Wavefront Shaping-Assisted Forward-Viewing Photoacoustic Endomicroscopy Based on a Transparent Ultrasound Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Transparent Senosr Fabrication
2.2. Imaging System
2.3. SVD Denoising
3. Results
3.1. Sensor Characterisation
3.2. Photoacoustic Microscopy Imaging
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, T.D.; Van Dam, J. Optical Biopsy: A New Frontier in Endoscopic Detection and Diagnosis. Clin. Gastroenterol. Hepatol. 2004, 2, 744–753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gora, M.J.; Suter, M.J.; Tearney, G.J.; Li, X. Endoscopic Optical Coherence Tomography: Technologies and Clinical Applications [Invited]. Biomed. Opt. Express 2017, 8, 2405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mavadia, J.; Xi, J.; Chen, Y.; Li, X. An All-Fiber-Optic Endoscopy Platform for Simultaneous OCT and Fluorescence Imaging. Biomed. Opt. Express 2012, 3, 2851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diot, G.; Metz, S.; Noske, A.; Liapis, E.; Schroeder, B.; Ovsepian, S.V.; Meier, R.; Rummeny, E.; Ntziachristos, V. Multispectral Optoacoustic Tomography (MSOT) of Human Breast Cancer. Clin. Cancer Res. 2017, 23, 6912–6922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, J.-T.; Li, M.-L.; Zhang, H.F.; Maslov, K.; Stoica, G.; Wang, L.V. Three-Dimensional Imaging of Skin Melanoma in Vivo by Dual-Wavelength Photoacoustic Microscopy. J. Biomed. Opt. 2006, 11, 034032. [Google Scholar] [CrossRef] [PubMed]
- Moothanchery, M.; Bi, R.; Kim, J.; Balasundaram, G.; Kim, C.; Olivo, M. High-speed simultaneous multiscale photoacoustic microscopy. J. Biomed. Opt. 2019, 24, 8. [Google Scholar] [CrossRef]
- Bi, R.; Dinish, U.S.; Goh, C.; Imai, T.; Moothanchery, M.; Li, X.; Kim, J.; Jeon, S.; Pu, Y.; Kim, C.; et al. In vivo label-free functional photoacoustic monitoring of ischemic reperfusion. J. Biophotonics 2019, 12, 7. [Google Scholar] [CrossRef]
- Jansen, K.; Oosterhuis, J.W.; van Soest, G. Intravascular Photoacoustic Imaging of Human Coronary Atherosclerosis. Opt. Lett. 2011, 36, 597–599. [Google Scholar] [CrossRef]
- Zhao, T.; Desjardins, A.E.; Ourselin, S.; Vercauteren, T.; Xia, W. Minimally Invasive Photoacoustic Imaging: Current Status and Future Perspectives. Photoacoustics 2019, 16, 100146. [Google Scholar] [CrossRef]
- Zhou, J.; Jokerst, J.V. Photoacoustic Imaging with Fiber Optic Technology: A Review. Photoacoustics 2020, 20, 100211. [Google Scholar] [CrossRef]
- Yang, J.-M.; Favazza, C.; Chen, R.; Yao, J.; Cai, X.; Maslov, K.; Zhou, Q.; Shung, K.K.; Wang, L.V. Simultaneous Functional Photoacoustic and Ultrasonic Endoscopy of Internal Organs in vivo. Nat. Med. 2012, 18, 1297–1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Zhu, Z.; Jing, J.C.; Chen, J.J.; Heidari, A.E.; He, Y.; Zhu, J.; Ma, T.; Yu, M.; Zhou, Q.; et al. High-Speed Integrated Endoscopic Photoacoustic and Ultrasound Imaging System. IEEE J. Select. Topics Quantum Electron. 