Deep Learning and Bayesian Hyperparameter Optimization: A Data-Driven Approach for Diamond Grit Segmentation toward Grinding Wheel Characterization
Abstract
:1. Introduction
- A practical application and implementation of state-of-the-art (SOTA) deep learning computer vision algorithms for semantic segmentation of objects in images in the industrial field of DGW manufacturing.
- An assessment of segmentation performances of the corresponding models over state-of-the-art metrics.
- To the best of our knowledge, this work is the first published attempt of using a U-Net deep learning model for automatic segmentation of diamond grits from DGW images.
- The foundations of upcoming data-driven methods for DGW characterizations.
- A unified methodology for automatic configuration/calibration of deep learning models by leveraging Bayesian optimization and Hyperband algorithms, an AutoML framework for making deep learning approaches easier to use.
2. Methods
2.1. Model Architecture and Metrics
2.2. Bayesian Optimization Methodology
- We have a few input control parameters x (less than 20).
- The objective function is relatively “smooth” (i.e., not so discontinuous in the discrete meaning).
- (a)
- Based on the initial observation points (i.e., sample points measured) from the objective function , a first regression attempt is made using an initial version of a Gaussian Process model. In addition, a confidence interval is built due to the probabilistic nature of the GP. Then, an acquisition function , derived from the GP model, is used to estimate the next computing step.
- (b)
- The GP model has been updated from past observation points. Thus, the regression improves and the uncertainty area decreases toward the objective function. The next observation point is computed by taking the global maximum of the associated acquisition function.
- (c)
- Finally, the fitting quality is iteratively improved. When the regression becomes acceptable, the best hyperparameter configuration is saved and the optimization problem can be solved by finding a global optimum of the GP model.
Algorithm 1: Bayesian optimization. |
input: 1 initialization: 2 random initialize the Gaussian Process 3 for 4 5 6 7 Update GP model by computing 8 end for return best hyperparameters such as |
2.3. Hyperband Early Stopping Algorithm
Algorithm 2: Hyperband early stopping. |
input: 1 initialization:, B =()R 2 fordo 3 4 // Start Successive Halving inner loop 5 6 for 7 , 8 9 10 end for 11 end for return configuration with the best validation loss seen so far |
2.4. Bayesian Hyperparameter Optimization Strategy (AutoML Framework)
- Configuration and model training: This step is about automatically changing the hyperparameters of a given U-Net architecture, which we call a U-Net configuration. Then, we perform a training of the selected configuration and monitor related training metrics such as the loss function that we record and store for further use.
- Evaluate U-Net configuration performances: In this step, an assessment of prediction performances of the current U-Net configuration is carried out through the computation of segmentation metrics such as IoU.
- Bayesian Optimization Loop (BOL): Once a U-Net configuration is trained and evaluated, the hyperparameter optimization loop begins. In fact, when a U-Net configuration is trained, a surrogate Gaussian Process model is fitted in real time by observing the influence of input variation (U-Net hyperparameters) on the outputs, the training loss functions and the corresponding IoU score. In addition, a “watchguard” mechanism is implemented through the Hyperband algorithm in order to automatically address unpromising training experiments to save computing resources. Thus, the optimization loop performs several iterations on the overall process (steps 1–3) by varying the U-Net configurations until the target IoU score is reached (IoU .
3. Implementation Details
3.1. Data Acquisition, Hardware and Software Specifications
3.2. Hyperparameter Search Space Reduction
- Stochastic gradient descent (SGD) with momentum (i.e., inertia added for reducing variance and increasing the convergence rate).
- Adaptative stochastic gradient descent optimizer, which automatically tunes learning rate parameter during training.
4. Results and Discussion
4.1. Bayesian Optimization Experiments Results
- The batch size and epoch number have a linear effect on the runtime. For the three studied optimizers, increasing the batch size and epoch number by 50% led to an augmentation of 50% of the training time.
- Increasing the batch size over a value of 4 with a high epoch number led to a significative reduction in segmentation performance.
