi J. Biol. Sci. 2020, 27, 1514–1520. [Google Scholar] [CrossRef]
- Yalcin, D. Growth, lipid content, and fatty acid profile of freshwater cyanobacteria Dolichospermum affine (Lemmermann) Wacklin, Hoffmann, and Komárek by using modified nutrient media. Aquac. Int. 2020, 28, 1371–1388. [Google Scholar] [CrossRef]
- Patel, V.K.; Sundaram, S.; Patel, A.K.; Kalra, A. Characterization of seven species of cyanobacteria for high-quality biomass production. Arab. J. Sci. Eng. 2018, 43, 109–121. [Google Scholar] [CrossRef]
- Singh, P.; Kumar, D. Biomass and lipid production potential of cyanobacteria and microalgae isolated from the diverse habitats of Garhwal Himalaya, Uttarakhand, India. Biomass Bioenergy 2022, 162, 106469. [Google Scholar] [CrossRef]
- Moreira, A.S.P.; Gonçalves, G.; Conde, T.A.; Couto, D.; Melo, T.; Maia, I.B.; Pereira, H.; Silva, J.; Domingues, M.R.; Nunes, C. Chrysotila pseudoroscoffensis as a source of high-value polar lipids with antioxidant activity: A lipidomic approach. Algal Res. 2022, 66, 102756. [Google Scholar] [CrossRef]
- Cardoso, L.G.; Duarte, J.H.; Andrade, B.B.; Lemos, P.V.F.; Costa, J.A.V.; Druzian, J.I.; Chinalia, F.A. Spirulina sp. LEB 18 cultivation in outdoor pilot scale using aquaculture wastewater: High biomass, carotenoid, lipid and carbohydrate production. Aquaculture 2020, 525, 735272. [Google Scholar] [CrossRef]
- Mashayekhi, M.; Sarrafzadeh, M.H.; Tavakoli, O.; Soltani, N.; Faramarzi, M.A. Potential for biodiesel production and carbon capturing from Synechococcus elongatus: An isolation and evaluation study. Biocatal. Agric. Biotechnol. 2017, 9, 230–235. [Google Scholar] [CrossRef]
- Rajeshwari, K.R.; Rajashekhar, M. Biochemical composition of seven species of cyanobacteria isolated from different aquatic habitats of western ghats, Southern India. Braz. Arch. Biol. Technol. 2011, 54, 849–857. [Google Scholar] [CrossRef] [Green Version]
- Da Rós, P.C.M.; Silva, C.S.P.; Silva-Stenico, M.E.; Fiore, M.F.; De Castro, H.F. Assessment of chemical and physico-chemical properties of cyanobacterial lipids for biodiesel production. Mar. Drugs 2013, 11, 2365–2381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, P.; Kumar, D. Biomass and lipid productivities of Cyanobacteria—Leptolyngbya foveolarum HNBGU001. Bioenergy Res. 2021, 14, 278–291. [Google Scholar] [CrossRef]
- Aboim, J.B.; Oliveira, D.T.; de Mescouto, V.A.; dos Reis, A.S.; da Rocha Filho, G.N.; Santos, A.V.; Xavier, L.P.; Santos, A.S.; Gonçalves, E.C.; Nascimento, A.S. Optimization of light intensity and NaNO3 concentration in amazon cyanobacteria cultivation to produce biodiesel. Molecules 2019, 24, 2326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hena, S.; Znad, H.; Heong, K.T.; Judd, S. Dairy farm wastewater treatment and lipid accumulation by Arthrospira platensis. Water Res. 2018, 128, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Sharathchandra, K.; Rajashekhar, M. Total lipid and fatty acid composition in some freshwater cyanobacteria. J. Algal Biomass Utln. 2011, 2, 83–97. [Google Scholar]
- Karatay, S.E.; Dönmez, G. Microbial oil production from thermophile cyanobacteria for biodiesel production. Appl. Energy 2011, 88, 3632–3635. [Google Scholar] [CrossRef]
- Senatore, V.; Rueda, E.; Bellver, M.; Díez-Montero, R.; Ferrer, I.; Zarra, T.; Naddeo, V.; García, J. Production of phycobiliproteins, bioplastics and lipids by the cyanobacteria Synechocystis sp. treating secondary effluent in a biorefinery approach. Sci. Total Environ. 2023, 857, 159343. [Google Scholar] [CrossRef] [PubMed]
- Modiri, S.; Sharafi, H.; Alidoust, L.; Hajfarajollah, H.; Haghighi, O.; Azarivand, A.; Zamanzadeh, Z.; Zahiri, H.S.; Vali, H.; Noghabi, K.A. Lipid production and mixotrophic growth features of cyanobacterial strains isolated from various aquatic sites. Microbiology 2015, 161, 662–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahid, A.; Malik, S.; Liu, C.-G.; Musharraf, S.G.; Siddiqui, A.J.; Khan, F.; Tarbiah, N.I.; Gull, M.; Rashid, U.; Mehmood, M.A. Characterization of a newly isolated cyanobacterium Plectonema terebrans for biotransformation of the wastewater-derived nutrients to biofuel and high-value bioproducts. J. Water Process. Eng. 2021, 39, 101702. [Google Scholar] [CrossRef]
- Paliwal, C.; Pancha, I.; Ghosh, T.; Maurya, R.; Chokshi, K.; Bharadwaj, S.V.V.; Ram, S.; Mishra, S. Selective carotenoid accumulation by varying nutrient media and salinity in Synechocystis sp. CCNM 2501. Bioresour. Technol. 2015, 197, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.H.; Kim, H.S.; Kim, H.; Park, J.; Kim, S.; Choi, Y.-E. Direct removal of harmful cyanobacterial species by adsorption process and their potential use as a lipid source. J. Chem. Eng. 2022, 427, 131727. [Google Scholar] [CrossRef]
- Meixner, K.; Kovalcik, A.; Sykacek, E.; Gruber-Brunhumer, M.; Zeilinger, W.; Markl, K.; Haas, C.; Fritz, I.; Mundigler, N.; Stelzer, F.; et al. Cyanobacteria biorefinery—Production of poly(3-hydroxybutyrate) with Synechocystis salina and utilisation of residual biomass. J. Biotechnol. 2018, 265, 46–53. [Google Scholar] [CrossRef]
- Sarmah, P.; Rout, J.A. Biochemical profile of five species of cyanobacteria isolated from polythene surface in domestic sewage water of Silchar town, Assam (India). Curr. Trends Biotechnol. Pharm. 2018, 12, 2230–7303. [Google Scholar]
- De Farias Silva, C.E.; Sforza, E.; Bertucco, A. Chapter 3—Enhancing carbohydrate productivity in photosynthetic microorganism production: A comparison between cyanobacteria and microalgae and the effect of cultivation systems. In Advances in Feedstock Conversion Technologies for Alternative Fuels and Bioproducts. New Technologies, Challenges and Opportunities; Woodhead Publishing Series in Energy; Hosseini, M., Ed.; Woodhead Publishing: Sawston, UK, 2019; pp. 37–67. [Google Scholar] [CrossRef]
- González-Fernández, C.; Ballesteros, M. Linking microalgae and cyanobacteria culture conditions and key-enzymes for carbohydrate accumulation. Biotechnol. Adv. 2012, 30, 1655–1661. [Google Scholar] [CrossRef]
- Arias, D.M.; García, J.; Uggetti, E. Production of polymers by cyanobacteria grown in wastewater: Current status, challenges and future perspectives. New Biotechnol. 2020, 55, 46–57. [Google Scholar] [CrossRef]
- Papadopoulos, K.P.; Economou, C.N.; Tekerlekopoulou, A.G. Two-step treatment of brewery wastewater using electrocoagulation and cyanobacteria-based cultivation. J. Environ. Manag. 2020, 265, 110543. [Google Scholar] [CrossRef]
- Shahid, A.; Usman, M.; Atta, Z.; Musharraf, S.G.; Malik, S.; Elkamel, A.; Shahid, M.; Abdulhamid Alkhattabi, N.; Gull, M.; Mehmood, M.A. Impact of wastewater cultivation on pollutant removal, biomass production, metabolite biosynthesis, and carbon dioxide fixation of newly isolated cyanobacteria in a multiproduct biorefinery paradigm. Bioresour. Technol. 2021, 333, 125194. [Google Scholar] [CrossRef] [PubMed]
- Maity, S.; Mallick, N. Bioprospecting marine microalgae and cyanobacteria as alternative feedstocks for bioethanol production. Sustain. Chem. Pharm. 2022, 29, 100798. [Google Scholar] [CrossRef]
- Aikawa, S.; Ho, S.-H.; Nakanishi, A.; Chang, J.-S.; Hasunuma, T.; Kondo, A. Improving polyglucan production in cyanobacteria and microalgae via cultivation design and metabolic engineering. Biotechnol. J. 2015, 10, 886–898. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, D.; Upadhyay, S.N.; Mishra, P.K. Growth of cyanobacteria: Optimization for increased carbohydrate content. Appl. Biochem. Biotechnol. 2018, 184, 1247–1262. [Google Scholar] [CrossRef]
- Perendeci, N.A.; Yılmaz, V.; Taştan, B.E.; Gökgöl, S.; Fardinpoor, M.; Namlı, A.; Steyer, J.P. Correlations between biochemical composition and biogas production during anaerobic digestion of microalgae and cyanobacteria isolated from different sources of Turkey. Bioresour. Technol. 2019, 281, 209–216. [Google Scholar] [CrossRef]
- Hotos, G.; Avramidou, D.; Mastropetros, S.G.; Tsigkou, K.; Kouvara, K.; Makridis, P.; Kornaros, M. Isolation, identification, and chemical composition analysis of nine microalgal and cyanobacterial species isolated in lagoons of Western Greece. Algal Res. 2023, 69, 102935. [Google Scholar] [CrossRef]
- Alvarez, X.; Alves, A.; Ribeiro, M.P.; Lazzari, M.; Coutinho, P.; Otero, A. Biochemical characterization of Nostoc sp. exopolysaccharides and evaluation of potential use in wound healing. Carbohydr. Polym. 2021, 254, 117303. [Google Scholar] [CrossRef]
