Verification of Convolutional Neural Network Cephalometric Landmark Identification
Abstract
:1. Introduction
2. Material and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cuff, T. Biometric method, past, present, and future. In Historical Anthropometrics; Irwin, J.O., Ed.; Ashgate: Aldershot, UK, 1998; pp. 363–375. [Google Scholar]
- Tubiana, M. Wilhelm Conrad Röntgen and the discovery of X-rays. Bull. Acad. Natl. Med. 1996, 180, 97–108. [Google Scholar] [PubMed]
- Forrai, J. History of X-ray in dentistry. Rev. Clín. Pesq. Odontol. 2007, 3, 205–211. [Google Scholar]
- Broadbent, B. A new X-ray technique and its application to orthodontia. Angle Orthod. 1931, 1, 45–66. [Google Scholar]
- Trenouth, M.J.; Gelbier, S. Development of the norm concept in orthodontics. Dent. Hist. 2012, 56, 39–52. [Google Scholar]
- Brodie, A.G.; Downs, W.B.; Goldstein, A.; Myer, E. Cephalometric appraisal of orthodontic results. Angle Orthod. 1938, 8, 261–265. [Google Scholar]
- Downs, W.B. Variations in facial relationship. Am. J. Orthod. 1948, 34, 813–840. [Google Scholar] [CrossRef] [PubMed]
- Steiner, C.C. Cephalometrics for you and me. Am. J. Orthod. 1953, 39, 729–755. [Google Scholar] [CrossRef]
- Tweed, C.H. The Frankfort-Mandibular Incisor Angle (FMIA) In Orthodontic Diagnosis, Treatment Planning and Prognosis. Angle Orthod. 1954, 24, 121–169. [Google Scholar]
- Sassouni, V. A roentgenographic cephalometric analysis of cephalo-facio-dental relationships. Am. J. Orthod. 1955, 41, 735–764. [Google Scholar] [CrossRef]
- Broadbent, B.H., Sr.; Broadbent, B.H., Jr.; Golden, W.H. Bolton Standards of Dentofacial Developmental Growth; C. V. Mosby: St. Louis, MO, USA, 1975. [Google Scholar]
- Moorrees, C.F.; Lebret, L. The mesh diagram and cephalometrics. Angle Orthod. 1962, 32, 214–231. [Google Scholar]
- Björk, A. Prediction of mandibular growth rotation. Am. J. Orthod. 1969, 55, 585–599. [Google Scholar] [CrossRef] [PubMed]
- Jarabak, J.R.; Fizzell, J.A. Technique and Treatment with Light-Wire Edgewise Appliance, 2nd ed.; The C. V. Mosby Company: St. Louis, MO, USA, 1972. [Google Scholar]
- Wits, A.J. The Wits appraisal of jaw disharmony. Am. J. Orthod. 1975, 67, 125–138. [Google Scholar]
- Ricketts, R.M.; Bench, R.; Gugino, C.; Hilgers, J.; Schulhof, R. Visual treatment objective or V.T.O. In Bioprogressive Therapy; Rocky Mountain Orthodontics: Denver, CO, USA, 1979; pp. 35–54. [Google Scholar]
- McNamara, J.A. A method of cephalometric evaluation. Am. J. Orthod. 1984, 86, 449–469. [Google Scholar] [CrossRef] [PubMed]
- Graber, T.M. Problems and limitations of cephalometric analysis in orthodontics. J. Am. Dent. Assoc. 1956, 53, 439–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumrind, S.; Frantz, R.C. The reliability of head film measurements. 1. Landmark identification. Am. J. Orthod. 1971, 60, 111–127. [Google Scholar] [CrossRef]