- The Adam optimizer tends to be more sensitive to overfitting with large epoch numbers.
- Decreasing the learning rate coefficient alpha in conjunction with the epoch number exhibits the best overall performances for Adamax and Adam optimizers.
- With RMSprop optimizer, no evident patterns are seen for fine-tuning the learning rate alpha.
- Adam and RMSprop optimizers exhibit better segmentation performances with minimal training time compared to Adamax.
- The overall best configuration is reached by RMSprop optimizer with a reduced training time of 25% compared to Adam for equivalent segmentation performances.
4.2. Diamond Grits Segmentation Results
- Type I: Standard metallic DGW images taken at high magnification.
- Type II: Metallic DGW images taken at low magnification.
- Type III: Electroplated DGW images.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Denkena, B.; Bergmann, B.; Lang, R. Influence of the Powder Metallurgy Route on the Mechanical Properties of Cu–Cr–Diamond Composites. SN Appl. Sci. 2022, 4, 161. [Google Scholar] [CrossRef]
- Nguyen, A.; Butler, D. Correlation of Grinding Wheel Topography and Grinding Performance: A Study from a Viewpoint of Three-Dimensional Surface Characterisation. J. Mater. Process. Technol. 2008, 208, 14–23. [Google Scholar] [CrossRef]
- Choudhary, A.; Babu, N.R. Influence of 3D Topography on Tribological Behavior of Grinding Wheel. Procedia Manuf. 2020, 48, 533–540. [Google Scholar] [CrossRef]
- Bazan, A.; Kawalec, A.; Rydzak, T.; Kubik, P.; Olko, A. Determination of Selected Texture Features on a Single-Layer Grinding Wheel Active Surface for Tracking Their Changes as a Result of Wear. Materials 2020, 14, 6. [Google Scholar] [CrossRef]
- Ye, R.; Jiang, X.; Blunt, L.; Cui, C.; Yu, Q. The Application of 3D-Motif Analysis to Characterize Diamond Grinding Wheel Topography. Measurement 2016, 77, 73–79. [Google Scholar] [CrossRef]
- Caraguay, S.J.; Boaron, A.; Weingaertner, W.L.; Bordin, F.M.; Xavier, F.A. Wear Assessment of Microcrystalline and Electrofused Aluminum Oxide Grinding Wheels by Multi-Sensor Monitoring Technique. J. Manuf. Process. 2022, 80, 141–151. [Google Scholar] [CrossRef]
- Garcia-Garcia, A.; Orts-Escolano, S.; Oprea, S.; Villena-Martinez, V.; Garcia-Rodriguez, J. A Review on Deep Learning Techniques Applied to Semantic Segmentation. arXiv 2017, arXiv:1704.06857. [Google Scholar]
- Guo, Y.; Liu, Y.; Georgiou, T.; Lew, M.S. A Review of Semantic Segmentation Using Deep Neural Networks. Int. J. Multimed. Inf. Retr. 2018, 7, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Thoma, M. A Survey of Semantic Segmentation. arXiv 2016, arXiv:1602.06541v2. [Google Scholar]
- Siam, M.; Elkerdawy, S.; Jagersand, M.; Yogamani, S. Deep Semantic Segmentation for Automated Driving: Taxonomy, Roadmap and Challenges. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, 16–19 October 2017; pp. 1–8. [Google Scholar]
- Fu, Y.; Lei, Y.; Wang, T.; Curran, W.J.; Liu, T.; Yang, X. A Review of Deep Learning Based Methods for Medical Image Multi-Organ Segmentation. Phys. Med. 2021, 85, 107–122. [Google Scholar] [CrossRef]
- Navab, N.; Hornegger, J.; Wells, W.M.; Frangi, A.F. (Eds.) Medical Image Computing and Computer-Assisted Intervention―MICCAI 2015, Proceedings of the 18th International Conference, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Khaleghi, N.; Rezaii, T.Y.; Beheshti, S.; Meshgini, S.; Sheykhivand, S.; Danishvar, S. Visual Saliency and Image Reconstruction from EEG Signals via an Effective Geometric Deep Network-Based Generative Adversarial Network. Electronics 2022, 11, 3637. [Google Scholar] [CrossRef]
