Natural Characteristics Analysis of a Dual-Rotor System with Nonparametric Uncertainty
Abstract
:1. Introduction
2. Deterministic Model of a Dual-Rotor System
2.1. Calculation Model of a Dual-Rotor System
2.2. The Riccati Whole Mean Transfer Model of the Uncoupled Element
2.3. The Riccati Whole Mean Transfer Model of the Coupling Element
3. Nonparametric Model and Eigenvalue Solution
3.1. Probabilistic and Statistical Characteristics of Maximum Entropy Stochastic Models
3.2. Generation of Maximum Entropy Stochastic Models
3.3. Construction of Nonparametric Riccati Whole Transfer Model
3.4. Solving the Critical Speeds and Vibration Modes
3.5. Calculation Process
4. Impacts of Two Uncertainties on Natural Characteristics
4.1. Impacts of Two Uncertainties at Intermediate Support Elements
4.2. Impacts of Two Uncertainties at Disk-Shaft Elements
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hong, J.; Wang, H.; Xiao, D.W.; Chen, M. Effects of dynamic stiffness of rotor bearing on rotor dynamic characteristics. Aeroengine 2008, 1, 23–27. [Google Scholar]
- Nasir, F.E.; Fotuhi, M.J.; Bingul, Z. Linear and extended Kalman filter estimation of pitch and yaw angles for 2 DOF double dual twin rotor aerodynamical system. In Proceedings of the 2018 6th International Conference on Control Engineering & Information Technology (CEIT), Istanbul, Turkey, 25–27 October 2018. [Google Scholar]
- Liu, Y.X.; Liu, B.G.; Feng, W.; Cheng, M. Vibration responses analysis for double disks rotor system with uncertainties. J. Aerosp. Power 2021, 36, 488–497. [Google Scholar]
- Fu, C.; Sinou, J.J.; Zhu, W.D.; Lu, K.; Yang, Y.F. A state-of-the-art review on uncertainty analysis of rotor systems. Mech. Syst. Signal Process. 2023, 183, 109619. [Google Scholar] [CrossRef]
- Chang, C.Y.; Chang, M.Y.; Huang, J.H. Vibration analysis of rotating composite shafts containing randomly oriented reinforcements. Compos. Struct. 2004, 63, 21–32. [Google Scholar] [CrossRef]
- Der Kiureghian, A.; Ditlevsen, O. Aleatory or epistemic? Does it matter? Struct. Saf. 2009, 31, 105–112. [Google Scholar] [CrossRef]
- Soize, C. Uncertainty Quantification: An Accelerated Course with Advanced Applications in Computational Engineering; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Feng, W.; Liu, B.G.; Ding, H.; Shen, H.P. Review of uncertain nonparametric dynamic modeling. J. Vib. Shock 2020, 39, 1–9. [Google Scholar]
- Fu, C.; Feng, G.J.; Ma, J.J.; Lu, K.; Yang, Y.Y.; Gu, F.S. Predicting the dynamic response of dual-rotor system subject to interval parametric uncertainties based on the non-intrusive metamodel. Mathematics 2020, 8, 736. [Google Scholar] [CrossRef]
- Fu, C.; Zhu, W.D.; Zheng, Z.L.; Sun, C.Z.; Yang, Y.Y.; Lu, K. Nonlinear responses of a dual-rotor system with rub-impact fault subject to interval uncertain parameters. Mech. Syst. Signal Process. 2022, 170, 108827. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Y.Y.; Zheng, Q.Y.; Deng, W.Q.; Zhang, D.S.; Fu, C. Dynamic Response of Dual-Disk Rotor System with Uncertainties Based on Chebyshev Convex Method. Appl. Sci. 2021, 11, 9146. [Google Scholar] [CrossRef]
- Soize, C. A comprehensive overview of a nonparametric probabilistic approach of model uncertainties for predictive models in structural dynamics. J. Sound Vib. 2005, 288, 623–652. [Google Scholar] [CrossRef] [Green Version]
- Soize, C. Maximum entropy approach for modeling random uncertainties in transient elastodynamics. J. Acoust. Soc. Am. 2001, 109, 1979–1996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soize, C. Random matrix theory and nonparametric model of random uncertainties in vibration analysis. J. Sound Vib. 2003, 263, 893–916. [Google Scholar] [CrossRef] [Green Version]
- Soize, C. Random matrix theory for modeling uncertainties in computational mechanics. Comput. Methods Appl. Mech. Eng. 2005, 194, 1333–1366. [Google Scholar] [CrossRef]
- Murthy, R.; Mignolet, M.P.; El-Shafei, A. Nonparametric stochastic modeling of uncertainty in rotordynamics-part II: Applications. J. Eng. Gas Turbines Power 2010, 132. [Google Scholar] [CrossRef]
- Gan, C.B.; Wang, Y.H.; Yang, S.X. Nonparametric modeling on random uncertainty and reliability analysis of a dual-span rotor. J. Zhejiang Univ. Sci. A 2018, 19, 189–202. [Google Scholar] [CrossRef]
- GANCB; Wang, Y.H.; Yang, S.X.; Cao, Y.L. Nonparametric modeling and vibration analysis of uncertain Jeffcott rotor with disc offset. Int. J. Mech. Sci. 2014, 78, 126–134. [Google Scholar]