2019, 25, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Ma, T.; Slipchenko, M.N.; Liang, S.; Hui, J.; Shung, K.K.; Roy, S.; Sturek, M.; Zhou, Q.; Chen, Z.; et al. High-Speed Intravascular Photoacoustic Imaging of Lipid-Laden Atherosclerotic Plaque Enabled by a 2-KHz Barium Nitrite Raman Laser. Sci. Rep. 2014, 4, 6889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, M.; Springeling, G.; Lovrak, M.; Mastik, F.; Iskander-Rizk, S.; Wang, T.; van Beusekom, H.M.M.; van der Steen, A.F.W.; Van Soest, G. Real-Time Volumetric Lipid Imaging in Vivo by Intravascular Photoacoustics at 20 Frames per Second. Biomed. Opt. Express 2017, 8, 943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansari, R.; Zhang, E.Z.; Desjardins, A.E.; Beard, P.C. All-Optical Forward-Viewing Photoacoustic Probe for High-Resolution 3D Endoscopy. Light Sci. Appl. 2018, 7, 75. [Google Scholar] [CrossRef] [Green Version]
- Ansari, R.; Zhang, E.Z.; Desjardins, A.E.; Beard, P.C. Miniature All-Optical Flexible Forward-Viewing Photoacoustic Endoscopy Probe for Surgical Guidance. Opt. Lett. 2020, 45, 6238. [Google Scholar] [CrossRef]
- Ansari, R.; Zhang, E.Z.; Desjardins, A.E.; David, A.L.; Beard, P.C. Use of a Flexible Optical Fibre Bundle to Interrogate a Fabry–Perot Sensor for Photoacoustic Imaging. Opt. Express 2019, 27, 37886. [Google Scholar] [CrossRef]
- Keenlyside, B.; Marques, D.; Cherkashin, M.; Zhang, E.; Munro, P.; Beard, P.; Guggenheim, J. Wavefront shaping through multimode fibres to enable endoscopic photoacoustic tomography. In Proceedings of the Adaptive Optics and Wavefront Control for Biological Systems VII, California, CA, USA, 6–12 March 2021; Volume 11652. [Google Scholar]
- Hajireza, P.; Shi, W.; Zemp, R.J. Label-Free in Vivo Fiber-Based Optical-Resolution Photoacoustic Microscopy. Opt. Lett. 2011, 36, 4107. [Google Scholar] [CrossRef]
- Shao, P.; Shi, W.; Hajireza, P.; Zemp, R.J. Integrated Micro-Endoscopy System for Simultaneous Fluorescence and Optical-Resolution Photoacoustic Imaging. J. Biomed. Opt. 2012, 17, 0760241. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Guo, Z.; Chen, S.-L. Miniature Probe for Forward-View Wide-Field Optical-Resolution Photoacoustic Endoscopy. IEEE Sensors J. 2019, 19, 909–916. [Google Scholar] [CrossRef]
- Papadopoulos, I.N.; Simandoux, O.; Farahi, S.; Pierre Huignard, J.; Bossy, E.; Psaltis, D.; Moser, C. Optical-Resolution Photoacoustic Microscopy by Use of a Multimode Fiber. Appl. Phys. Lett. 2013, 102, 211106. [Google Scholar] [CrossRef] [Green Version]
- Stasio, N.; Shibukawa, A.; Papadopoulos, I.N.; Farahi, S.; Simandoux, O.; Huignard, J.-P.; Bossy, E.; Moser, C.; Psaltis, D. Towards New Applications Using Capillary Waveguides. Biomed. Opt. Express 2015, 6, 4619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mezil, S.; Caravaca-Aguirre, A.M.; Zhang, E.Z.; Moreau, P.; Wang, I.; Beard, P.C.; Bossy, E. Single-Shot Hybrid Photoacoustic-Fluorescent Microendoscopy through a Multimode Fiber with Wavefront Shaping. Biomed. Opt. Express 2020, 11, 5717. [Google Scholar] [CrossRef] [PubMed]