- Sheykhivand, S.; Yousefi Rezaii, T.; Naderi, A.; Romooz, N. Comparison between Different Methods of Feature Extraction in BCI Systems Based on SSVEP. Int. J. Ind. Math. 2017, 9, 341–347. [Google Scholar]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Jogin, M.; Mohana; Madhulika, M.S.; Divya, G.D.; Meghana, R.K.; Apoorva, S. Feature Extraction Using Convolution Neural Networks (CNN) and Deep Learning. In Proceedings of the 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 18–19 May 2018; pp. 2319–2323. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, L.; Wang, G.; et al. Recent Advances in Convolutional Neural Networks. arXiv 2017, arXiv:1512.07108. [Google Scholar] [CrossRef] [Green Version]
- Rawat, W.; Wang, Z. Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review. Neural Comput. 2017, 29, 2352–2449. [Google Scholar] [CrossRef]
- Selvan, R.; Bhagwat, N.; Anthony, L.F.W.; Kanding, B.; Dam, E.B. Carbon Footprint of Selecting and Training Deep Learning Models for Medical Image Analysis. In Medical Image Computing and Computer Assisted Intervention—MICCAI 2022; Springer: Cham, Switzerland, 2022; Volume 13435, pp. 506–516. [Google Scholar]
- Xu, J.; Zhou, W.; Fu, Z.; Zhou, H.; Li, L. A Survey on Green Deep Learning. arXiv 2021, arXiv:2111.05193. [Google Scholar]
- Oquab, M.; Bottou, L.; Laptev, I.; Sivic, J. Learning and Transferring Mid-Level Image Representations Using Convolutional Neural Networks. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1717–1724. [Google Scholar]
- Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A Survey of Transfer Learning. J. Big Data 2016, 3, 9. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. arXiv 2020, arXiv:1911.02685. [Google Scholar] [CrossRef]
- Elharrouss, O.; Akbari, Y.; Almaadeed, N.; Al-Maadeed, S. Backbones-Review: Feature Extraction Networks for Deep Learning and Deep Reinforcement Learning Approaches. arXiv 2022, arXiv:2206.08016. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2009; Curran Associates, Inc.: Red Hook, NY, USA, 2012; Volume 25. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. arXiv 2014, arXiv:1409.4842. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE: Piscataway, NJ, USA; pp. 2818–2826. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar]
- Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv 2020, arXiv:1905.11946. [Google Scholar]
- He, X.; Zhao, K.; Chu, X. AutoML: A Survey of the State-of-the-Art. Knowl. Based Syst. 2021, 212, 106622. [Google Scholar] [CrossRef]
- Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R.P.; de Freitas, N. Taking the Human Out of the Loop: A Review of Bayesian Optimization. Proc. IEEE 2016, 104, 148–175. [Google Scholar] [CrossRef] [Green Version]
- Mockus, J. Application of Bayesian Approach to Numerical Methods of Global and Stochastic Optimization. J. Glob. Optim. 1994, 4, 347–365. [Google Scholar] [CrossRef]
- Malu, M.; Dasarathy, G.; Spanias, A. Bayesian Optimization in High-Dimensional Spaces: A Brief Survey. In Proceedings of the 2021 12th International Conference on Information, Intelligence, Systems & Applications (IISA), Chania Crete, Greece, 12–14 July 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–8. [Google Scholar]