- Huang, W.D.; Gan, C.B. Bifurcation analysis and vibration signal identification for a motorized spindle with random uncertainty. Int. J. Bifurc. Chaos 2019, 29, 1951–1967. [Google Scholar] [CrossRef]
- Liu, Y.X.; Liu, B.G.; Cheng, M.; Feng, W. Natural frequency analysis of a dual-rotor system with model uncertainty. Arch. Appl. Mech. 2022, 92, 2495–2508. [Google Scholar] [CrossRef]
- Chai, S.; Gang, X.; Qu, Q. A whole transfer matrix method for the eigensolutions of multi-rotor systems. ASME Power Conf. 2005, 41820, 457–463. [Google Scholar]
- Jiang, S.Y.; Lin, S.Y. Study on dynamic characteristics of motorized spindle rotor-bearing-housing system. J. Mech. Eng. 2021, 57, 1–10. [Google Scholar]
- Tuan, L.A.; Cuong, H.M.; Lee, S.G.; Nho, L.C.; Moon, K. Nonlinear feedback control of container crane mounted on elastic foundation with the flexibility of suspended cable. J. Vib. Control 2016, 22, 3067–3078. [Google Scholar] [CrossRef]
- Masoud, Z.N. Effect of hoisting cable elasticity on anti-sway controllers of quay-side container cranes. Nonlinear Dyn. 2009, 58, 129–140. [Google Scholar] [CrossRef]
- Arena, A.; Casalotti, A.; Lacarbonara, W. Three-dimensional modeling of container cranes. In Proceedings of the International Design Engineering. In Proceedings of the Technical Conferences and Computers and Information in Engineering Conference, Portland, OR, USA, 4–7 August 2013; Volume 55966, p. V07AT10A069. [Google Scholar]
- Soize, C. Stochastic modeling of uncertainties in computational structural dynamics-recent theoretical advances. J. Sound Vib. 2013, 332, 2379–2395. [Google Scholar] [CrossRef] [Green Version]
- Vance, J.M.; Zeidan, F.Y.; Murphy, B.G. Machinery Vibration and Rotordynamics; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Wishart, J. The generalized product moment distribution in samples from a normal multivariate population. Biometrika 1928, 20A, 32–52. [Google Scholar] [CrossRef] [Green Version]
- Capiez-Lernout, E.; Soize, C. Nonparametric modeling of random uncertainties for dynamic response of mistuned bladed disks. J. Eng. Gas Turbines Power 2004, 126, 610–618. [Google Scholar] [CrossRef]
- Yang, Y.; Tan, X.K.; Wang, H.; Wang, R.Q.; Tian, K. Research on a new method of beam bridge mode shape identification based on statistical moment theory. China J. Highw. Transp. 2022, 1–16. [Google Scholar]
Rotor | Speed ω/(rad·s−1) | Stiffness of Rotor J/(m4) | Station | Mass m/kg | Moment of Inertia Ip/(kg·m2) | Stiffness of Element k × 10−7 | Length l/(m) |
---|---|---|---|---|---|---|---|
I | 1047.2 | 2.6467 × 10−9 | 1 | 0.05770 | 0 | 0.6269 | 0.0762 |
2 | 10.7023 | 0.0859 | 0.1778 | ||||
3 | 0.24990 | 0 | 0.1524 | ||||
4 | 0.15380 | 0 | 0.8756 | 0.0508 | |||
5 | 7.08690 | 0.0678 | 0.0508 | ||||
6 | 0.03850 | 0 | 1.7513 | ||||
II | 1570.8 | 2.1935 × 10−3 | 7 | 0.04699 | 0 | 1.7513 | 0.0508 |
8 | 7.20200 | 0.0429 | 0.1524 | ||||
9 | 3.69200 | 0.0271 | 0.0508 | ||||
10 | 0.04699 | 0 | 0.8756 |
Parameter Uncertainty | Nonparametric Uncertainty | |||||
---|---|---|---|---|---|---|
Cov, k | nc1 | nc2 | nc3 | nc1 | nc2 | nc3 |
0.05 | 0.010% | 0.040% | 0.591% | 1.292% | 0.624% | 2.067% |
0.10 | 0.014% | 0.084% | 1.154% | 2.727% | 1.331% | 4.135% |
0.15 | 0.037% | 0.143% | 1.589% | 3.924% | 1.816% | 5.892% |
0.20 | 0.035% | 0.217% | 3.343% | 6.268% | 2.245% | 9.596% |
Parameter Uncertainty | Nonparametric Uncertainty | |||||
---|---|---|---|---|---|---|
Cov, m | nc1 | nc2 | nc3 | nc1 | nc2 | nc3 |
0.05 | 0.048% | 0.157% | 0.050% | 1.486% | 0.413% | 0.100% |
0.10 | 0.096% | 0.283% | 0.135% | 4.025% | 1.002% | 0.189% |
0.15 | 0.168% | 0.363% | 0.181% | 5.319% | 1.385% | 0.340% |
0.20 | 0.240% | 0.659% | 0.236% | 8.554% | 1.831% | 0.391% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Liu, B.; Liu, Y.; Feng, W. Natural Characteristics Analysis of a Dual-Rotor System with Nonparametric Uncertainty. Appl. Sci. 2022, 12, 12573. https://doi.org/10.3390/app122412573
Wu H, Liu B, Liu Y, Feng W. Natural Characteristics Analysis of a Dual-Rotor System with Nonparametric Uncertainty. Applied Sciences. 2022; 12(24):12573. https://doi.org/10.3390/app122412573
Chicago/Turabian StyleWu, Hangfei, Baoguo Liu, Yanxu Liu, and Wei Feng. 2022. "Natural Characteristics Analysis of a Dual-Rotor System with Nonparametric Uncertainty" Applied Sciences 12, no. 24: 12573. https://doi.org/10.3390/app122412573
APA StyleWu, H., Liu, B., Liu, Y., & Feng, W. (2022). Natural Characteristics Analysis of a Dual-Rotor System with Nonparametric Uncertainty. Applied Sciences, 12(24), 12573. https://doi.org/10.3390/app122412573