- Markou, G.; Chatzipavlidis, I.; Georgakakis, D. Cultivation of Arthrospira (Spirulina) platensis in olive-oil mill wastewater treated with sodium hypochlorite. Bioresour. Technol. 2012, 112, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Niccolai, A.; Chini Zittelli, G.; Rodolfi, L.; Biondi, N.; Tredici, M.R. Microalgae of interest as food source: Biochemical composition and digestibility. Algal Res. 2019, 42, 101617. [Google Scholar] [CrossRef]
- Teuling, E.; Wierenga, P.A.; Schrama, J.W.; Gruppen, H. Comparison of protein extracts from various unicellular green sources. J. Agric. Food Chem. 2017, 65, 7989–8002. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Lee, J.; Affan, M.A.; Lee, D.-W.; Kang, D.-H. Characterization of the coccoid cyanobacterium Myxosarcina sp. KIOST-1 isolated from mangrove forest in Chuuk State, Federated States of Micronesia. Ocean Sci. J. 2017, 52, 359–366. [Google Scholar] [CrossRef]
- López-Rodríguez, A.; Mayorga, J.; Flaig, D.; Fuentes, G.; Cotabarren, J.; Obregón, W.D.; Gómez, P.I. Comparison of two strains of the edible cyanobacteria Arthrospira: Biochemical characterization and antioxidant properties. Food Biosci. 2021, 42, 101144. [Google Scholar] [CrossRef]
- Nagle, V.L.; Mhalsekar, N.M.; Jagtap, T.G. Isolation, optimization and characterization of selected Cyanophycean members. Indian J. Mar. Sci. 2010, 39, 212–218. [Google Scholar]
- De Morais, M.G.; da Cruz Reichert, C.; Dalcanton, F.; Durante, A.J.; Marins, L.F.; Costa, J.A.V. Isolation and characterization of a new Arthrospira strain. Z. Für Nat. C 2014, 63, 144–150. [Google Scholar] [CrossRef]
- Gentscheva, G.; Milkova-Tomova, I.; Pehlivanov, I.; Gugleva, V.; Nikolova, K.; Petkova, N.; Andonova, V.; Buhalova, D.; Pisanova, E. Chemical characterization of selected algae and cyanobacteria from Bulgaria as sources of compounds with antioxidant activity. Appl. Sci. 2022, 12, 9935. [Google Scholar] [CrossRef]
- Villaró, S.; Morillas-España, A.; Acién, G.; Lafarga, T. Optimisation of operational conditions during the production of Arthrospira platensis using pilot-scale raceway reactors, protein extraction, and assessment of their techno-functional properties. Foods 2022, 11, 2341. [Google Scholar] [CrossRef]
- Tonietto, A.E.; Lombardi, A.T.; Vieira, A.A.H.; Parrish, C.C.; Choueri, R.B. Cylindrospermopsis raciborskii (cyanobacteria) exudates: Chemical characterization and complexation capacity for Cu, Zn, Cd and Pb. Water Res. 2014, 49, 381–390. [Google Scholar] [CrossRef]
- Wang, M.; Morón-Ortizc, A.; Zhou, J.; Benítez-González, A.; Mapelli-Brahm, P.; Meléndez-Martínez, A.J.; Barba, F.J. Effects of pressurized liquid extraction with dimethyl sulfoxide on the recovery of carotenoids and other dietary valuable compounds from the microalgae Spirulina, Chlorella and Phaeodactylum tricornutum. Food Chem. 2023, 405, 134885. [Google Scholar] [CrossRef]
- Bortolini, D.G.; Maciel, G.M.; Fernandes, I.A.A.; Pedro, A.C.; Rubio, F.T.V.; Branco, I.G.; Haminiuk, C.W.I. Functional properties of bioactive compounds from Spirulina spp.: Current status and future trends. Food Chem. 2022, 5, 100134. [Google Scholar] [CrossRef]
- Dalla Costa, V.; Filippini, R.; Zusso, M.; Caniato, R.; Piovan, A. Monitoring of Spirulina flakes and powders from Italian companies. Molecules 2022, 27, 3155. [Google Scholar] [CrossRef]
- Hu, H.; Li, Y.; Yin, C.; Ouyang, Y. Isolation and characterization of a mesophilic Arthrospira maxima strain capable of producing docosahexaenoic acid. J. Microbiol. Biotechnol. 2011, 21, 697–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Issa, A.; Ali, E.; Abdel-Basset, R.; Awad, M.F.; Ebied, A.M.; Hassan, S.A. The impact of nitrogen concentrations on production and quality of food and feed supplements from three cyanobacteria and potential application in biotechnology. Biocatal. Agric. Biotechnol. 2020, 24, 101533. [Google Scholar] [CrossRef]
- Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U.; Mohan, D. Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef] [Green Version]
- Altabe, S.G.; Mansilla, M.C.; de Mendoza, D. Remodeling of membrane phospholipids by bacterial desaturases. In Stearoyl-CoA Desaturase Genes in Lipid Metabolism; Springer: New York, NY, USA, 2013; pp. 209–231. [Google Scholar]
- Abd El Fatah, H.M.; El-Baghdady, K.Z.; Zakaria, A.E.; Sadek, H.N. Improved lipid productivity of Chlamydomonas globosa and Oscillatoria pseudogeminata as a biodiesel feedstock in artificial media and wastewater. Biocatal. Agric. Biotechnol. 2020, 25, 101588. [Google Scholar] [CrossRef]
- Singh, H.; Varanasi, J.L.; Banerjee, S.; Das, D. Production of carbohydrate enrich microalgal biomass as a bioenergy feedstock. Energy 2019, 188, 116039. [Google Scholar] [CrossRef]
- Cepas, V.; Gutiérrez-Del-Río, I.; López, Y.; Redondo-Blanco, S.; Gabasa, Y.; Iglesias, M.J.; Soengas, R.; Fernández-Lorenzo, A.; López-Ibáñez, S.; Villar, C.J.; et al. Microalgae and cyanobacteria strains as producers of lipids with antibacterial and antibiofilm activity. Mar. Drugs 2021, 19, 675. [Google Scholar] [CrossRef]
- Costa, J.A.V.; Moreira, J.B.; Lucas, B.F.; Braga, V.S.; Cassuriaga, A.P.; Morais, M.G. Recent advances and future perspectives of PHB production by cyanobacteria. Ind. Biotechnol. 2018, 14, 249–256. [Google Scholar] [CrossRef]
- Mathimani, T.; Mallick, N. A Comprehensive review on harvesting of microalgae for biodiesel—Key challenges and future directions. Renew. Sustain. Energy Rev. 2018, 91, 1103–1120. [Google Scholar] [CrossRef]
- Mathimani, T.; Mallick, N. A Review on the hydrothermal processing of microalgal biomass to bio-oil—Knowledge gaps and recent advances. J. Clean Prod. 2019, 217, 69–84. [Google Scholar] [CrossRef]
- da Silva, M.F.; Casazza, A.A.; Ferrari, P.F.; Perego, P.; Bezerra, R.P.; Converti, A.; Porto, A.L.F. A new bioenergetic and thermodynamic approach to batch photoautotrophic growth of Arthrospira (Spirulina) platensis in different photobioreactors and under different light conditions. Bioresour. Technol. 2016, 207, 220–228. [Google Scholar] [CrossRef]
- Singh, S.P.; Singh, P. Effect of CO2 concentration on algal growth: A review. Renew. Sustain. Energy Rev. 2014, 38, 172–179. [Google Scholar] [CrossRef]
- Canakci, M. The potential of restaurant waste lipids as biodiesel feedstocks. Bioresour. Technol. 2007, 98, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Santana-Sánchez, A.; Lynch, F.; Sirin, S.; Allahverdiyeva, Y. Nordic cyanobacterial and algal lipids: Triacylglycerol accumulation, chemotaxonomy and bioindustrial potential. Physiol. Plant. 2021, 173, 591–602. [Google Scholar] [CrossRef] [PubMed]
- Chew, K.W.; Yap, J.Y.; Show, P.L.; Suan, N.H.; Juan, J.C.; Ling, T.C.; Lee, D.-J.; Chang, J.-S. Microalgae biorefinery: High value products perspectives. Bioresour. Technol. 2017, 229, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Li, X.; Yuan, Y.; Yang, C.; Tang, T.; Zhao, Q.; Sun, Y. Adaptive evolution and carbon dioxide fixation of Chlorella sp. in simulated flue gas. Sci. Total Environ. 2019, 650, 2931–2938. [Google Scholar] [CrossRef]
- Silva, C.E.; Abud, A.K.; Silva, I.C.; Andrade, N.P.; Cerqueira, R.B.; Andrade, F.P.; Carvalho, F.D.; Almeida, R.M.; Souza, J.E. Acceptability of tropical fruit pulps enriched with vegetal/microbial protein sources: Viscosity, importance of nutritional information and changes on sensory analysis for different age groups. J. Food Sci. Technol. 2019, 56, 3810–3822. [Google Scholar] [CrossRef]
- Arias, D.M.; Uggetti, E.; García-Galán, M.J.; García, J. Production of polyhydroxybutyrates and carbohydrates in a mixed cyanobacterial culture: Effect of nutrients limitation and photoperiods. New Biotechnol. 2018, 42, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Cerri, R.; Niccolai, A.; Cardinaletti, G.; Tulli, F.; Mina, F.; Daniso, E.; Bongiorno, T.; Chini Zittelli, G.; Biondi, N.; Tredici, M.R.; et al. Chemical composition and apparent digestibility of a panel of dried microalgae and cyanobacteria biomasses in rainbow trout (Oncorhynchus mykiss). Aquaculture 2021, 544, 737075. [Google Scholar] [CrossRef]
- Lafarga, T.; Sánchez-Zurano, A.; Villaró, S.; Morillas-España, A.; Acién, G. Industrial production of Spirulina as a protein source for bioactive peptide generation. Trends Food. Sci. Technol. 2021, 116, 176–185. [Google Scholar] [CrossRef]
Code N. | Genus and/or Species | Collection Point | Reference |
---|---|---|---|
1 | Phormidium sp. (FW01) | - | [17] 1 |
2 | Phormidium sp. (FW02) | - | [17] 1 |
3 | Oscillatoria sp. (FW01) | - | [17] 1 |
4 | Oscillatoria sp. (FW02) | - | [17] 1 |
5 | Mastigocladus laminosus (S4BB) | Algeria | [27] 1 |
6 | Mastigocladus laminosus (S4B11) | Algeria | [27] 1 |