- Turner, R.; Eriksson, D.; McCourt, M.; Kiili, J.; Laaksonen, E.; Xu, Z.; Guyon, I. Bayesian Optimization Is Superior to Random Search for Machine Learning Hyperparameter Tuning: Analysis of the Black-Box Optimization Challenge 2020. arXiv 2021, arXiv:2104.10201. [Google Scholar]
- Lei, B.; Kirk, T.Q.; Bhattacharya, A.; Pati, D.; Qian, X.; Arroyave, R.; Mallick, B.K. Bayesian Optimization with Adaptive Surrogate Models for Automated Experimental Design. npj Comput. Mater. 2021, 7, 194. [Google Scholar] [CrossRef]
- Li, L.; Jamieson, K.; DeSalvo, G.; Rostamizadeh, A.; Talwalkar, A. Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization. arXiv 2018, arXiv:1603.06560. [Google Scholar]
- Harouni, M.; Baghmaleki, H.Y. Color Image Segmentation Metrics. arXiv 2020, arXiv:2010.09907. [Google Scholar]
- Müller, D.; Soto-Rey, I.; Kramer, F. Towards a Guideline for Evaluation Metrics in Medical Image Segmentation. arXiv 2022, arXiv:2202.05273. [Google Scholar] [CrossRef] [PubMed]
- Bergstra, J.; Yamins, D.; Cox, D.D. Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures. arXiv 2012, arXiv:1209.5111. [Google Scholar]
- Bartz, E.; Zaefferer, M.; Mersmann, O.; Bartz-Beielstein, T. Experimental Investigation and Evaluation of Model-Based Hyperparameter Optimization. arXiv 2021, arXiv:2107.08761. [Google Scholar]
- Feurer, M.; Hutter, F. Hyperparameter Optimization. In Automated Machine Learning: Methods, Systems, Challenges; Hutter, F., Kotthoff, L., Vanschoren, J., Eds.; The Springer Series on Challenges in Machine Learning; Springer International Publishing: Cham, Switzerland, 2019; pp. 3–33. ISBN 978-3-030-05318-5. [Google Scholar]
- Li, L.; Jamieson, K.; Rostamizadeh, A.; Gonina, E.; Hardt, M.; Recht, B.; Talwalkar, A. A System for Massively Parallel Hyperparameter Tuning. arXiv 2020, arXiv:1810.05934. [Google Scholar]
- Morales-Hernández, A.; Nieuwenhuyse, I.; Rojas Gonzalez, S. A Survey on Multi-Objective Hyperparameter Optimization Algorithms for Machine Learning. arXiv 2021, arXiv:2111.13755. [Google Scholar]
- Yang, L.; Shami, A. On Hyperparameter Optimization of Machine Learning Algorithms: Theory and Practice. arXiv 2020, arXiv:2007.15745. [Google Scholar] [CrossRef]
- Lu, Q.; Polyzos, K.D.; Li, B.; Giannakis, G. Surrogate Modeling for Bayesian Optimization beyond a Single Gaussian Process. arXiv 2022, arXiv:2205.14090. [Google Scholar]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; Adaptive Computation and Machine Learning; MIT Press: Cambridge, MA, USA, 2006; ISBN 978-0-262-18253-9. [Google Scholar]
- Jamieson, K.; Talwalkar, A. Non-Stochastic Best Arm Identification and Hyperparameter Optimization. arXiv 2015, arXiv:1502.07943. [Google Scholar]
- Bankhead, P.; Loughrey, M.B.; Fernández, J.A.; Dombrowski, Y.; McArt, D.G.; Dunne, P.D.; McQuaid, S.; Gray, R.T.; Murray, L.J.; Coleman, H.G.; et al. QuPath: Open Source Software for Digital Pathology Image Analysis. Sci. Rep. 2017, 7, 16878. [Google Scholar] [CrossRef] [Green Version]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv 2016, arXiv:1603.04467. [Google Scholar]
- Keras: Deep Learning for Humans 2022. Available online: https://keras.io/ (accessed on 3 December 2022).
- Biewald, L. Experiment Tracking with Weights and Biases 2020. Available online: https://wandb.ai/site (accessed on 3 December 2022).