- Baumrind, S. Toward a general model for clinical craniofacial research. In Essays in Honor of Robert E; Hunter, W.S., Carlson, D.S., Eds.; Moyers. Monograph 24 Craniofacial Growth Series; Center for Human Growth and Development, University of Michigan: Ann Arbor, MI, USA, 1991; pp. 37–71. [Google Scholar]
- Trpkova, B.; Major, P.; Prasad, N.; Nebbe, B. Cephalometric landmarks identification and reproducibility: A meta analysis. Am. J. Orthod. Dentofac. Orthop. 1997, 112, 165–170. [Google Scholar] [CrossRef]
- Hans, M.G.; Palomo, J.M.; Valiathan, M. History of imaging in orthodontics from Broadbent to cone-beam computed tomography. Am. J. Orthod. Dentofac. Orthop. 2015, 148, 914–921. [Google Scholar] [CrossRef]
- Ambrose, J.; Hounsfield, G. Computerized transverse axial tomography. Br. J. Radiol. 1973, 46, 148–149. [Google Scholar] [CrossRef]
- van Vlijmen, O.J.C.; Kuijpers, M.A.R.; Berge, S.J.; Schols, J.G.J.H.; Maal, T.J.J.; Breuning, H.; Kuijpers-Jagtman, A.M. Evidence supporting the use of cone-beam computed tomography in orthodontics. J. Am. Dent. Assoc. 2012, 143, 241–252. [Google Scholar] [CrossRef]
- Ludlow, J.B.; Walker, C. Assessment of phantom dosimetry and image quality of i-CAT FLX cone-beam computed tomography. Am. J. Orthod. Dentofacial. Orthop. 2013, 144, 802–817. [Google Scholar] [CrossRef] [Green Version]
- Sloan, R.F. Computer applications in orthodontics. Int. Dent. J. 1980, 30, 189–200. [Google Scholar]
- Baumrind, S.; Miller, D.M. Computer-aided headfilm analysis: The University of California San Francisco method. Am. J. Orthod. 1980, 78, 41–65. [Google Scholar] [CrossRef]
- Richardson, A. A comparison of traditional and computerized methods of cephalometric analysis. Eur. J. Orthod. 1981, 3, 15–20. [Google Scholar] [CrossRef] [PubMed]
- BeGole, E.A. Verification and standardization of cephalometric coordinate data. Comput. Programs Biomed. 1981, 12, 212–216. [Google Scholar] [CrossRef] [PubMed]
- BeGole, E.A. Software development for the management of cephalometric radiographic data. Comput. Programs Biomed. 1981, 11, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Konchak, P.A.; Koehler, J.A. A Pascal computer program for digitizing lateral cephalometric radiographs. Am. J. Orthod. 1985, 87, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.M.; Linney, A.D. A preliminary study of computer recognition and identification of skeletal landmarks as a new method of cephalometric analysis. Br. J. Orthod. 1984, 11, 143–154. [Google Scholar] [CrossRef]
- Lévy-Mandel, A.D.; Venetsanopoulos, A.N.; Tsotsos, J.K. Knowledge-based landmarking of cephalograms. Comput. Biomed. Res. 1986, 19, 282–309. [Google Scholar] [CrossRef]
- Parthasarathy, S.; Nugent, S.T.; Gregson, P.G.; Fay, D.F. Automatic landmarking of cephalograms. Comput. Biomed. Res. 1989, 22, 248–269. [Google Scholar] [CrossRef]
- Cardillo, J.; Sid-Ahmed, M.A. An image processing system for locating craniofacial landmarks. IEEE Trans. Med. Imaging 1994, 13, 275–289. [Google Scholar] [CrossRef]