7 | Mastigocladus laminosus (S9BB) | Algeria | [27] 1 |
8 | Cyanobacterium sp. (IPPAS B-1200) | Sorbulak reservoir of Almaty | [28] 1 |
9 | Cyanobacterium aponinum (IPPAS B-1201) | Sorbulak reservoir of Almaty | [28] 1 |
10 | Desertifilum sp. (IPPAS B-1220) | Sorbulak reservoir of Almaty | [28] 1 |
11 | Anabaena affinis (NIES-40) | Tsukuba, Japan | [29] 1 |
12 | Anabaena affinis (Inba3) | Chiba, Japan | [29] 1 |
13 | Anabaena affinis (Inba10) | Chiba, Japan | [29] 1 |
14 | Anabaena planctonica (TAC421) | Tsukuba, Japan | [29] 1 |
15 | Anabaena planctonica (TAC422) | Tsukuba, Japan | [29] 1 |
16 | Anabaena planctonica (TAC424) | Tsukuba, Japan | [29] 1 |
17 | Anabaena planctonica (TAC434) | Tsukuba, Japan | [29] 1 |
18 | Anabaena planctonica (TAC435) | Tsukuba, Japan | [29] 1 |
19 | Anabaena planctonica (1403/27) | Windermere, UK | [29] 1 |
20 | Anabaena planctonica (1403/19) | Windermere, UK | [29] 1 |
21 | Anabaena planctonica (NIVA66) | Oslo, Norway | [29] 1 |
22 | Anabaena planctonica (Inba2) | Chiba, Japan | [29] 1 |
23 | Anabaena planctonica (Inba6) | Chiba, Japan | [29] 1 |
24 | Anabaena solitaria (NIES-78) | Tsukuba, Japan | [29] 1 |
25 | Anabaena solitaria (NIES-80) | Tsukuba, Japan | [29] 1 |
26 | Anabaena smithii (TAC428) | Tsukuba, Japan | [29] 1 |
27 | Anabaena smithii (TAC431) | Tsukuba, Japan | [29] 1 |
28 | Anabaena smithii (TAC432) | Tsukuba, Japan | [29] 1 |
29 | Anabaena smithii (TAC450) | Tsukuba, Japan | [29] 1 |
30 | Anabaena smithii (TAC451) | Tsukuba, Japan | [29] 1 |
31 | Anabaena kisseloviana (NIES-74) | Tsukuba, Japan | [29] 1 |
32 | Anabaena kisseloviana (TAC34) | Tsukuba, Japan | [29] 1 |
33 | Anabaena viguieri (TAC433) | Tsukuba, Japan | [29] 1 |
34 | Anabaena danica (TAC453) | Tsukuba, Japan | [29] 1 |
35 | Limnothrix sp. (DDVG II) | - | [30] 1 |
36 | Wild cyanobacterial biomass | Nida, Lithuania | [31] 1 |
37 | Camptylonemopsis minor (MBDU 013) | Tamil Nadu, India | [32] 1 |
38 | Calothrix marchica (MBDU 602) | Tamil Nadu, India | [32] 1 |
39 | Calothrix sp. (MBDU 013) | Tamil Nadu, India | [32] 1 |
40 | Nostoc sp. (MBDU 009) | Tamil Nadu, India | [32] 1 |
41 | Nostoc sp. (MBDU 013) | Tamil Nadu, India | [32] 1 |
42 | Anabaena sphaerica (MBDU 105) | Tamil Nadu, India | [32] 1 |
43 | Calothrix dolichomeres (MBDU 013) | Tamil Nadu, India | [32] 1 |
44 | Calothrix linearis (MBDU 005) | Tamil Nadu, India | [32] 1 |
45 | Nostoc piscinale (MBDU 013) | Tamil Nadu, India | [32] 1 |
46 | Anabaena sp. (MBDU 006) | Tamil Nadu, India | [32] 1 |
47 | Nostoc sp. (MBDU 007) | Tamil Nadu, India | [32] 1 |
48 | Dolichospermum spiroides (MBDU 607) | Tamil Nadu, India | [33] 1 |
49 | Anabaena variabilis (MBDU 013) | Tamil Nadu, India | [33] 1 |
50 | Anabaena anomala (MBDU 629) | Tamil Nadu, India | [33] 1 |
51 | Nostoc punctiforme (MBDU 009) | Tamil Nadu, India | [33] 1 |
52 | Nostoc calcicola (MBDU 602) | Tamil Nadu, India | [33] 1 |
53 | Nostoc carneum (MBDU 709) | Tamil Nadu, India | [33] 1 |
54 | Nostoc carneum (MBDU 013) | Tamil Nadu, India | [33] 1 |
55 | Nostoc entophytum (MBDU 679) | Tamil Nadu, India | [33] 1 |
56 | Desmonostoc muscorum (MBDU 105) | Tamil Nadu, India | [33] 1 |
57 | Calothrix brevissima (MBDU 613) | Tamil Nadu, India | [33] 1 |
58 | Tolypothrix tenuis (MBDU 609) | Tamil Nadu, India | [33] 1 |
59 | Nostoc sp. (MBDU 013) | Tamil Nadu, India | [33] 1 |
60 | Nostoc sp. (MBDU 005) | Tamil Nadu, India | [33] 1 |
61 | Nostoc commune (MBDU 707) | Tamil Nadu, India | [33] 1 |
62 | Nostoc sp. (MBDU 303) | Tamil Nadu, India | [33] 1 |
63 | Nostoc spongiaeforme (MBDU 704) | - | [34] 1 |
64 | Calothrix sp. (MBDU 701) | - | [34] 1 |
65 | Nostoc punctiforme (MBDU 621) | - | [34] 1 |
66 | Scytonema bohneri (MBDU 104) | - | [34] 1 |
67 | Calothrix sp. (MBDU 901) | - | [34] 1 |
68 | Cyanobium sp. (CACIAM06) | Bolonha Lake | [35] 1 |
69 | Limnothrix sp. (CACIAM10) | Tucuruí Hydroelectric Reservoir | [35] 1 |
70 | Nostoc sp. (CACIAM19) | Bolonha Lake | [35] 1 |
71 | Nostoc sp. (MCC41) | India | [36] 1 |
72 | Nostoc commune | Negev Desert, Israel | [37] 1 |
73 | Nostoc verrucosum | Hula Lake, Israel | [37] 1 |
74 | Nostoc sp. | Collema cristatum, lichen | [37] 1 |
75 | Aphanizomenon klebahnii | CCALA collection, Trebon, Czech Republic | [38] 2 |
76 | Arthronema africanum | CCALA collection, Trebon, Czech Republic | [38] 2 |
77 | Arthrospira maxima | CCALA collection, Trebon, Czech Republic | [38] 2 |
78 | Spirulina platensis | CCALA collection, Trebon, Czech Republic | [38] 2 |
79 | Plectonema boryanum | CCALA collection, Trebon, Czech Republic | [38] 2 |
80 | Lyngbya arboricum | CCALA collection, Trebon, Czech Republic | [38] 2 |
81 | Microcystis aeruginosa | CCALA collection, Trebon, Czech Republic | [38] 2 |
82 | Nostoc calcicola | CCALA collection, Trebon, Czech Republic | [38] 2 |
83 | Scytonema ocellatum | CCALA collection, Trebon, Czech Republic | [38] 2 |
84 | Synechococcus elongatus | CCALA collection, Trebon, Czech Republic | [38] 2 |
85 | Synechococcus leopoliensis | CCALA collection, Trebon, Czech Republic | [38] 2 |
86 | Anabaena variabilis | CCALA collection, Trebon, Czech Republic | [38] 2 |
87 | Aphanizomenon flos-aquae | Klamath Lake, USA | [39] 2 |
88 | Aphanizomenon flos-aquae | Upper Klamath Lake, USA | [39] 2 |
89 | Aphanizomenon ovalisporum | Tiberias Lake, Israel | [39] 2 |
90 | Aphanizomenon flos-aquae | Queen Elizabeth Reservoir, UK | [39] 2 |
91 | Calothrix sp. | West coast, India | [40] 1 |
92 | Leptolyngbya sp. | West coast, India | [40] 1 |
93 | Oscillatoria marina | West coast, India | [40] 1 |
94 | Oscillatoria acuta | West coast, India | [40] 1 |
95 | Lyngbya sp. | West coast, India | [40] 1 |
96 | Spirulina platensis | West coast, India | [40] 1 |
97 | Nostoc muscorum | West coast, India | [40] 1 |
98 | Synechococcus sp. | West coast, India | [40] 1 |
99 | Pseudanabaena mucicola GO0704 | Nakdong River, South Korea | [41] 1 |
100 | Microcystis aeruginosa (CAAT 2005-3) | Buenos Aires, Argentina | [16] 1 |
101 | Microcystis aeruginosa (LTPNA 01) | São Paulo, Brazil | [14] 2 |
102 | Bloom material | São Paulo, Brazil | [14] 2 |
103 | Microcystis aeruginosa (CAAT 2005-3) | Buenos Aires, Argentina | [42] 1 |
104 | Synechocystis (PCC 6803) | - | [43] 3 |
105 | Dolichospermum lemmermannii | Baltic | [44] 1 |
106 | Aphanizomenon flos-aquae (KAC 15) | Baltic | [44] 1 |
107 | Nodularia spumigena (KAC 12) | Baltic | [44] 1 |
108 | Nostoc piscinale (CENA21) | Hunan and Hainan, China | [45] 1 |
109 | Nostoc sp. (NIES-3756) | Hunan and Hainan, China | [45] 1 |
110 | Anabaena variabilis (ATCC 29413) | Hunan and Hainan, China | [45] 1 |
111 | Spirulina sp. (LEB 18) | - | [46] 4 |
Code N. | 4:0 | 6:0 | 8:0 | 10:0 | 12:0 | 13:0 | 14:0 | 15:0 | 16:0 | 17:0 | 18:0 | 20:0 | 22:0 | 23:0 | 24:0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | 1.02 | - | - | 7.60 | 6.7 | 1.92 | - | 18.55 | - | - | - | - | 1.23 | - |
2 | 1.23 | - | - | 8.88 | 6.33 | 1.65 | - | 19.56 | - | - | - | - | 1.06 | - | 1.23 |
3 | - | 1.33 | - | - | 9.22 | 7.4 | 2.2 | - | 21.70 | - | - | - | - | 1.04 | - |
4 | - | 1.08 | - | - | 7.60 | 6.9 | 3.12 | - | 19.44 | - | - | - | - | 1.78 | - |
5 | - | - | - | 0.12 | 0 | - | 1.17 | 0.18 | 53.16 | - | 3.44 | 0.13 | 0.16 | - | 0.06 |
6 | - | - | - | 0.03 | 0 | - | 0.99 | 0.15 | 51.41 | - | 2.98 | 0.18 | 0.17 | - | 0 |
7 | - | - | - | 0 | 0 | - | 1.38 | 0.30 | 52.71 | - | 4.40 | 0.19 | 0.26 | - | 0.12 |
8 | - | - | - | - | 0.1 | - | 30 | 1,5 | 165 | - | 1.5 | - | - | - | - |
9 | - | - | - | - | 0.1 | - | 308 | 0 | 131 | - | 1.5 | - | - | - | - |
10 | - | - | - | - | 0 | - | 0.4 | 0 | 230 | - | 1.5 | - | - | - | - |
11 | - | - | - | - | - | - | 4.4 | - | 30.3 | - | 1.0 | - | - | - | - |
12 | - | - | - | - | - | - | 5.6 | - | 29.1 | - | 1.5 | - | - | - | - |
13 | - | - | - | - | - | - | 2.8 | - | 26.0 | - | 1.3 | - | - | - | - |
14 | - | - | - | - | - | - | 5.0 | - | 39.5 | - | 0.8 | - | - | - | - |
15 | - | - | - | - | - | - | 4.4 | - | 36.0 | - | 1.0 | - | - | - | - |
16 | - | - | - | - | - | - | 3.8 | - | 37.4 | - | 1.8 | - | - | - | - |
17 | - | - | - | - | - | - | 2.7 | - | 37.0 | - | 0.8 | - | - | - | - |
18 | - | - | - | - | - | - | 2.0 | - | 37.0 | - | 0.8 | - | - | - | - |
19 | - | - | - | - | - | - | 2.6 | - | 39.7 | - | 1.0 | - | - | - | - |
20 | - | - | - | - | - | - | 3.7 | - | 42.1 | - | 1.7 | - | - | - | - |
21 | - | - | - | - | - | - | 5.3 | - | 36.5 | - | 1.1 | - | - | - | - |
22 | - | - | - | - | - | - | 4.7 | - | 35.3 | - | 1.6 | - | - | - | - |
23 | - | - | - | - | - | - | 4.2 | - | 33.6 | - | 1.8 | - | - | - | - |
24 | - | - | - | - | - | - | 5.5 | - | 38.4 | - | 0.6 | - | - | - | - |