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Zhao, Y. Machine Learning in Production: A Literature Review. Available online: https://staff.fnwi.uva.nl/a.s.z.belloum/LiteratureStudies/Reports/2021-LiteratureStudy-report-Yizhen.pdf (accessed on 3 December 2022).
- Hewage, N.; Meedeniya, D. Machine Learning Operations: A Survey on MLOps Tool Support. arXiv 2022, arXiv:2202.10169. [Google Scholar]
- Ruder, S. An Overview of Gradient Descent Optimization Algorithms. arXiv 2016, arXiv:1609.04747. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980. [Google Scholar]
- Tieleman, T.; Hinton, G. Lecture 6.5-Rmsprop: Divide the Gradient by a Running Average of Its Recent Magnitude. COURSERA Neural Netw. Mach. Learn. 2012, 4, 26–31. [Google Scholar]
- Zeiler, M. ADADELTA: An Adaptive Learning Rate Method. arXiv 2012, arXiv:1212.5701. [Google Scholar]
- Gupta, A.; Ramanath, R.; Shi, J.; Keerthi, S.S. Adam vs. SGD: Closing the Generalization Gap on Image Classification. Available online: https://opt-ml.org/papers/2021/paper53.pdf (accessed on 3 December 2022).
- Sun, S.; Cao, Z.; Zhu, H.; Zhao, J. A Survey of Optimization Methods from a Machine Learning Perspective. IEEE Trans. Cybern. 2020, 50, 3668–3681. [Google Scholar] [CrossRef] [Green Version]
- Reddi, S.J.; Kale, S.; Kumar, S. On the Convergence of Adam and Beyond. arXiv 2018, arXiv:1904.09237. [Google Scholar]
- Sun, R. Optimization for Deep Learning: Theory and Algorithms. arXiv 2019, arXiv:1912.08957. [Google Scholar]
- Dubey, S.R.; Singh, S.K.; Chaudhuri, B.B. Activation Functions in Deep Learning: A Comprehensive Survey and Benchmark. arXiv 2022, arXiv:2109.14545. [Google Scholar] [CrossRef]
- Szandała, T. Review and Comparison of Commonly Used Activation Functions for Deep Neural Networks. In Bio-Inspired Neurocomputing; Bhoi, A.K., Mallick, P.K., Liu, C.-M., Balas, V.E., Eds.; Studies in Computational Intelligence; Springer: Singapore, 2021; Volume 903, pp. 203–224. ISBN 9789811554940. [Google Scholar]
- Lynnerup, N.A.; Nolling, L.; Hasle, R.; Hallam, J. A Survey on Reproducibility by Evaluating Deep Reinforcement Learning Algorithms on Real-World Robots. arXiv 2019, arXiv:1909.03772. [Google Scholar]
- Isdahl, R.; Gundersen, O.E. Out-of-the-Box Reproducibility: A Survey of Machine Learning Platforms. In Proceedings of the 2019 15th International Conference on eScience (eScience), San Diego, CA, USA, 24–27 September 2019. [Google Scholar]
- Liu, C.; Gao, C.; Xia, X.; Lo, D.; Grundy, J.; Yang, X. On the Replicability and Reproducibility of Deep Learning in Software Engineering. ACM Trans. Softw. Eng. Methodol. 2022, 31, 1–46. [Google Scholar] [CrossRef]
- Chen, B.; Wen, M.; Shi, Y.; Lin, D.; Rajbahadur, G.K.; Jiang, Z.M. Towards Training Reproducible Deep Learning Models. In Proceedings of the 44th International Conference on Software Engineering, Pittsburgh, PA, USA, 21 May 2022; pp. 2202–2214. [Google Scholar]
- Koch, L.M.; Rajchl, M.; Bai, W.; Baumgartner, C.F.; Tong, T.; Passerat-Palmbach, J.; Aljabar, P.; Rueckert, D. Multi-Atlas Segmentation Using Partially Annotated Data: Methods and Annotation Strategies. arXiv 2016, arXiv:1605.00029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semantic Segmentation with Incomplete Annotations. Available online: https://uoguelph-mlrg.github.io/CFIW/slides/SMILE_DeepVision.pdf (accessed on 3 December 2022).