- Rudolph, D.J.; Sinclair, P.M.; Coggins, J.M. Automatic computerized radiographic identification of cephalometric landmarks. Am. J. Orthod. Dentofac. Orthop. 1998, 113, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Hutton, T.J.; Cunningham, S.; Hammond, P. An evaluation of active shape models for the automatic identification of cephalometric landmarks. Eur. J. Orthod. 2000, 22, 499–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desvignes, M.; Romaniuk, B.; Clouard, R.; Demoment, R.; Revenu, M.; Deshayes, M.J. First steps toward automatic location of landmarks on X-ray images. In Proceedings of the 15th International Conference on Pattern Recognition ICPR-2000, Barcelona, Spain, 3–7 September 2000; pp. 275–278. [Google Scholar]
- Innes, A.; Ciesielski, V.; Mamutil, J.; John, S. Landmark Detection for Cephalometric Radiology Images using Pulse Coupled Neural Networks. In Proceedings of the International Conference on Artificial Intelligence (IC-AI’02), Las Vegas, NV, USA, 24–27 June 2002; pp. 511–517. [Google Scholar]
- Giordano, D.; Leonardi, R.; Maiorana, F.; Spampinato, C. Cellular neural networks and dynamic enhancement for cephalometric landmarks detection. In Artificial Intelligence and Soft Computing; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4029, pp. 768–777. [Google Scholar]
- Cootes, T.; Taylor, C.; Cooper, D.; Graham, J. Active Shape Models-Their training and application. Comput. Vis. Image Und. 1995, 61, 38–59. [Google Scholar] [CrossRef] [Green Version]
- Leonardi, R.; Giordano, D.; Maiorana, F.; Spampinato, C. Automatic Cephalometric Analysis. Angle Orthod. 2008, 78, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Yue, W.; Yin, D.; Li, C.; Wang, G.; Xu, T. Automated 2-D cephalometric analysis on X-ray images by a model-based approach. IEEE Trans. Biomed. Eng. 2006, 53, 1615–1623. [Google Scholar]
- Liu, J.; Chen, Y.; Cheng, K. Accuracy of computerized automatic identification of cephalometric landmarks. Am. J. Orthod. Dentofac. Orthop. 2000, 118, 535–540. [Google Scholar] [CrossRef]
- Saad, A.A.; El-Bialy, A.; Kandil, A.H.; Sayed, A.A. Automatic cephalometric analysis using active appearance model and simulated annealing. In Proceedings of the International Conference on Graphics, Vision and Image Processing, Cairo, Egypt, 19–21 December 2005. [Google Scholar]
- Tanikawa, C.; Masakazu, Y.; Kenji, T. Automated Cephalometry: System Performance Reliability Using Landmark-Dependent Criteria. Angle Orthod. 2009, 6, 1037–1046. [Google Scholar] [CrossRef]
- Leonardi, R.; Giordano, D.; Maiorana, F. An evaluation of cellular neural networks for the automatic identification of cephalometric landmarks on digital images. J. Biomed. Biotechnol. 2009, 2009, 717102. [Google Scholar] [CrossRef]
- Vucinic, P.; Trpovski, Z.; Scepan, I. Automatic landmarking of cephalograms using active appearance models. Eur. J. Orthod. 2010, 32, 233–241. [Google Scholar] [CrossRef]