25 | - | - | - | - | - | - | 5.7 | - | 41.6 | - | 1.0 | - | - | - | - |
26 | - | - | - | - | - | - | 3.3 | - | 46.1 | - | 1.9 | - | - | - | - |
27 | - | - | - | - | - | - | 3.2 | - | 37.0 | - | 0.7 | - | - | - | - |
28 | - | - | - | - | - | - | 3.2 | - | 40.8 | - | 1.2 | - | - | - | - |
29 | - | - | - | - | - | - | 2.8 | - | 35.1 | - | 0.8 | - | - | - | - |
30 | - | - | - | - | - | - | 3.2 | - | 37.0 | - | 1.0 | - | - | - | - |
31 | - | - | - | - | - | - | 2.7 | - | 40.1 | - | 1.1 | - | - | - | - |
32 | - | - | - | - | - | - | 2.7 | - | 43.4 | - | tr | - | - | - | - |
33 | - | - | - | - | - | - | 3.4 | - | 30.3 | - | 1.9 | - | - | - | - |
34 | - | - | - | - | - | - | 1.9 | - | 34.2 | - | 2.5 | - | - | - | - |
35 | - | - | - | - | - | - | 11.2 | - | 1.8 | - | 15.8 | 18.5 | - | - | - |
36 | - | - | - | - | 0.75 | - | 7.23 | - | 15.01 | - | 1.25 | 0 | 0 | - | - |
37 | 5.09 | 2.08 | 0 | 5.53 | 6.98 | 3.13 | 1.26 | 0 | 20.38 | 2.22 | 2.67 | 4.49 | 0 | 0 | 0 |
38 | 1.76 | 2.21 | 2.58 | 7.72 | 9.27 | 4.04 | 0.69 | 3.88 | 25.42 | 2.25 | 2.57 | 2.89 | 0 | 0 | 0 |
39 | 3.24 | 0.44 | 2.15 | 5.57 | 6.92 | 3.69 | 0.69 | 6.77 | 23.52 | 1.57 | 5.27 | 2.36 | 0.16 | 0 | 0 |
40 | 1.45 | 0.13 | 0.31 | 0.90 | 1.95 | 2.35 | 0.82 | 1.83 | 4.78 | 5.84 | 6.15 | 3.13 | 0 | 4.41 | 2.48 |
41 | 6.75 | 1.21 | 1.10 | 3.8 | 5.81 | 6.96 | 0.95 | 4.79 | 13.06 | 5.75 | 8.32 | 8.83 | 0 | 0 | 0 |
42 | 6.54 | 0.68 | 1.11 | 5.36 | 7.36 | 2.84 | 0.60 | 5.89 | 25.23 | 3.65 | 0.89 | 4.11 | 0 | 0 | 0 |
43 | 1.38 | 0.19 | 1.95 | 6.14 | 7.08 | 2.99 | 0.69 | 3.39 | 26.13 | 2.19 | 3.18 | 3.25 | 0.18 | 0 | 0 |
44 | 0 | 0 | 1.11 | 5.60 | 6.69 | 3.98 | 0.57 | 5.35 | 27.95 | 2.10 | 2.33 | 2.61 | 0 | 0 | 0 |
45 | 3.52 | 0.33 | 0.13 | 0.14 | 0.16 | 0.56 | 0 | 0.10 | 0.84 | 3.22 | 6.24 | 16.51 | 0 | 0 | 3.87 |
46 | 0.91 | 0.15 | 0 | 0 | 0.78 | 0.72 | 0 | 1.23 | 1.48 | 3.23 | 8.18 | 0.84 | 0 | 7.07 | 0 |
47 | 0 | 0 | 13.40 | 4.95 | 7.99 | 4.45 | 0.80 | 6.05 | 19.61 | 4.96 | 3.02 | 10.39 | 0 | 0 | 0 |
48 | 0 | 0.56 | 7.83 | 0.99 | 1.35 | 0 | 0 | 0 | 3.11 | 0.60 | 31.33 | 0.54 | 16.70 | 0 | 0 |
49 | 3.08 | 3.34 | 0 | 1.04 | 3.48 | 1.64 | 0 | 0 | 26.89 | 3.90 | 4.77 | 0 | 0 | 0 | 0 |
50 | 2.12 | 1.07 | 6.38 | 0.58 | 1.21 | 0.42 | 1.70 | 0.58 | 15.62 | 1.11 | 24.94 | 1.34 | 5.68 | 0.63 | 0.82 |
51 | 0.81 | 0.84 | 3.88 | 1.45 | 1.48 | 0 | 0 | 0 | 3.79 | 0.84 | 33.12 | 2.11 | 23.37 | 0 | 0 |
52 | 0.52 | 0.77 | 4.51 | 1.22 | 1.40 | 0 | 0.27 | 0 | 2.97 | 0.85 | 48.48 | 0.22 | 22.40 | 0 | 0 |
53 | 0.71 | 0.87 | 4.93 | 1.56 | 1.89 | 0 | 0.55 | 0.35 | 7.23 | 1.28 | 44.75 | 0.95 | 9.64 | 0 | 0 |
54 | 0.27 | 0.69 | 3.92 | 1.13 | 1.14 | 0 | 0 | 0.11 | 4.77 | 0.99 | 62.86 | 0.87 | 0 | 0 | 0 |
55 | 2.19 | 1.74 | 0 | 2.14 | 2.80 | 5.37 | 1.47 | 0 | 38.50 | 1.84 | 5.24 | 3.52 | 0 | 0 | 0 |
56 | 0.75 | 0.52 | 1.84 | 1.01 | 1.86 | 0.57 | 0.36 | 0.44 | 13.19 | 4.52 | 37.96 | 0.66 | 0.48 | 1.07 | 0.51 |
57 | 0.09 | 0.08 | 6.91 | 1.24 | 2.15 | 0 | 0 | 0.10 | 0.84 | 1.49 | 53.79 | 0.71 | 2.28 | 0 | 0.30 |
58 | 0.33 | 0.23 | 5.29 | 1.03 | 2.68 | 0 | 0 | 3.30 | 4.58 | 2.19 | 45.42 | 0.15 | 1.28 | 0 | 0.52 |
59 | 0.17 | 0.54 | 2.24 | 0.92 | 1.12 | 0 | 0.18 | 0 | 4.56 | 0.72 | 64.85 | 0.73 | 8.43 | 0 | 0 |
60 | 0.60 | 0.26 | 10.15 | 0.76 | 0.82 | 0 | 0.27 | 0.18 | 2.58 | 0.56 | 44.95 | 0.15 | 4.39 | 0 | 0 |
61 | 1.22 | 0 | 3.19 | 2.90 | 6.69 | 0 | 0 | 0 | 5.73 | 4.95 | 34.84 | 1.21 | 2.37 | 0 | 1.43 |
62 | 0 | 0.51 | 0.37 | 0.66 | 2.13 | 0.92 | 2.57 | 0.56 | 26.42 | 11.21 | 3.50 | 0 | 14.06 | 0 | 0 |
63 | - | - | 8.96 | 0.58 | 0.67 | 0.43 | 1.17 | 1.20 | 14.39 | 4.03 | 10.93 | 0 | 0 | 2.06 | - |
64 | - | - | 3.31 | 0.33 | 0.65 | 0.19 | 0.26 | 0.08 | 23.47 | 3.88 | 1.23 | 1.20 | 1.23 | 0.52 | - |
65 | - | - | 2.95 | 0.19 | 0.51 | 2.43 | 0.40 | 0 | 21.84 | 3.88 | 0.53 | 0.70 | 2.38 | 0.42 | - |
66 | - | - | 5.58 | 1.08 | 3.38 | 0 | 1.35 | 0 | 37.39 | 0 | 4.80 | 0 | 0.46 | 0.88 | - |
67 | - | - | 0 | 1.83 | 13.37 | 1.01 | 1.75 | 0 | 25.34 | 6.89 | 1.50 | 2.69 | 6.13 | 2.04 | - |
68 | 0.60 | - | - | 0.83 | 41.91 | - | 27.96 | 0 | 11.35 | 0 | 3.42 | 0 | 0 | - | - |
69 | 0.09 | - | - | 0.14 | 22.12 | - | 25.41 | 0.11 | 17.01 | 0.14 | 4.52 | 0.11 | 0 | - | - |
70 | 0.15 | - | - | 0.18 | 27.48 | - | 26.81 | 0 | 17.85 | 0 | 5.86 | 0.25 | 0.08 | - | - |
71 | - | - | - | - | 0.3 | - | 0.9 | - | 34.9 | 0.4 | 2.0 | 0.6 | - | - | 0.3 |
72 | 0 | 0.2 | 0.3 | 0.5 | 0.9 | 0.6 | 2.4 | 1.2 | 20.7 | 0.7 | 1.9 | 0 | - | - | - |
73 | 0.2 | 0.2 | 0.2 | 0.2 | 0.6 | 0.3 | 2.8 | 1.1 | 23.7 | 0.2 | 3.2 | - | - | - | - |
74 | 0 | 0.3 | 0.1 | 0.2 | 0 | 0.2 | 1.8 | 0.4 | 19.6 | 0.3 | 2.6 | - | - | - | - |
75 | - | - | - | - | - | - | 0.5 | - | 29 | - | 0.3 | - | - | - | - |
76 | - | - | - | - | - | - | 0.1–0.9 | - | 26–40 | - | 0.3–1 | - | - | - | - |
77 | - | - | - | - | - | - | 0 | - | 52 | - | 1.5 | - | - | - | - |
78 | - | - | - | - | - | - | 1–3 | - | 41–55 | - | 0.1–0.9 | - | - | - | - |
79 | - | - | - | - | - | - | 0 | - | 44 | - | 4 | - | - | - | - |
80 | - | - | - | - | - | - | 1.8 | - | 26.8 | - | 5.5 | - | - | - | - |
81 | - | - | - | - | - | - | 0 | - | 48 | - | 0.4 | - | - | - | - |
82 | - | - | - | - | - | - | 3.3 | - | 27.5 | - | 3.5 | - | - | - | - |
83 | - | - | - | - | - | - | 1.8 | - | 29.1 | - | 6.5 | - | - | - | - |
84 | - | - | - | - | - | - | 0.4 | - | 42 | - | 0 | - | - | - | - |
85 | - | - | - | - | - | - | 0.3 | - | 38 | - | 0 | - | - | - | - |
86 | - | - | - | - | - | - | 1–3 | - | 45–55 | - | 0.3–0.9 | - | - | - | - |
87 | 0.19 | 0 | 0.08 | 0.19 | 0.44 | - | 13.70 | 3.15 | 32 | 0.68 | 0.51 | - | - | - | - |
88 | 0.15 | 0.18 | 0.09 | 0.11 | 0.26 | - | 12.71 | 1.51 | 36.98 | 0.18 | 1.74 | - | - | - | - |
89 | 0.11 | 0.24 | 0.12 | 0.21 | 0.31 | - | 2.01 | 0.95 | 40.13 | 0.22 | 1.14 | - | - | - | - |
90 | 0.05 | 0.16 | 0.13 | 0.29 | 0.18 | - | 3.22 | 0.84 | 43.09 | 0.31 | 0.98 | - | - | - | - |
91 | - | - | - | - | - | - | - | - | 26.95 | - | 3.99 | - | - | - | - |
92 | - | - | - | - | - | - | - | - | 13.74 | - | 4.73 | - | 3.57 | - | - |
93 | - | - | - | - | - | - | 0.21 | - | 18.74 | - | 4.74 | 0.65 | 1.60 | - | - |
94 | - | - | - | - | - | - | - | - | 13.61 | - | 8.53 | - | - | - | - |
95 | - | - | - | - | - | - | 1.23 | - | 26.49 | - | 3.24 | - | - | - | - |
96 | - | - | - | - | - | - | - | - | 22.53 | - | 5.21 | - | 5.52 | - | - |
97 | - | - | - | - | - | - | - | - | 26.89 | - | - | - | - | - | - |
98 | - | - | - | - | - | - | - | - | 8.74 | - | - | - | - | - | - |
99 | - | - | - | - | <1.0 | - | 25.5 | - | 14.1 | - | 3.6 | - | - | - | - |
100 | - | - | - | - | 0.09 | - | 0.45 | - | 28.16 | 0.15 | 1.52 | - | - | - | - |
101 | - | - | - | - | 0 | - | 1.94 | 0.10 | 5.02 | - | 0.48 | - | - | - | - |
102 | - | - | - | - | 0.11 | - | 2.71 | 0.34 | 7.99 | - | 0.66 | - | - | - | - |
103 | - | - | - | - | 0.13 | - | 0.35 | 0.1 | 28 | 0.12 | 1.33 | - | - | - | - |
104 | - | - | - | 0 | 0 | - | 0 | 0 | 88.7 | 456.0 | 44.8 | 46.2 | - | - | - |
105 | - | - | - | - | - | 0.3 | - | 0 | 3.1 | 0 | 1.8 | - | - | - | - |
106 | - | - | - | - | - | 0.2 | - | 0 | 65.7 | 0.1 | 1.4 | - | - | - | - |
107 | - | - | - | - | - | - | - | 0 | 30.5 | 0 | 5.2 | - | - | - | - |
108 | - | - | - | - | - | - | 0.05 | - | 1.11 | 0 | 0.04 | - | 0.03 | - | - |
109 | - | - | - | - | - | - | 0.01 | - | 0.45 | 0.1 | 0.05 | - | 0.02 | - | - |
110 | - | - | - | - | - | - | 0 | - | 0.61 | 0 | 0.01 | - | 0 | - | - |
111 | - | - | - | - | - | - | - | - | 184.86 | - | 14.59 | - | - | - | - |
Code N. | 14:1ω-9 | 16:1 | 16:1ω-7 | 16:1ω-9 | 17:1 | 18:1 | 18:1ω-9 |
---|---|---|---|---|---|---|---|
1 | 9.23 | 8.56 | - | - | - | 10.20 | - |
2 | 8.65 | 9.44 | - | - | - | 12.49 | - |
3 | 9.11 | 10.40 | - | - | - | 13.47 | - |
4 | 8.70 | 9.69 | - | - | - | 11.42 | - |
5 | - | - | 7.11 | - | - | - | - |
6 | - | - | 3.46 | - | - | - | - |
7 | - | - | 7.25 | - | - | - | - |
8 | 8.6 | - | 0.3 | 373 | - | - | 0.1 |
9 | 3.1 | - | 0.4 | 415 | - | - | 3.4 |
10 | 0 | - | 3.5 | 0.7 | - | - | 3.3 |
11 | - | 4.2 | - | - | - | 2.5 | |
12 | - | 9.0 | - | - | - | 4.8 | - |
13 | - | 15.8 | - | - | - | 1.6 | - |
14 | - | 4.1 | - | - | - | 2.5 | - |
15 | - | 3.3 | - | - | - | 2.5 | - |
16 | - | 2.3 | - | - | - | 3.2 | - |
17 | - | 16.1 | - | - | - | 0.8 | - |
18 | - | 14.0 | - | - | - | 0.8 | - |
19 | - | 6.6 | - | - | - | 7.6 | - |
20 | - | 3.1 | - | - | - | 10.8 | - |
21 | - | 6.0 | - | - | - | 3.3 | - |
22 | - | 3.3 | - | - | - | 1.1 | - |
23 | - | 2.3 | - | - | - | 3.2 | - |
24 | - | 4.8 | - | - | - | 2.1 | - |
25 | - | 5.1 | - | - | - | 2.1 | - |
26 | - | 2.7 | - | - | - | 1.3 | - |
27 | - | 3.4 | - | - | - | 2.6 | - |
28 | - | 3.0 | - | - | - | 2.5 | - |