- Guggenheim, J.A.; Li, J.; Allen, T.J.; Colchester, R.J.; Noimark, S.; Ogunlade, O.; Parkin, I.P.; Papakonstantinou, I.; Desjardins, A.E.; Zhang, E.Z.; et al. Ultrasensitive Plano-Concave Optical Microresonators for Ultrasound Sensing. Nat. Photon. 2017, 11, 714–719. [Google Scholar] [CrossRef] [Green Version]
- Allen, T.J.; Ogunlade, O.; Zhang, E.; Beard, P.C. Large Area Laser Scanning Optical Resolution Photoacoustic Microscopy Using a Fibre Optic Sensor. Biomed. Opt. Express 2018, 9, 650. [Google Scholar] [CrossRef]
- Zhao, T.; Ma, M.T.; Ourselin, S.; Vercauteren, T.; Xia, W. Video-Rate Dual-Modal Photoacoustic and Fluorescence Imaging through a Multimode Fibre towards Forward-Viewing Endomicroscopy. Photoacoustics 2022, 25, 100323. [Google Scholar] [CrossRef]
- Zhao, T.; Pham, T.T.; Baker, C.; Ma, M.T.; Ourselin, S.; Vercauteren, T.; Zhang, E.; Beard, P.C.; Xia, W. Ultrathin, High-Speed, All-Optical Photoacoustic Endomicroscopy Probe for Guiding Minimally Invasive Surgery. Biomed. Opt. Express 2022, 13, 4414. [Google Scholar] [CrossRef]
- Zhao, T.; Ourselin, S.; Vercauteren, T.; Xia, W. Seeing through Multimode Fibers with Real-Valued Intensity Transmission Matrices. Opt. Express 2020, 28, 20978. [Google Scholar] [CrossRef]
- Zhao, T.; Ourselin, S.; Vercauteren, T.; Xia, W. Focusing Light through Multimode Fibres Using a Digital Micromirror Device: A Comparison Study of Non-Holographic Approaches. Opt. Express 2021, 29, 14269. [Google Scholar] [CrossRef]
- Niederhauser, J.J.; Jaeger, M.; Hejazi, M.; Keppner, H.; Frenz, M. Transparent ITO Coated PVDF Transducer for Optoacoustic Depth Profiling. Opt. Commun. 2005, 253, 401–406. [Google Scholar] [CrossRef]
- Li, Z.; Ilkhechi, A.K.; Zemp, R. Transparent Capacitive Micromachined Ultrasonic Transducers (CMUTs) for Photoacoustic Applications. Opt. Express 2019, 27, 13204. [Google Scholar] [CrossRef] [PubMed]
- Dangi, A.; Agrawal, S.; Kothapalli, S.-R. Lithium Niobate-Based Transparent Ultrasound Transducers for Photoacoustic Imaging. Opt. Lett. 2019, 44, 5326. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Hu, H.; Zou, J. A Focused Optically Transparent PVDF Transducer for Photoacoustic Microscopy. IEEE Sens. J. 2020, 20, 2313–2319. [Google Scholar] [CrossRef]
- Kashani Ilkhechi, A.; Ceroici, C.; Dew, E.; Zemp, R. Transparent Capacitive Micromachined Ultrasound Transducer Linear Arrays for Combined Realtime Optical and Ultrasonic Imaging. Opt. Lett. 2021, 46, 1542. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; He, Y.; Shi, J.; Yung, C.; Hwang, J.; Wang, L.V.; Zhou, Q. Transparent High-Frequency Ultrasonic Transducer for Photoacoustic Microscopy Application. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 2020, 67, 1848–1853. [Google Scholar] [CrossRef]
- Fang, C.; Zou, J. Acoustic-Resolution Photoacoustic Microscopy Based on an Optically Transparent Focused Transducer with a High Numerical Aperture. Opt. Lett. 2021, 46, 3280. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-H.; Kurnikov, A.; Li, W.; Kazakov, V.; Ni, R.; Subochev, P.; Razansky, D. Sensitive Ultrawideband Transparent PVDF-ITO Ultrasound Detector for Optoacoustic Microscopy. Opt. Lett. 2022, 47, 4163. [Google Scholar] [CrossRef]