- Ciresan, D.C.; Meier, U.; Masci, J.; Gambardella, L.M.; Schmidhuber, J. Flexible, high performance convolutional neural networks for image classification. In Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, Barcelona, Spain, 16–22 July 2011; Volume 2. [Google Scholar]
- Shahidi, S.; Oshagh, M.; Gozin, F.; Salehi, P.; Danaei, S. Accuracy of computerized automatic identification of cephalometric landmarks by a designed software. Dentomaxillofac Radiol. 2013, 42, 20110187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, A.; Singh, C. Automatic cephalometric landmark detection using Zernike moments and template matching. Signal Image Video Process. 2013, 9, 117–132. [Google Scholar] [CrossRef]
- Lindner, C.; Cootes, T.F. Fully automatic cephalometric evaluation using Random Forest regression-voting. In Proceedings of the IEEE International Symposium on Biomedical Imaging (ISBI), New York, NY, USA, 16–19 April 2015. [Google Scholar]
- Arik, S.O.; Ibragimov, B.; Xing, L. Fully automated quantitative cephalometry using convolutional neural networks. J. Med. Imaging 2017, 4, 14501. [Google Scholar] [CrossRef] [PubMed]
- Hassoun, M.H. Fundamentals of Artificial Neural Networks; The MIT Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Collobert, R.; Weston, J. A Unified Architecture for Natural Language Processing: Deep Neural Networks with Multitask Learning. In Proceedings of the 25th International Conference on Machine Learning, ICML ‘08, Helsinki, Finland, 1 January 2008; ACM: New York, NY, USA, 2008; pp. 160–167. [Google Scholar]
- Craig, M.; Adapa, R.; Pappas, I.; Menon, D.; Stamatakis, E. Deep graph convolutional neural networks identify frontoparietal control and default mode network contributions to mental imagery manuscript. In Proceedings of the 2018 Conference on Cognitive Computational Neuroscience, Philadelphia, PA, USA, 5–8 September 2018. [Google Scholar]
- Jacobson AJacobson, R.L. (Ed.) Radiographic Cephalometry: From Basics to 3D Imaging, 2nd ed.; Quintessence Publishing Co. Limited: New Malden, UK, 2006. [Google Scholar]
- Anuse, A.; Vyas, V. A novel training algorithm for convolutional neural network. Complex Intell. Syst. 2016, 2, 221–234. [Google Scholar] [CrossRef] [Green Version]
- Glorot, X.; Yoshua, B. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (AISTATS), Sardinia, Italy, 13 May 2010; Volume 9. [Google Scholar]
- Wang, C.W.; Huang, C.T.; Hsieh, M.C.; Li, C.H.; Chang, S.W.; Li, W.C.; Vandaele, R.; Maree, R.; Jodogne, S.; Geurts, P.; et al. Evaluation and comparison of anatomical landmark detection methods for cephalometric X-Ray images: A grand challenge. IEEE Trans. Med. Imaging 2015, 34, 1890–1900. [Google Scholar] [CrossRef]
- Mohamed, M.; Ferguson, D.J.; Venugopal, A.; Alam, M.K.; Makki, L.; Vaid, N.R. An artificial intelligence based application to optimize orthodontic referrals in a public oral healthcare system. Semin. Orthod. 2021, 27, 157–163. [Google Scholar] [CrossRef]