29 | - | 3.4 | - | - | - | 3.5 | - |
30 | - | 3.7 | - | - | - | 4.5 | - |
31 | - | 17.2 | - | - | - | 0.9 | - |
32 | - | 17.1 | - | - | - | 2.2 | - |
33 | - | 2.7 | - | - | - | 2.3 | - |
34 | - | 11.8 | - | - | - | 5.0 | - |
35 | - | 6.6 | - | - | - | 27.2 | - |
36 | 0.63 | 2.16 | - | - | - | - | 8.49 |
37 | 0 | 0 | - | - | - | - | 2.46 |
38 | 0 | 0.17 | - | - | - | - | 1.86 |
39 | 0 | 0.80 | - | - | - | - | 1.02 |
40 | 0 | 0.17 | - | - | - | - | 11.18 |
41 | 0 | 2.14 | - | - | - | - | 2.76 |
42 | 0 | 0.72 | - | - | - | - | 0.79 |
43 | 0 | 0.38 | - | - | - | - | 3.73 |
44 | 0 | 0.20 | - | - | - | - | 2.15 |
45 | 0 | 0 | - | - | - | - | 13.57 |
46 | 0 | 0.13 | - | - | - | - | 12.07 |
47 | 0 | 1.35 | - | - | - | - | 1.82 |
48 | 1.15 | 15.37 | - | - | n.d. 3 | - | 1.02 |
49 | 4.13 | 3.39 | - | - | n.d. | - | 3.02 |
50 | 0.87 | 8.69 | - | - | n.d. | - | 1.09 |
51 | 1.47 | 5.98 | - | - | 0.28 | - | 0.91 |
52 | 1.36 | 4.36 | - | - | n.d. | - | 0.18 |
53 | 1.85 | 9.15 | - | - | n.d. | - | 0.44 |
54 | 1.02 | 2.73 | - | - | 0.66 | - | 0.34 |
55 | 2.40 | 2.34 | - | - | n.d. | - | 2.67 |
56 | 2.09 | 2.60 | - | - | 1.33 | - | 0.89 |
57 | 2.07 | 2.95 | - | - | 0.43 | - | 0.21 |
58 | 2.88 | 3.29 | - | - | n.d. | - | 0.58 |
59 | 1.06 | 2.12 | - | - | 0.73 | - | 0.51 |
60 | 0.91 | 5.65 | - | - | n.d. | - | 0.34 |
61 | 6.27 | 2.05 | - | - | 6.22 | - | 1.42 |
62 | 0.52 | 1.04 | - | - | 0 | - | 3.97 |
63 | 5.89 | 5.34 | - | - | 2.70 | - | 0 |
64 | 2.26 | 22.22 | - | - | 1.23 | - | 3.04 |
65 | 1.92 | 6.13 | - | - | 1.41 | - | 3.74 |
66 | 4.57 | 0 | - | - | 2.99 | - | 1.11 |
67 | 4.05 | 1.46 | - | - | 0 | - | 3.64 |
68 | - | - | - | - | - | 12.79 | - |
69 | - | - | - | - | - | 16.21 | - |
70 | - | - | - | - | - | 15.91 | - |
71 | - | 15.8 | - | - | - | 12 | - |
75 | 0 | 32.8 | - | - | - | 10.4 | - |
76 | 0 | 18–36 | - | - | - | 3–20 | - |
77 | 0 | 4 | - | - | - | 3 | - |
78 | 1–2 | 5–18 | - | - | - | 4–9 | - |
79 | 0 | 25 | - | - | - | 12 | - |
80 | 1.1 | 24.4 | - | - | - | 9.7 | - |
81 | 0 | 9 | - | - | - | 3.6 | - |
82 | 0 | 10.5 | - | - | - | 32.5 | - |
83 | 0 | 15.8 | - | - | - | 16.6 | - |
84 | 2.6 | 46 | - | - | - | 8 | - |
85 | 2.6 | 49 | - | - | - | 8 | - |
86 | 1–2 | 5 | - | - | - | 4–9 | - |
87 | - | - | - | 2.39 | - | - | 20.94 |
88 | - | - | - | 1.02 | - | - | 19.95 |
89 | - | - | - | 2.34 | - | - | 26.71 |
90 | - | - | - | 1.85 | - | - | 26.07 |
91 | - | - | 6.55 | - | - | - | 55.52 |
92 | - | - | 1.53 | - | - | - | 69.52 |
93 | - | - | 2.01 | - | - | - | 63.15 |
94 | - | - | 0.0 | - | - | - | 68.68 |
95 | - | - | 5.37 | - | - | - | 54.53 |
96 | - | - | 2.34 | - | - | - | 56.54 |
97 | - | - | - | - | - | - | 54.01 |
98 | - | - | 82.12 | - | - | - | 1.73 |
99 | < 1.0 | 8.1 | - | - | - | 23.1 | - |
100 | 0.14 | - | 1.12 | - | 0.11 | - | - |
101 | - | - | 0.12 | - | - | - | 0.45 |
102 | - | - | 0.12 | - | - | - | 4.19 |
103 | - | - | - | 1.26 | 0.12 | - | 1.81 |
104 | 0 | 0 | - | - | 0 | 44.8 | - |
105 | - | - | 1.3 | - | - | - | - |
106 | - | - | 0.1 | - | - | - | - |
107 | - | - | 5.8 | - | - | - | - |
108 | - | 1.10 | - | - | - | 0.22 | - |
109 | - | 0.61 | - | - | - | 0.14 | - |
110 | - | 0.67 | - | - | - | 0 | - |
111 | - | - | 10.69 | - | - | - | 79.58 |
Code N. | 16:2 | 16:3 | 18:2 | 18:3 | 18:2ω-6 | 18:3ω-6 | 18:3ω-3 | 18:4ω-3 | 20:2 | 20:3 |
---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | 8.10 | 11.68 | - | - | - | - | 2.34 | 3.97 |
2 | - | - | 6.78 | 13.20 | - | - | - | - | 1.20 | 5.76 |
3 | - | - | 5.80 | 11.80 | - | - | - | - | 1.56 | 3.40 |
4 | - | - | 6.10 | 12.06 | - | - | - | - | 1.96 | 2.87 |
5 | - | - | - | - | 0.69 | 0.10 | 0.05 | 0 | - | - |
6 | - | - | - | - | 0.32 | 0.02 | 0.04 | 0 | - | - |
7 | - | - | - | - | 1.76 | 0 | 0.21 | 0 | - | - |
11 | 5.3 | 8.5 | 6.2 | 35.6 | - | - | - | - | - | - |
12 | 3.8 | 3.1 | 11.2 | 29.8 | - | - | - | - | - | - |
13 | 0 | 0 | 10,7 | 41.9 | - | - | - | - | - | - |
14 | 4.9 | 3,8 | 11.0 | 26.2 | - | - | - | - | - | - |
15 | 4.7 | 4.0 | 13.4 | 58.6 | - | - | - | - | - | - |
16 | 3.5 | 4.8 | 1.09 | 30.2 | - | - | - | - | - | - |
17 | 0 | 0 | 7.6 | 35.0 | - | - | - | - | - | - |
18 | 0 | 0 | 9.1 | 36.1 | - | - | - | - | - | - |
19 | 2.1 | 3.4 | 9.8 | 24.7 | - | - | - | - | - | - |
20 | 2.5 | 4.4 | 5.8 | 21.3 | - | - | - | - | - | - |
21 | 3.4 | 6.3 | 6.8 | 30.3 | - | - | - | - | - | - |
22 | 5.9 | 8.8 | 10.1 | 27.1 | - | - | - | - | - | - |
23 | 3.5 | 4.8 | 10.9 | 25.4 | - | - | - | - | - | - |
24 | 5.4 | 4.7 | 9.4 | 26.5 | - | - | - | - | - | - |
25 | 4.6 | 4.4 | 8.2 | 24.9 | - | - | - | - | - | - |
26 | 2.3 | 4.2 | 5.7 | 31.0 | - | - | - | - | - | - |
27 | 6.3 | 4.2 | 14.1 | 25.8 | - | - | - | - | - | - |
28 | 6.4 | 3.4 | 13.9 | 22.8 | - | - | - | - | - | - |
29 | 6.3 | 4.2 | 15.5 | 25.3 | - | - | - | - | - | - |
30 | 6.0 | 3.3 | 16.2 | 21.1 | - | - | - | - | - | - |
31 | 0 | 0 | 7.4 | 31.5 | - | - | - | - | - | - |
32 | 0 | 0 | 3.5 | 30.6 | - | - | - | - | - | - |
33 | 4.8 | 6.0 | 10.9 | 36.2 | - | - | - | - | - | - |
34 | 0 | 0 | 6.1 | 35.2 | - | - | - | - | - | - |
35 | - | - | 2.19 | 13.8 | - | - | - | - | - | - |
36 | - | - | - | - | 8.14 | - | 33.81 | - | - | - |
37 | - | - | - | - | 5.74 | 15.35 | 0 | - | 0 | - |
38 | - | - | - | - | 2.93 | 8.53 | 0 | - | 0 | - |
39 | - | - | - | - | 5.17 | 11.66 | 0 | - | 0 | - |
40 | - | - | - | - | 3.01 | 10.31 | 0 | - | 0 | - |
41 | - | - | - | - | 4.62 | 2.28 | 0 | - | 0 | - |
42 | - | - | - | - | 2.64 | 2.57 | 1.93 | - | 0 | - |
43 | - | - | - | - | 1.75 | 11.54 | 0 | - | 0 | - |
44 | - | - | - | - | 2.94 | 5.86 | 0 | - | 0 | - |
45 | - | - | - | - | 16.22 | 0 | 13.99 | - | 0 | - |
46 | - | - | - | - | 15.96 | 15.06 | 0 | - | 0 | - |
47 | - | - | - | - | 3.02 | 2.75 | 0 | - | 0 | - |
48 | - | - | - | - | 2.69 | 0.40 | 0 | - | 3.22 | - |
49 | - | - | - | - | 0 | 1.92 | 0 | - | 0 | - |
50 | - | - | - | - | 0 | 1.18 | 0.69 | - | 0 | - |
51 | - | - | - | - | 1.61 | 0.59 | 0 | - | 1.67 | - |
52 | - | - | - | - | 0.87 | 0.46 | 0 | - | 0.78 | - |
53 | - | - | - | - | 0 | 1.55 | 0 | - | 0 | - |
54 | - | - | - | - | 0.31 | 0.29 | 5.11 | - | 0 | - |
55 | - | - | - | - | 0 | 0 | 4.68 | - | 0 | - |
56 | - | - | - | - | 0.40 | 0 | 2.52 | - | 0 | - |
57 | - | - | - | - | 0.08 | 0.12 | 0 | - | 0 | - |
58 | - | - | - | - | 0.21 | 0.15 | 17.84 | - | 0.13 | - |
59 | - | - | - | - | 0.49 | 0.22 | 3.49 | - | 0 | - |
60 | - | - | - | - | 0 | 0.26 | 1.73 | - | 0 | - |
61 | - | - | - | - | 0 | 2.78 | 0 | - | 0 | - |
62 | - | - | - | - | 6.15 | 0 | 0 | - | 0 | - |
63 | - | - | - | - | 3.16 | 0 | 0 | - | 0.65 | - |
64 | - | - | - | - | 0.31 | 0.88 | 2.27 | - | 1.33 | - |
65 | - | - | - | - | 0.27 | 0.15 | 2.10 | - | 2.08 | - |
66 | - | - | - | - | 2.00 | 0 | 0 | - | 3.55 | - |
67 | - | - | - | - | 4.85 | 0 | 0 | - | 0 | - |
68 | 0 | 0.21 | 0.68 | - | - | - | - | - | - | - |
69 | 4.41 | 5.46 | 1.61 | - | - | - | - | - | - | - |
70 | 0 | 1.41 | 1.96 | - | - | - | - | - | - | - |
71 | 1.3 | 1 | 10.6 | 19 | - | - | - | - | - | - |
75 | - | - | 18.7 | 8.2 | - | - | - | - | - | - |
76 | - | - | 4–30 | 0.5–33 | - | - | - | - | - | - |
77 | - | - | 17.4 | 21.4 | - | - | - | - | - | - |
78 | - | - | 5–15 | 17–48 | - | - | - | - | - | - |
79 | - | - | 14 | 5 | - | - | - | - | - | - |
80 | - | - | 26 | 4.8 | - | - | - | - | - | - |
81 | - | - | 19.5 | 20 | - | - | - | - | - | - |
82 | - | - | 18.4 | 4.3 | - | - | - | - | - | - |
83 | - | - | 23.2 | 6.3 | - | - | - | - | - | - |
86 | - | - | 5–15 | 15–20 | - | - | - | - | - | - |
91 | - | - | - | - | 6.94 | - | - | - | - | - |
92 | - | - | - | - | 5.36 | - | 1.56 | - | - | - |
93 | - | - | - | - | 8.90 | - | - | - | - | - |
94 | - | - | - | - | 9.17 | - | - | - | - | - |
95 | - | - | - | - | 4.00 | - | 5.15 | - | - | - |
96 | - | - | - | - | 7.74 | - | - | - | - | - |
97 | - | - | - | - | 7.85 | - | 11.24 | - | - | - |
98 | - | - | - | - | 5.45 | - | 1.94 | - | - | - |
99 | - | - | 20.3 | 4.3 | - | - | - | - | - | - |
100 | - | - | - | - | 2.81 | 4.14 | 2.78 | 4.09 | - | - |
101 | - | - | - | - | 0.12 | - | - | - | - | - |
102 | - | - | - | - | 0.28 | - | - | - | - | - |
103 | - | - | - | - | 3.6 | 5.3 | 2.12 | 3.7 | - | - |
104 | - | - | 81.8 | 160.6 | - | - | - | - | - | - |
105 | - | - | - | - | 0.6 | 0 | 0.9 | 0.1 | - | - |
106 | - | - | - | - | 0.5 | 0.5 | 2.7 | 0 | - | - |
107 | - | - | - | - | 2.8 | 0.9 | 7 | 9.2 | - | - |
108 | - | - | 0.36 | 0.71 | - | - | - | - | - | - |
109 | - | - | 0.49 | 0.54 | - | - | - | - | - | - |
110 | - | - | 0.28 | 0.73 | - | - | - | - | - | - |
111 | - | - | - | - | 41.37 | - | - | - | - | - |
Code N. | Genus and/or Species | Lipids | Collection Point | Platform (Search Term) | Reference |