- Martinez, N.; Sapiro, G.; Tannenbaum, A.; Hollmann, T.J.; Nadeem, S. ImPartial: Partial Annotations for Cell Instance Segmentation. bioRxiv 2021. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
Hyperparameters | Range |
---|---|
Optimizer | SGD, Ftrl, Nadam, Adam, Adamax, Adagrad, Adadelta, RMSprop |
Activation function | ReLU, SeLU, ELU, sigmoid, softplus, softmax, softsign, tanh, exponential |
[1 × 10−1; 1 × 10−2; 1 × 10−3; 1 × 10−4; 1 × 10−5] | |
Batch size | [2; 4; 8; 16; 32; 64] |
Epochs | [30; 40; 50; 60] |
Configuration | ξ (%) | Optimizer | Activation Function | Batch Size | Epochs | ||
---|---|---|---|---|---|---|---|
A | 8640 | 0 | 8 | 9 | 5 | 6 | 4 |
B | 1296 | 85 | 3 | 9 | 2 | 6 | 4 |
C | 144 | 98.3 | 3 | 1 | 2 | 6 | 4 |
Optimizer | Epochs | Batch Size | s | R | ||
---|---|---|---|---|---|---|
Adamax, Adam, RMSprop | [30, 40, 50, 60] | [2; 4; 8; 16; 32; 64] | [1 × 10−3; 1 × 10−4] | 2 | 27 | 3 |
ID | Total Exp | Total Failed | Total | Optimizer | Epochs | Batch Size | Runtime | Early Stops | Val IoU | Val F1 | Loss | Val Loss | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | 5 | 1 | 20% | Adamax | 60 | 8 | 1 × 10−3 | 11 min 8 s | False | 0.11 | 0.20 | 0.61 | 1.37 |
A2 | Adamax | 60 | 4 | 1 × 10−3 | 22 min 16 s | False | 0.50 | 0.66 | 0.44 | 0.73 | |||
A3 | Adamax | 60 | 4 | 1 × 10−3 | 3 min 10 s | True | 0.03 | 0.06 | 0.76 | 1.31 | |||
A4 | Adamax | 40 | 4 | 1 × 10−4 | 14 min 59 s | False | 0.18 | 0.30 | 0.77 | 1.10 | |||
A5 | Adamax | 40 | 2 | 1 × 10−4 | 30 min 22 s | False | 0.48 | 0.64 | 0.56 | 0.75 | |||
B1 | 34 | 3 | 26% | Adam | 60 | 8 | 1 × 10−4 | 11 min 14 s | False | 0.07 | 0.14 | 0.87 | 1.24 |
B2 | Adam | 60 | 4 | 1 × 10−3 | 22 min 20 s | False | 0.48 | 0.64 | 0.48 | 0.73 | |||
B3 | Adam | 60 | 4 | 1 × 10−3 | 2 min 23 s | True | 0.00002 | 0.00005 | 0.73 | 190.68 | |||
B4 | Adam | 60 | 2 | 1 × 10−4 | 44 min 29 s | False | 0.50 | 0.66 | 0.37 | 0.77 | |||
B5 | Adam | 60 | 2 | 1 × 10−3 | 3 min 38 s | True | 0.01 | 0.02 | 0.66 | 30.7 | |||
B6 | Adam | 50 | 8 | 1 × 10−4 | 9 min 28 s | False | 0.02 | 0.04 | 0.75 | 1.35 | |||
B7 | Adam | 40 | 2 | 1 × 10−4 | 30 min 13 s | False | 0.52 | 0.68 | 0.42 | 0.74 | |||
B8 | Adam | 30 | 2 | 1 × 10−4 | 22 min 35 s | False | 0.50 | 0.66 | 0.47 | 0.75 | |||
B9 | Adam | 30 | 2 | 1 × 10−4 | 22 min 51 s | False | 0.45 | 0.61 | 0.55 | 0.77 | |||
C1 | 25 | 6 | 24% | RMSprop | 60 | 32 | 1 × 10−3 | 2 min 47 s | False | 0.021 | 0.04 | 0.81 | 1.36 |