- Oh, K.; Oh, l.-S.; Van Nhat Le, T.; Lee, D.-W. Deep anatomical context feature learningfor cephalometric landmark detection. IEEE J. Biomed. Health Inform. 2021, 25, 806–817. [Google Scholar] [CrossRef]
- Mohammad-Rahimi, H.; Nadimi, M.; Rohban, M.H.; Shamsoddin, E.; Lee, V.Y.; Motamedian, S.R. Machine learning and orthodontics, current trends and the future opportunities: A scoping review. Am. J. Orthod. Dentfac. Orthop. 2021, 160, 17–92. [Google Scholar] [CrossRef]
- Noothout, J.M.H.; De Vos, B.D.; Wolterink, J.M.; Postma, E.M.; Smeets, P.A.M.; Takx, R.A.P. Deep learning-based regression and classification for automatic landmark localizationin medical images. IEEE Trans. Med. Imaging 2020, 39, 4011–4022. [Google Scholar] [CrossRef]
- Retrovey, J.M. The role of AI and machine learning in contemporary orthodontics. APOS Trends Orthod. 2021, 11, 74–80. [Google Scholar] [CrossRef]
- Kunz, F.; Stellzig-Eisenhauer, A.; Zeman, F.; Boldt, J. Artificial intelligence in orthodontics: Evaluation of a fully automated cephalometric analysis using a customized convolutional neural network. J. Orofac. Orthop./Fortschr. der Kieferorthopädie 2020, 81, 52–68. [Google Scholar] [CrossRef] [PubMed]
Landmark | Definition | |
---|---|---|
1 | Sella | Midpoint of sella turcica |
2 | Nasion | Most anterior point on frontonasal suture |
3 | Upper incisor tip (UI) | Tip of most prominent upper central incisor |
4 | Lower incisor tip (LI) | Tip of most prominent lower central incisor |
5 | B point | Deepest bony point on mandibular symphysis between pogonion and infradentale |
6 | Pogonion (Pog) | Most anterior point of mandibular symphysis |
7 | Menton | Lowest point on mandibular symphysis |
8 | Articulare | Junction between inferior surface of the cranial base and the posterior border of the ascending ramus of the mandible |
9 | A point | deepest point of premaxilla concavity bellow ANS |
10 | ANS | Tip of anterior nasal spine |
11 | PNS | Posterior limit of bony palate |
12 | Soft pogonion (Softpog) | Most anterior soft tissue point of soft chin |
13 | Soft B | The deepest soft tissue point between chin and subnasale |
14 | Lower lip | The most anterior point of lower lip |
15 | Upper lip | The most anterior point of upper lip |
16 | Subnasale | The junction where base of the columella of the nose meets the upper lip |
17 | Softnose | Most anterior point of nose tip |
18 | Orbitale | Most inferior point on the orbital margin |
19 | PTM | The intersection of the inferior border of the foramen rotundum with the posterior wall of the pterygomaxillary fissure |
20 | Porion | Most superior point of outline of external auditory meatus |
21 | Basale | The most inferior point on the anterior border of the foramen magnum in the midsagittal plane |
Landmark X/Y Coordinate | Differences between Measurement Scores | Spearman Correlation | Mean Recognition Error | |||
---|---|---|---|---|---|---|
Mean | Std. Deviation | p | Mean (mm) ± SD | |||
1 | Sella avgX | 54.67 | 3.73 | 0.114 | 0.988 ** | 0.14 ± 0.39 |
Sella algoX | 54.81 | 3.74 | ||||