- Park, J.; Park, B.; Kim, T.Y.; Jung, S.; Choi, W.J.; Ahn, J.; Yoon, D.H.; Kim, J.; Jeon, S.; Lee, D.; et al. Quadruple Ultrasound, Photoacoustic, Optical Coherence, and Fluorescence Fusion Imaging with a Transparent Ultrasound Transducer. Proc. Natl. Acad. Sci. USA 2021, 118, e1920879118. [Google Scholar] [CrossRef]
- Mirg, S.; Chen, H.; Turner, K.L.; Gheres, K.W.; Liu, J.; Gluckman, B.J.; Drew, P.J.; Kothapalli, S.-R. Awake Mouse Brain Photoacoustic and Optical Imaging through a Transparent Ultrasound Cranial Window. Opt. Lett. 2022, 47, 1121. [Google Scholar] [CrossRef]
- Hill, E.R.; Xia, W.; Clarkson, M.J.; Desjardins, A.E. Identification and Removal of Laser-Induced Noise in Photoacoustic Imaging Using Singular Value Decomposition. Biomed. Opt. Express 2017, 8, 68. [Google Scholar] [CrossRef]
- Baranger, J.; Arnal, B.; Perren, F.; Baud, O.; Tanter, M.; Demene, C. Adaptive Spatiotemporal SVD Clutter Filtering for Ultrafast Doppler Imaging Using Similarity of Spatial Singular Vectors. IEEE Trans. Med. Imaging 2018, 37, 1574–1586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, M.; Vercauteren, T.; Xia, W. Spatiotemporal singular value decomposition for denoising in photoacoustic imaging with low-energy excitation light source. Biomed. Opt. Express 2022, 13, 6416. [Google Scholar] [CrossRef]
- Boonzajer Flaes, D.E.; Stopka, J.; Turtaev, S.; de Boer, J.F.; Tyc, T.; Čižmár, T. Robustness of Light-Transport Processes to Bending Deformations in Graded-Index Multimode Waveguides. Phys. Rev. Lett. 2018, 120, 233901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsvirkun, V.; Sivankutty, S.; Baudelle, K.; Habert, R.; Bouwmans, G.; Vanvincq, O.; Andresen, E.R.; Rigneault, H. Flexible Lensless Endoscope with a Conformationally Invariant Multi-Core Fiber. Optica 2019, 6, 1185. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, T.; Zhang, M.; Ourselin, S.; Xia, W. Wavefront Shaping-Assisted Forward-Viewing Photoacoustic Endomicroscopy Based on a Transparent Ultrasound Sensor. Appl. Sci. 2022, 12, 12619. https://doi.org/10.3390/app122412619
Zhao T, Zhang M, Ourselin S, Xia W. Wavefront Shaping-Assisted Forward-Viewing Photoacoustic Endomicroscopy Based on a Transparent Ultrasound Sensor. Applied Sciences. 2022; 12(24):12619. https://doi.org/10.3390/app122412619
Chicago/Turabian StyleZhao, Tianrui, Mengjiao Zhang, Sebastien Ourselin, and Wenfeng Xia. 2022. "Wavefront Shaping-Assisted Forward-Viewing Photoacoustic Endomicroscopy Based on a Transparent Ultrasound Sensor" Applied Sciences 12, no. 24: 12619. https://doi.org/10.3390/app122412619
APA StyleZhao, T., Zhang, M., Ourselin, S., & Xia, W. (2022). Wavefront Shaping-Assisted Forward-Viewing Photoacoustic Endomicroscopy Based on a Transparent Ultrasound Sensor. Applied Sciences, 12(24), 12619. https://doi.org/10.3390/app122412619