---|---|---|---|---|---|
1 | Oscillatoria sp. (U-55) | 31.9 | Sri Lanka | ScienceDirect (cyanobacteria lipids) | [47] |
2 | Synechococcus sp. (Sub-10) | 30.6 | Sri Lanka | ScienceDirect (cyanobacteria lipids) | [47] |
3 | Chroococcidiopsis sp. (Sub-16) | 22.7 | Sri Lanka | ScienceDirect (cyanobacteria lipids) | [47] |
4 | Leptolyngbya sp. (U-1) | 21.15 | Sri Lanka | ScienceDirect (cyanobacteria lipids) | [47] |
5 | Limnothrix sp. (U-67) | 20.73 | Sri Lanka | ScienceDirect (cyanobacteria lipids) | [47] |
6 | Calothrix sp. | 18.15 | Sri Lanka | ScienceDirect (cyanobacteria lipids) | [47] |
7 | Nostoc sp. | 15.43 | Sri Lanka | ScienceDirect (cyanobacteria lipids) | [47] |
8 | Cephalothrix sp. | 13.95 | Sri Lanka | ScienceDirect (cyanobacteria lipids) | [47] |
9 | Cephalothrix komarekiana (U-41) | 13.8 | Sri Lanka | ScienceDirect (cyanobacteria lipids) | [47] |
10 | Westiellopsis prolifica (U-58) | 12.80 | Sri Lanka | ScienceDirect (cyanobacteria lipids) | [47] |
11 | Dolichospermum affine | 10.67 | Ankara, Turkey | GoogleScholar (cyanobacteria lipids) | [48] |
12 | Nostoc sp. (MCC41) | 15.69 | Chennai, Tamil Nadu e Sambhar Lake, Rajasthan, India | ScienceDirect (cyanobacteria lipids) | [36] |
13 | Nostoc sp. (g17) | 9.62 | Chennai, Tamil Nadu e Sambhar Lake, Rajasthan, India | ScienceDirect (cyanobacteria lipids) | [36] |
14 | Nostoc sp. (g15) | 9.85 | Chennai, Tamil Nadu e Sambhar Lake, Rajasthan, India | ScienceDirect (cyanobacteria lipids) | [36] |
15 | Nostoc muscorum | 8.45 | Chennai, Tamil Nadu e Sambhar Lake, Rajasthan, India | ScienceDirect (cyanobacteria lipids) | [36] |
16 | Nostoc calcicola | 6.55 | Chennai, Tamil Nadu e Sambhar Lake, Rajasthan, India | ScienceDirect (cyanobacteria lipids) | [36] |
17 | Anabaena sp. (g24) | 16.15 | Chennai, Tamil Nadu e Sambhar Lake, Rajasthan, India | ScienceDirect (cyanobacteria lipids) | [36] |
18 | Anabaena sp. (g19) | 9.88 | Chennai, Tamil Nadu e Sambhar Lake, Rajasthan, India | ScienceDirect (cyanobacteria lipids) | [36] |
19 | Anabaena doliolum | 9.02 | Chennai, Tamil Nadu e Sambhar Lake, Rajasthan, India | ScienceDirect (cyanobacteria lipids) | [36] |
20 | Tolypothrix sp. | 7.74 | Chennai, Tamil Nadu e Sambhar Lake, Rajasthan, India | ScienceDirect (cyanobacteria lipids) | [36] |
21 | Synechocystis sp. | 3.61 | Chennai, Tamil Nadu e Sambhar Lake, Rajasthan, India | ScienceDirect (cyanobacteria lipids) | [36] |
22 | Westiellopsis sp. | 9.3 | Chennai, Tamil Nadu e Sambhar Lake, Rajasthan, India | ScienceDirect (cyanobacteria lipids) | [36] |
23 | Anabaena sp. (g14) | 3.28 | Chennai, Tamil Nadu e Sambhar Lake, Rajasthan, India | ScienceDirect (cyanobacteria lipids) | [36] |
24 | Anabaena fertilissima | 7.6 | Chennai, Tamil Nadu e Sambhar Lake, Rajasthan, India | ScienceDirect (cyanobacteria lipids) | [36] |
25 | Anabaena cilíndrica | 6.95 | Chennai, Tamil Nadu e Sambhar Lake, Rajasthan, India | ScienceDirect (cyanobacteria lipids) | [36] |
26 | Anabaena cycadeae | 9.75 | Chennai, Tamil Nadu e Sambhar Lake, Rajasthan, India | ScienceDirect (cyanobacteria lipids) | [36] |
27 | Cyanobacterium sp. (IPPASB-1200) | 22 | - | - | [28] |
28 | Desertifilum sp. (IPPASB-1220) | 19 | - | - | [28] |
29 | Cyanobacterium aponinum (IPPAS B-1201) | 15 | - | ScienceDirect (cyanobacteria lipids) | [28] |
30 | Cyanobium sp. | 5.48 | Tucuruí Hydroelectric Reservoir and Lagoa Bolonha | ScienceDirect (cyanobacteria lipids) | [35] |
31 | Limnothrix sp. | 9.12 | Tucuruí Hydroelectric Reservoir and Lagoa Bolonha | ScienceDirect (cyanobacteria lipids) | [35] |
32 | Limnothrix sp. | 7.87 | Tucuruí Hydroelectric Reservoir and Lagoa Bolonha | ScienceDirect (cyanobacteria lipids) | [35] |
33 | Nostoc sp. | 0.43 | Tucuruí Hydroelectric Reservoir and Lagoa Bolonha | ScienceDirect (cyanobacteria lipids) | [35] |
34 | Nostoc sp. | 1.74 | Tucuruí Hydroelectric Reservoir and Lagoa Bolonha | ScienceDirect (cyanobacteria lipids) | [35] |
35 | Cyanobium sp. | 0.5 | Tucuruí Hydroelectric Reservoir and Lagoa Bolonha | ScienceDirect (cyanobacteria lipids) | [35] |
36 | Synechocystis (PCC 6803) | 13.1 | University of Allahabad, Uttar Pradesh, India | ScienceDirect (cyanobacteria lipids) | [49] |
37 | Synechococcus (PCC 7942) | 11.0 | University of Allahabad, Uttar Pradesh, India | ScienceDirect (cyanobacteria lipids) | [49] |
38 | Nostoc muscorum | 7.5 | University of Allahabad, Uttar Pradesh, India | Web of Science (cyanobacteria lipids) | [49] |
39 | Oscillatoria sp. | 8.9 | University of Allahabad, Uttar Pradesh, India | Web of Science (cyanobacteria lipids) | [49] |
40 | Anabaena cylindrica | 4.8 | University of Allahabad, Uttar Pradesh, India | Web of Science (cyanobacteria lipids) | [49] |
41 | Lyngbya sp. | 10.3 | University of Allahabad, Uttar Pradesh, India | Web of Science (cyanobacteria lipids) | [49] |
42 | Phormidium sp. | 8.4 | University of Allahabad, Uttar Pradesh, India | Web of Science (cyanobacteria lipids) | [49] |
43 | Synechococcus sp. | 6–11 | Garhwal Himalaya, Uttarakhand, India | ScienceDirect (cyanobacteria lipids) | [50] |
44 | Gloeothece sp. | 6–11 | Garhwal Himalaya, Uttarakhand, India | ScienceDirect (cyanobacteria lipids) | [50] |
45 | Lyngbya sp. | 2.5–8 | Garhwal Himalaya, Uttarakhand, India | ScienceDirect (cyanobacteria lipids) | [50] |
46 | Pseudanabaena sp. | 2–7.5 | Garhwal Himalaya, Uttarakhand, India | ScienceDirect (cyanobacteria lipids) | [50] |
47 | Phormidium sp. | 2–8.5 | Garhwal Himalaya, Uttarakhand, India | ScienceDirect (cyanobacteria lipids) | [50] |
48 | Oscillatoria sp. | 2–4 | Garhwal Himalaya, Uttarakhand, India | ScienceDirect (cyanobacteria lipids) | [50] |
49 | Leptolyngbya sp. | 4–10.5 | Garhwal Himalaya, Uttarakhand, India | ScienceDirect (cyanobacteria lipids) | [50] |
50 | Nostoc piscinale CENA21 (B) | 8.22 | - | ScienceDirect (cyanobacteria lipids) | [45] |
51 | Nostoc piscinale CENA21 (B-BS) | 5.55 | - | ScienceDirect (cyanobacteria lipids) | [45] |
52 | Nostoc sp. NIES-3756 (J) | 6.51 | - | ScienceDirect (cyanobacteria lipids) | [45] |
53 | Nostoc sp. NIES-3756 (J-BS) | 7.97 | - | ScienceDirect (cyanobacteria lipids) | [45] |
54 | Anabaena variabilis ATCC 29413 (L) | 4.91 | - | ScienceDirect (cyanobacteria lipids) | [45] |
55 | Anabaena variabilis ATCC 29413 (L-BS) | 4.82 | - | ScienceDirect (cyanobacteria lipids) | [45] |
56 | Phormidium sp. (FW01) | 6.7 | - | ScienceDirect (cyanobacteria lipids) | [17] |
57 | Phormidium sp. (FW02) | 8.2 | - | ScienceDirect (cyanobacteria lipids) | [17] |
58 | Oscillatoria sp. (FW01) | 10.2 | - | ScienceDirect (cyanobacteria lipids) | [17] |
59 | Oscillatoria sp. (FW02) | 9.4 | - | ScienceDirect (cyanobacteria lipids) | [17] |
60 | Chrysotila pseudoroscoffensis | 6.4 | - | ScienceDirect (cyanobacteria lipids) | [51] |
61 | Spirulina sp. (LEB18) | 12.77 | - | ScienceDirect (cyanobacteria lipids) | [52] |
62 | Synechococcus elongatus | 18.5 | Hot spring of Ramsar, north of Iran | ScienceDirect (cyanobacteria lipids) | [53] |
63 | Oscillatoria calcuttensis | 20 | Western Ghats region of Dakshina Kannada district of Karnataka, Southern India | Scielo (cyanobacteria lipids) | [54] |
64 | Synechococcus sp. (PCC7942) | 26.9 | - | GoogleScholar (cyanobacteria lipids) | [55] |
65 | Microcystis aeruginosa (NPCD-1) | 28.0 | - | GoogleScholar (cyanobacteria lipids) | [55] |
66 | Trichormus sp. (CENA77) | 23.7 | - | GoogleScholar (cyanobacteria lipids) | [55] |
67 | Leptolyngbya foveolarum (HNBGU-001) | 32.10 | Garhwal Himalaya | GoogleScholar (cyanobacteria lipids) | [56] |
68 | Synechocystis sp. (CACIAM05) | 15.3–25.6 | Hydroelectric plant of Tucuruí Lake and the Bologna reservoir | PubMed (cyanobacteria lipids) | [57] |
69 | Microcystis aeruginosa (CACIAM08) | 12.37–43.97 | Hydroelectric plant of Tucuruí Lake and the Bologna reservoir | PubMed (cyanobacteria lipids) | [57] |
70 | Pantanalinema rosaneae (CACIAM18) | 20.6–37.9 | Hydroelectric plant of Tucuruí Lake and the Bologna reservoir | PubMed (cyanobacteria lipids) | [57] |
71 | Limnothrix sp. (CACIAM25) | 7.0–58.3 | Hydroelectric plant of Tucuruí Lake and the Bologna reservoir | PubMed (cyanobacteria lipids) | [57] |
72 | Arthrospira platensis | 30.23 | - | PubMed (cyanobacteria lipids) | [58] |
73 | Oscillatoria calcuttensis | 25.70 | Mangalore dairy effluents | GoogleScholar (cyanobacteria lipid content) | [59] |
74 | Oscillatoria acuminata | 24.65 | Water tank at Malavalli of Mandya District | GoogleScholar (cyanobacteria lipid content) | [59] |
75 | Nostoc linckia | 18.45 | Kukkarahalli tank of Mysore | GoogleScholar (cyanobacteria lipid content) | [59] |