2 | Sella avgY | 139.04 | 6.61 | 0.959 | 0.903 ** | 0.05 ± 1.28 |
Sella algoY | 138.99 | 6.51 | ||||
3 | Nasion avgX | 119.94 | 5.75 | 0.285 | 0.952 ** | 0.17 ± 1.23 |
Nasion algoX | 119.78 | 6.58 | ||||
4 | Nasion avY | 150.26 | 7.08 | 0.878 | 0.976 ** | 0.21 ± 1.27 |
Nasion algoY | 150.05 | 6.30 | ||||
5 | Ui avgX | 125.41 | 4.39 | 0.799 | 0.912 ** | 0.17 ± 1.04 |
Ui algoX | 125.58 | 4.44 | ||||
6 | Ui avgY | 73.52 | 6.92 | 0.721 | 0.988 ** | 0.25 ± 1.02 |
Ui algoY | 73.26 | 6.33 | ||||
7 | Li avgX | 122.10 | 4.38 | 0.445 | 0.927 ** | 0.19 ± 1.05 |
Li algoX | 121.91 | 4.30 | ||||
8 | Li avgY | 75.68 | 6.34 | 0.114 | 0.998 ** | 0.39 ± 0.77 |
Li algoY | 76.07 | 5.81 | ||||
9 | B point avgX | 115.18 | 6.03 | 0.878 | 0.964 ** | 0.04 ± 1.13 |
B point algoX | 115.22 | 5.77 | ||||
10 | B point avgY | 56.65 | 6.23 | 0.921 | 0.988 ** | 0.01 ± 0.65 |
B point algoY | 56.65 | 5.91 | ||||
11 | Pog avgX | 116.02 | 7.16 | 0.721 | 0.915 ** | 0.11 ± 1.00 |
Pog algoX | 115.91 | 7.01 | ||||
12 | Pog avgY | 43.80 | 7.38 | 0.657 | 0.988 ** | 1.18 ± 0.90 |
Pog algoY | 42.61 | 7.32 | ||||
13 | Menton avgX | 109.56 | 7.03 | 0.891 | 0.976 ** | 0.07 ± 0.86 |
Menton algoX | 109.49 | 6.78 | ||||
14 | Menton avgY | 37.95 | 7.75 | 0.721 | 0.998 ** | 0.12 ± 0.71 |
Menton algoY | 37.83 | 7.42 | ||||
15 | Articulare avgX | 42.62 | 2.62 | 0.959 | 0.879 ** | 0.08 ± 1.11 |
Articulare algoX | 42.54 | 2.84 | ||||
16 | Articulare avgY | 108.06 | 5.97 | 0.799 | 0.915 ** | 0.08 ± 2.29 |
Articulare algoY | 108.14 | 4.50 | ||||
17 | A point avgX | 121.51 | 4.55 | 0.444 | 0.903 ** | 0.15 ± 1.03 |
A point algoX | 121.35 | 4.58 | ||||
18 | A point avgY | 95.44 | 6.24 | 0.721 | 0.964 ** | 0.18 ± 1.16 |
A point algoY | 95.26 | 5.22 | ||||
19 | ANS avgX | 125.92 | 4.27 | 0.872 | 0.915 ** | 0.88 ± 1.25 |
ANS algoX | 125.03 | 4.12 | ||||
20 | ANS avgY | 100.68 | 6.58 | 0.884 | 0.988 ** | 0.43 ± 1.29 |
ANS algoY | 100.25 | 5.61 | ||||
21 | PNS avgX | 75.83 | 4.27 | 0.782 | 0.867 ** | 0.13 ± 1.40 |
PNS agoX | 75.70 | 3.82 | ||||
22 | PNS avgY | 98.51 | 5.29 | 0.918 | 0.976 ** | 0.23 ± 1.46 |
PNS algoY | 98.75 | 4.15 | ||||
23 | Soft pog avgX | 126.92 | 6.66 | 0.086 | 0.964 ** | 0.48 ± 1.67 |
Soft pog algoX | 127.40 | 5.88 | ||||
24 | Soft pog avgy | 44.06 | 6.83 | 0.022 | 0.842 ** | 2.67 ± 2.55 |
Soft pog algoy | 46.74 | 5.83 | ||||
25 | Soft b avgX | 126.20 | 5.16 | 0.878 | 0.988 ** | 0.05 ± 1.25 |
Soft b algoX | 126.15 | 4.68 | ||||
26 | Soft b avgY | 57.78 | 6.76 | 0.203 | 0.988 ** | 0.45 ± 0.98 |
Soft b algoY | 58.24 | 5.99 | ||||
27 | Lower lip avgX | 134.90 | 4.40 | 0.959 | 0.891 ** | 0.04 ± 1.05 |
Lower lip algoX | 134.95 | 4.42 | ||||
28 | Lower lip avgY | 68.75 | 7.41 | 0.721 | 0.998 ** | 0.03 ± 0.88 |
Lower lip algoY | 68.79 | 6.64 | ||||
29 | Upper lip avgX | 137.73 | 4.58 | 0.169 | 0.939 ** | 0.31 ± 0.96 |
Upper lip algoX | 137.41 | 4.83 | ||||
30 | Upper lip avgY | 82.05 | 7.28 | 0.017 | 0.964 ** | 1.11 ± 1.16 |
Upper lip algoY | 83.17 | 6.53 | ||||