C2 | RMSprop | 60 | 4 | 1 × 10−3 | 22 min 17 s | False | 0.49 | 0.66 | 0.47 | 0.74 | |||
C3 | RMSprop | 60 | 4 | 1 × 10−3 | 2 min 29 s | True | 0.04 | 0.09 | 0.76 | 1.41 | |||
C4 | RMSprop | 60 | 2 | 1 × 10−3 | 44 min 27 s | False | 0.51 | 0.67 | 0.39 | 0.76 | |||
C5 | RMSprop | 60 | 2 | 1 × 10−3 | 3 min 48 s | True | 0.02 | 0.05 | 0.71 | 1.34 | |||
C6 | RMSprop | 50 | 2 | 1 × 10−4 | 37 min 10 s | False | 0.49 | 0.65 | 0.38 | 0.80 | |||
C7 | RMSprop | 50 | 2 | 1 × 10−3 | 5 min 56 s | True | 0.004 | 0.009 | 0.65 | 1.66 | |||
C8 | RMSprop | 30 | 4 | 1 × 10−3 | 11 min 20 s | False | 0.0004 | 0.0008 | 0.55 | 1.796 | |||
C9 | RMSprop | 30 | 2 | 1 × 10−3 | 22 min 38 s | False | 0.52 | 0.68 | 0.47 | 0.73 | |||
C10 | RMSprop | 30 | 2 | 1 × 10−4 | 22 min 37 s | False | 0.50 | 0.66 | 0.48 | 0.77 | |||
C11 | RMSprop | 30 | 2 | 1 × 10−3 | 4 min 11 s | True | 0.001 | 0.003 | 0.66 | 1.9 |
Optimizer | Epochs | Batch Size | Runtime | Val IoU | Val F1-Score | |
---|---|---|---|---|---|---|
Adamax | 60 | 4 | 1 × 10−3 | 22 min 16 s | 0.50 | 0.66 |
Adam | 40 | 2 | 1 × 10−4 | 30 min 13 s | 0.52 | 0.68 |
RMSprop | 30 | 2 | 1 × 10−3 | 22 min 38 s | 0.52 | 0.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sicard, D.; Briois, P.; Billard, A.; Thevenot, J.; Boichut, E.; Chapellier, J.; Bernard, F. Deep Learning and Bayesian Hyperparameter Optimization: A Data-Driven Approach for Diamond Grit Segmentation toward Grinding Wheel Characterization. Appl. Sci. 2022, 12, 12606. https://doi.org/10.3390/app122412606
Sicard D, Briois P, Billard A, Thevenot J, Boichut E, Chapellier J, Bernard F. Deep Learning and Bayesian Hyperparameter Optimization: A Data-Driven Approach for Diamond Grit Segmentation toward Grinding Wheel Characterization. Applied Sciences. 2022; 12(24):12606. https://doi.org/10.3390/app122412606
Chicago/Turabian StyleSicard, Damien, Pascal Briois, Alain Billard, Jérôme Thevenot, Eric Boichut, Julien Chapellier, and Frédéric Bernard. 2022. "Deep Learning and Bayesian Hyperparameter Optimization: A Data-Driven Approach for Diamond Grit Segmentation toward Grinding Wheel Characterization" Applied Sciences 12, no. 24: 12606. https://doi.org/10.3390/app122412606
APA StyleSicard, D., Briois, P., Billard, A., Thevenot, J., Boichut, E., Chapellier, J., & Bernard, F. (2022). Deep Learning and Bayesian Hyperparameter Optimization: A Data-Driven Approach for Diamond Grit Segmentation toward Grinding Wheel Characterization. Applied Sciences, 12(24), 12606. https://doi.org/10.3390/app122412606