76 | Calothrix fusca | 22.60 | Sulfur spring in Dakshina Kannada District | GoogleScholar (cyanobacteria lipid content) | [59] |
77 | Lyngbya limnetica | 18.10 | Sulfur spring in Dakshina Kannada District | GoogleScholar (cyanobacteria lipid content) | [59] |
78 | Phormidium purpurascens | 26.45 | Sulfur spring in Dakshina Kannada District | GoogleScholar (cyanobacteria lipid content) | [59] |
79 | Microcystis aeruginosa | 28.15 | Kukkarahalli tank of Mysore | GoogleScholar (cyanobacteria lipid content) | [59] |
80 | Lyngbya dendrobia | 10.55 | Shimsha reservoir of Mandya District | GoogleScholar (cyanobacteria lipid content) | [59] |
81 | Oscillatoria perornata | 14.10 | Kukkarahalli tank of Mysore | GoogleScholar (cyanobacteria lipid content) | [59] |
82 | Phormidium ambiguum | 10.48 | Bhadra reservoir of Chikmagalur District | GoogleScholar (cyanobacteria lipid content) | [59] |
83 | Oscillatoria amoena | 18.63 | Hemavathi reservoir of Hassan District | GoogleScholar (cyanobacteria lipid content) | [59] |
84 | Scytonema bohnerii | 22.22 | Sulfur spring in Dakshina Kannada District | GoogleScholar (cyanobacteria lipid content) | [59] |
85 | Oscillatoria chlorina | 16.62 | Sewage drain of Mangalore | GoogleScholar (cyanobacteria lipid content) | [59] |
86 | Synechococcus sp. | 42.8 | - | GoogleScholar (cyanobacteria lipid content) | [60] |
87 | Cyanobacterium aponinum | 45.0 | - | GoogleScholar (cyanobacteria lipid content) | [60] |
88 | Phormidium sp. | 38.2 | - | GoogleScholar (cyanobacteria lipid content) | [60] |
89 | Calothrix sp. (MBDU 013) | 11.2 | Rice fields and freshwater ponds in Tiruchirappalli and Thanjavur, Tamil Nadu, India | GoogleScholar (cyanobacteria lipid content) | [32] |
90 | Nostoc sp. (MBDU 013) | 6.7 | Rice fields and freshwater ponds in Tiruchirappalli and Thanjavur, Tamil Nadu, India | GoogleScholar (cyanobacteria lipid content) | [32] |
91 | Calothrix dolichomeres (MBDU 013) | 10.3 | Rice fields and freshwater ponds in Tiruchirappalli and Thanjavur, Tamil Nadu, India | GoogleScholar (cyanobacteria lipid content) | [32] |
92 | Calothrix linearis (MBDU 005) | 6.4 | Rice fields and freshwater ponds in Tiruchirappalli and Thanjavur, Tamil Nadu, India | GoogleScholar (cyanobacteria lipid content) | [32] |
93 | Nostoc piscinale (MBDU 013) | 4.6 | Rice fields and freshwater ponds in Tiruchirappalli and Thanjavur, Tamil Nadu, India | GoogleScholar (cyanobacteria lipid content) | [32] |
94 | Anabaena sp. (MBDU 006) | 8.6 | Rice fields and freshwater ponds in Tiruchirappalli and Thanjavur, Tamil Nadu, India | GoogleScholar (cyanobacteria lipid content) | [32] |
95 | Nostoc sp. (MBDU 007) | 9.5 | Rice fields and freshwater ponds in Tiruchirappalli and Thanjavur, Tamil Nadu, India | GoogleScholar (cyanobacteria lipid content) | [32] |
96 | Synechocystis sp. | 44.7 | - | GoogleScholar (cyanobacteria lipid content) | [61] |
97 | Pseudanabaena sp. (SK01) | 12.85 | Lake water samples, southern areas of Iran, and an urban lake in the north of Iran | GoogleScholar (cyanobacteria lipid content) | [62] |
98 | Pseudanabaena sp. (SK02) | 7.4 | Lake water samples, southern areas of Iran, and an urban lake in the north of Iran | GoogleScholar (cyanobacteria lipid content) | [62] |
99 | Synechococcus sp. (HS01) | 12.33 | Lake water samples, southern areas of Iran, and an urban lake in the north of Iran | GoogleScholar (cyanobacteria lipid content) | [62] |
100 | Pseudanabaena sp. (SK03) | 15.66 | Lake water samples, southern areas of Iran, and an urban lake in the north of Iran | GoogleScholar (cyanobacteria lipid content) | [62] |
101 | Nodosilinea sp. (AK01) | 8.33 | Lake water samples, southern areas of Iran, and an urban lake in the north of Iran | GoogleScholar (cyanobacteria lipid content) | [62] |
102 | Plectonema terebrans (BERC10) | 33–49 | Wastewater sample showing greenish growth, Faisalabad, Punjab, Pakistan | GoogleScholar (cyanobacteria lipid content) | [63] |
103 | Calothrix sp. | 3.42 | West coast, India | GoogleScholar (cyanobacteria lipid content) | [40] |
104 | Leptolyngbya sp. | 3.23 | West coast, India | GoogleScholar (cyanobacteria lipid content) | [40] |
105 | Oscillatoria marina | 6.61 | West coast, India | GoogleScholar (cyanobacteria lipid content) | [40] |
106 | Oscillatoria acuta | 4.47 | West coast, India | GoogleScholar (cyanobacteria lipid content) | [40] |
107 | Lyngbya sp. | 2.52 | West coast, India | GoogleScholar (cyanobacteria lipid content) | [40] |
108 | Spirulina platensis | 7.75 | West coast, India | GoogleScholar (cyanobacteria lipid content) | [40] |
109 | Nostoc muscorum | 3.22 | West coast, India | GoogleScholar (cyanobacteria lipid content) | [40] |
110 | Synechococcus sp. | 4.20 | West coast, India | GoogleScholar (cyanobacteria lipid content) | [40] |
111 | Synechocystis sp. CCNM 2501 | 16.34 | Brackish waters of Diu, India | ScienceDirect (cyanobacteria lipids) | [64] |
112 | Microcystis aeruginosa | 18.5 | Wangsong Reservoir, Korea | ScienceDirect (cyanobacteria lipids) | [65] |
113 | Pseudanabaena mucicola GO0704 | 18 | Nakdong River, South Korea | ScienceDirect (cyano-bacteria lipids) | [41] |
114 | Synechocystis salina | 13.9 | - | ScienceDirect (cyanobacteria lipids) | [66] |
115 | Oscillatoria subbrevis | 11.2 | Urban area of Silchar town of Cachar district, Assam, India | GoogleScholar (cyanobacteria lipids) | [67] |
116 | Cylindrospermum muscicola | 4.2 | Urban area of Silchar town of Cachar district, Assam, India | GoogleScholar (cyanobacteria lipids) | [67] |
117 | Phormidium lucidum | 8.7 | Urban area of Silchar town of Cachar district, Assam, India | GoogleScholar (cyanobacteria lipids) | [67] |
118 | Lyngbya diguetii | 7.3 | Urban area of Silchar town of Cachar district, Assam, India | GoogleScholar (cyanobacteria lipids) | [67] |
119 | Nostoc carneum | 5.1 | Urban area of Silchar town of Cachar district, Assam, India | GoogleScholar (cyanobacteria lipids) | [67] |
Code N. | Genus and/or Species | Carbo- Hydrate | Collection Point | Platform (Search Term) | Reference |
---|---|---|---|---|---|
1 | Wastewater-borne cyanobacteria | 69 | - | ScienceDirect (cyanobacteria carbohydrate) | [15] |
2 | Synechocystis sp. | 68.9 | - | ScienceDirect (cyanobacteria carbohydrate) | [15] |
3 | Arthrospira platensis | 65 | - | ScienceDirect (cyanobacteria carbohydrate) | [15] |
4 | Synechocystis sp. (PCC 6803) | 39 | - | ScienceDirect (cyanobacteria carbohydrate) | [15] |
5 | Synechococcus sp. | 68.9 | - | ScienceDirect (cyanobacteria carbohydrate) | [15] |
6 | Synechococcus elongatus (PCC 7942) | 28 | - | ScienceDirect (cyanobacteria carbohydrate) | [15] |
7 | Synechococcus sp. | 59 | - | ScienceDirect (cyanobacteria carbohydrate) | [15] |
8 | Arthrospira platensis | 58 | - | ScienceDirect (cyanobacteria carbohydrate) | [15] |
9 | Leptolyngbya sp. | 40 | - | ScienceDirect (cyanobacteria carbohydrate) | [15] |
10 | Synechococcus (PCC 7002) | 25 | - | ScienceDirect (cyanobacteria carbohydrate) | [15] |
11 | Synechococcus (PCC 7002) | 60 | - | ScienceDirect (cyanobacteria carbohydrate) | [15] |
12 | Wastewater-borne cyanobacteria | 48 | - | ScienceDirect (cyanobacteria carbohydrate) | [15] |
13 | Gleiterinema sp. | 54 | - | ScienceDirect (cyanobacteria carbohydrate) | [15] |
14 | Cyanobacteria dominated culture | 69 | - | ScienceDirect (cyanobacteria carbohydrate) | [15] |
15 | Synechococcus (PCC 7002) | 60 | - | ScienceDirect (cyanobacteria carbohydrate) | [15] |
16 | Synechococcus elongatus (PCC 7942) | 28–35 | - | ScienceDirect (cyanobacteria carbohydrate) | [68] |
17 | Synechococcus sp. (PCC 7002) | 59 | - | ScienceDirect (cyanobacteria carbohydrate) | [68] |
18 | Spirulina sp. | 20 | - | ScienceDirect (cyanobacteria carbohydrate) | [69] |
19 | Spirulina maxima | 13–16 | - | ScienceDirect (cyanobacteria carbohydrate) | [69] |
20 | Synechococcus sp. | 15 | - | ScienceDirect (cyanobacteria carbohydrate) | [69] |
21 | Anabaena cylindrical | 25–30 | - | ScienceDirect (cyanobacteria carbohydrate) | [69] |
22 | Arthrospira platensis | 65 | California, USA | ScienceDirect (cyanobacteria carbohydrate) | [70] |
23 | Spirulina platensis | 63–65 | California, USA | ScienceDirect (cyanobacteria carbohydrate) | [70] |
24 | Synechocystis sp. (PCC 6803) | 28.9–36.8 | California, USA | ScienceDirect (cyanobacteria carbohydrate) | [70] |
25 | Spirulina maxima | 23–70 | California, USA | ScienceDirect (cyanobacteria carbohydrate) | [70] |
26 | Leptolyngbya sp. | 48.2 | Pratas, Greece | ScienceDirect (cyanobacteria carbohydrate) | [71] |
27 | Leptolyngbya | 43 | Pakistan | ScienceDirect (cyanobacteria carbohydrate) | [72] |
28 | Synechococcus | 54 | Pakistan | ScienceDirect (cyanobacteria carbohydrate) | [72] |
29 | Leptolyngbya valderiana (BDU 41001) | 34.2 | Bathidasan University, Tiruchirappalli, Tamil Nadu, India | ScienceDirect (cyanobacteria carbohydrate) | [73] |
30 | Nostoc sp. (BDU 0051) | 27.9 | Bathidasan University, Tiruchirappalli, Tamil Nadu, India | ScienceDirect (cyanobacteria carbohydrate) | [73] |
31 | Oscillatoria formosa (BDU 91041) | 33.3 | Bathidasan University, Tiruchirappalli, Tamil Nadu, India | ScienceDirect (cyanobacteria carbohydrate) | [73] |
32 | Oscillatoria salina (BDU 10142) | 31.3 | Bathidasan University, Tiruchirappalli, Tamil Nadu, India | ScienceDirect (cyanobacteria carbohydrate) | [73] |
33 | Synechococcus elongatus (BDU 141741) | 30.0 | Bathidasan University, Tiruchirappalli, Tamil Nadu, India | ScienceDirect (cyanobacteria carbohydrate) | [73] |
34 | Spirulina subsalsa (BDU 30311) | 30.7 | Bathidasan University, Tiruchirappalli, Tamil Nadu, India | ScienceDirect (cyanobacteria carbohydrate) | [73] |
35 | Arthrospira platensis (SAG 21.99) | 16–60 | - | PubMed (cyanobacteria carbohydrate) | [74] |
36 | Arthrospira platensis (NIES-39) | 18–65 | - | PubMed (cyanobacteria carbohydrate) | [74] |
37 | Arthrospira platensis (CS-328) | 20–50 | - | PubMed (cyanobacteria carbohydrate) | [74] |
38 | Synechococcus sp. (PCC 7002) | 48–62 | - | PubMed (cyanobacteria carbohydrate) | [74] |
39 | Spirulina platensis | 65 | California, United States of America | ScienceDirect (cyanobacteria carbohydrate) | [70] |
40 | Synechocystis sp. (PCC 6803) | 36.8 | California, United States of America | ScienceDirect (cyanobacteria carbohydrate) | [70] |
41 | Spirulina maxima | 70 | California, United States of America | ScienceDirect (cyanobacteria carbohydrate) | [70] |
42 | Pseudanabaena mucicola (GO0704) | 52 | Nakdong River, South Korea | ScienceDirect (cyanobacteria carbohydrate) | [41] |
43 | Synechocystis sp. CCNM 2501 | 10.13 | Brackish waters of Diu, India | ScienceDirect (cyanobacteria carbohydrate) | [64] |
44 | Arthrospira platensis | 0.212 | Varanasi, India | PubMed (cyanobacteria carbohydrate) | [75] |
45 | Synechococcus sp. (PCC 7002) | 0.5 | Varanasi, India | PubMed (cyanobacteria carbohydrate) | [75] |
46 | Synechocystis sp. (PCC 6803) | 0.112 | Varanasi, India | PubMed (cyanobacteria carbohydrate) | [75] |
47 | Synechococcus elongatus (PCC 7942) | 0.144 | Varanasi, India | PubMed (cyanobacteria carbohydrate) | [75] |
48 | Synechococcus elongatus (PCC7942 ieAB) | 0.564 | Varanasi, India | PubMed (cyanobacteria carbohydrate) | [75] |
49 | Lyngbya limnetica | 0.423 | Varanasi, India | PubMed (cyanobacteria carbohydrate) | [75] |
50 | Oscillatoria obscura | 0.351 | Varanasi, India | PubMed (cyanobacteria carbohydrate) | [75] |
51 | Acaryochloris marina (BERC03) | 0.5 | Punjab, Pakistan | ScienceDirect (cyanobacteria carbohydrate) | [72] |
52 | Oscillatoria sp. (BERC04) | 0.51 | Punjab, Pakistan | ScienceDirect (cyanobacteria carbohydrate) | [72] |
53 | Pleurocapsa sp. (BERC06) | 0.63 | Punjab, Pakistan | ScienceDirect (cyanobacteria carbohydrate) | [72] |
54 | Synechocystis (PCC 6803) | 98.81 | University of Allahabad, Uttar Pradesh, India | Google Scholar (cyanobacteria carbohydrate) | [49] |
55 | Synechococcus (PCC 7942) | 147.98 | University of Allahabad, Uttar Pradesh, India | Google Scholar (cyanobacteria carbohydrate) | [49] |
56 | Nostoc muscorum | 319.89 | University of Allahabad, Uttar Pradesh, India | Google Scholar (cyanobacteria carbohydrate) | [49] |
57 | Oscillatoria sp. | 185.92 | University of Allahabad, Uttar Pradesh, India | Google Scholar (cyanobacteria carbohydrate) | [49] |
58 | Anabaena cylindrica | 261.97 | University of Allahabad, Uttar Pradesh, India | Google Scholar (cyanobacteria carbohydrate) | [49] |
59 | Lyngbya sp. | 172.89 | University of Allahabad, Uttar Pradesh, India | Google Scholar (cyanobacteria carbohydrate) | [49] |
60 | Phormidium sp. | 277.94 | University of Allahabad, Uttar Pradesh, India | Google Scholar (cyanobacteria carbohydrate) | [49] |
Code N. | Genus and/or Species | Total Protein | Soluble Protein | Collection Point | Platform (Search Term) | Reference |
---|---|---|---|---|---|---|
1 | Desertifilum tharense | 28.1 | 4.4 | Turkey | ScienceDirect (cyanobacteria protein) | [76] |
2 | Anabaena variabilis | 34.4 | 0.8 | Turkey | ScienceDirect (cyanobacteria protein) | [76] |
3 | Phormidium animale | 27.6 | 5.8 | Turkey | ScienceDirect (cyanobacteria protein) | [76] |
4 | Cyanothece sp. | 34.3 | - | Western Greece | ScienceDirect (cyanobacteria protein) | [77] |
5 | Anabaena sp. | 50 | - | Western Greece | ScienceDirect (cyanobacteria protein) | [77] |
6 | Spirulina sp. | 43.20 | - | - | ScienceDirect (cyanobacteria protein) | [46] |
7 | Nostoc sp. (PCC 7936) | 5.69 | - | - | ScienceDirect (cyanobacteria protein) | [78] |
8 | Nostoc sp. (PCC 7413) | 6.29 | - | - | ScienceDirect (cyanobacteria protein) | [78] |
9 | Arthrospira platensis | 22.04–38.13 | - | - | ScienceDirect (cyanobacteria protein) | [79] |
10 | Arthrospira platensis (F&M-C256) | 63.9 | - | - | Scopus (cyanobacteria protein) | [80] |
11 | Nostoc sphaeroides (F&M-C117) | 50.8 | - | - | Scopus (cyanobacteria protein) | [80] |
12 | Arthrospira maxima | 61.7 | - | - | Scopus (cyanobacteria protein) | [81] |
13 | Myxosarcina sp. | 19.4 | - | - | Scopus (cyanobacteria protein) | [82] |
14 | Arthrospira platensis | 36.90 | - | - | Scopus (cyanobacteria protein) | [83] |
15 | Arthrospira maxima | 43.05 | - | - | Scopus (cyanobacteria protein) | [83] |
16 | Spirulina major | 66.7 | - | - | Scopus (cyanobacteria protein) | [84] |
17 | Phormidium tenue | 46.56 | - | - | Scopus (cyanobacteria protein) | [84] |
18 | Synechococcus cedrorum | 45.9 | - | - | Scopus (cyanobacteria protein) | [84] |
19 | Oscillatoria sp. | 50.96 | - | - | Scopus (cyanobacteria protein) | [84] |
20 | Arthrospira strains (LEB 18) | 86.0 | - | - | Scopus (cyanobacteria protein) | [85] |
21 | Arthrospira strains (LEB 52) | 82.5 | - | - | Scopus (cyanobacteria protein) | [85] |
22 | Arthrospira strains Paracas | 73.7 | - | - | Scopus (cyanobacteria protein) | [85] |
23 | Arthrospira maxima | 73.6 | - | - | Scopus (cyanobacteria protein) | [85] |
24 | Arthrospira platensis | 34.4 | - | - | Web of Science (cyanobacteria protein) | [86] |
25 | Arthrospira platensis | 61.55 | - | - | Web of Science (cyanobacteria protein) | [87] |
26 | Synechocystis sp. CCNM 2501 | 66.56 | - | Brackish waters of Diu, India | ScienceDirect (cyanobacteria protein) | [64] |
27 | Pseudanabaena mucicola GO0704 | 23 | - | Nakdong River, South Korea | ScienceDirect (cyanobacteria protein) | [41] |
28 | Raphidiopsis raciborskii | 25.41 | - | Brazil | ScienceDirect (cyanobacteria protein) | [88] |
29 | Arthrospira platensis | 45 | - | Peru | ScienceDirect (cyanobacteria protein) | [89] |
30 | Spirulina spp. | 5.92 | - | - | Scopus (cyanobacteria protein) | [90] |
31 | Arthrospira platensis | 129.11 | - | - | Scopus (cyanobacteria protein) | [86] |
32 | Spirulina sp. | 57.47 | - | - | Scopus (cyanobacteria protein) | [91] |
33 | Arthrospira maxima | 67.6 | - | - | Scopus (cyanobacteria protein) | [92] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Passos, L.S.; de Freitas, P.N.N.; Menezes, R.B.; de Souza, A.O.; Silva, M.F.d.; Converti, A.; Pinto, E. Content of Lipids, Fatty Acids, Carbohydrates, and Proteins in Continental Cyanobacteria: A Systematic Analysis and Database Application. Appl. Sci. 2023, 13, 3162. https://doi.org/10.3390/app13053162
Passos LS, de Freitas PNN, Menezes RB, de Souza AO, Silva MFd, Converti A, Pinto E. Content of Lipids, Fatty Acids, Carbohydrates, and Proteins in Continental Cyanobacteria: A Systematic Analysis and Database Application. Applied Sciences. 2023; 13(5):3162. https://doi.org/10.3390/app13053162
Chicago/Turabian StylePassos, Larissa Souza, Paloma Nathane Nunes de Freitas, Rafaella Bizo Menezes, Alexander Ossanes de Souza, Milena Fernandes da Silva, Attilio Converti, and Ernani Pinto. 2023. "Content of Lipids, Fatty Acids, Carbohydrates, and Proteins in Continental Cyanobacteria: A Systematic Analysis and Database Application" Applied Sciences 13, no. 5: 3162. https://doi.org/10.3390/app13053162
APA StylePassos, L. S., de Freitas, P. N. N., Menezes, R. B., de Souza, A. O., Silva, M. F. d., Converti, A., & Pinto, E. (2023). Content of Lipids, Fatty Acids, Carbohydrates, and Proteins in Continental Cyanobacteria: A Systematic Analysis and Database Application. Applied Sciences, 13(5), 3162. https://doi.org/10.3390/app13053162