31 | Subnasale avgX | 136.32 | 4.44 | 0.541 | 0.915 ** | 0.10 ± 1.33 |
Subnasale algoX | 136.43 | 4.75 | ||||
32 | Subnasale avgY | 96.84 | 7.21 | 0.386 | 0.964 ** | 0.35 ± 1.42 |
Subnasale algoY | 96.48 | 6.05 | ||||
33 | Soft nose avgX | 150.25 | 5.35 | 0.381 | 0.976 ** | 0.30 ± 1.27 |
Soft nose algoX | 150.55 | 5.96 | ||||
34 | Soft nose avgY | 108.63 | 8.31 | 0.918 | 0.975 ** | 0.01 ± 0.75 |
Soft nose algoY | 108.63 | 7.65 | ||||
35 | Orbitale avgX | 105.67 | 3.90 | 0.037 | 0.976 ** | 1.07 ± 1.29 |
Orbitale algoX | 106.74 | 4.56 | ||||
36 | Orbitale avgY | 123.12 | 6.63 | 0.878 | 0.915 ** | 0.16 ± 1.09 |
Orbitale algoY | 122.96 | 6.10 | ||||
37 | PTM avgX | 70.19 | 4.03 | 0.028 | 0.939 ** | 0.99 ± 0.98 |
PTM algoX | 71.19 | 4.38 | ||||
38 | PTM avgY | 123.11 | 6.27 | 0.241 | 0.927 ** | 0.98 ± 1.95 |
PTM algoY | 124.10 | 5.00 | ||||
39 | Porion avgX | 32.75 | 2.57 | 0.285 | 0.729 ** | 0.64 ± 1.49 |
Porion algoX | 32.11 | 3.25 | ||||
40 | Porion avgY | 120.08 | 4.38 | 0.036 | 0.830 ** | 1.14 ± 1.41 |
Porion algoY | 121.23 | 4.27 | ||||
41 | Basale avgX | 35.89 | 3.15 | 0.005 | 0.903 ** | 1.03 ± 0.90 |
Basale algoX | 34.86 | 3.36 | ||||
42 | Basale avgY | 100.71 | 5.18 | 0.959 | 0.976 ** | 0.02 ± 1.20 |
Basale algoY | 100.74 | 4.83 |
Landmark | Liu et al. [19] | Hutton et al. [8] | Saad et al. [20] | Tanikawa et al. [21] | Rudolph et al. [7] | CephX Algo |
---|---|---|---|---|---|---|
Sella | 0.94 | 5.5 | 3.24 | 2.1 | 5.06 | 0.148 |
Nasion | 2.32 | 5.6 | 2.95 | 1.7 | 2.57 | 0.27 |
Orbitale | 5.28 | 5.5 | 3.4 | 2.24 | 2.46 | 1.08 |
Porion | 2.43 | 7.3 | 3.48 | 3.63 | 5.67 | 1.3 |
ANS | 2.9 | 3.8 | 2.7 | 2.32 | 2.64 | 0.97 |
Point A | 4.29 | 3.3 | 2.54 | 2.13 | 2.33 | 0.23 |
Point B | 3.96 | 2.6 | 2.22 | 3.12 | 1.85 | 0.04 |
Pogonion | 2.53 | 2.7 | 3.65 | 1.91 | 1.85 | 1.18 |
Menton | 1.9 | 2.7 | 4.4 | 1.59 | 3.09 | 0.12 |
UI | 2.36 | 2.9 | 3.65 | 1.78 | NAD | 0.3 |
LI | 2.86 | NAD | 3.14 | 1.81 | NAD | 0.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davidovitch, M.; Sella-Tunis, T.; Abramovicz, L.; Reiter, S.; Matalon, S.; Shpack, N. Verification of Convolutional Neural Network Cephalometric Landmark Identification. Appl. Sci. 2022, 12, 12784. https://doi.org/10.3390/app122412784
Davidovitch M, Sella-Tunis T, Abramovicz L, Reiter S, Matalon S, Shpack N. Verification of Convolutional Neural Network Cephalometric Landmark Identification. Applied Sciences. 2022; 12(24):12784. https://doi.org/10.3390/app122412784
Chicago/Turabian StyleDavidovitch, Moshe, Tatiana Sella-Tunis, Liat Abramovicz, Shoshana Reiter, Shlomo Matalon, and Nir Shpack. 2022. "Verification of Convolutional Neural Network Cephalometric Landmark Identification" Applied Sciences 12, no. 24: 12784. https://doi.org/10.3390/app122412784
APA StyleDavidovitch, M., Sella-Tunis, T., Abramovicz, L., Reiter, S., Matalon, S., & Shpack, N. (2022). Verification of Convolutional Neural Network Cephalometric Landmark Identification. Applied Sciences, 12(24), 12784. https://doi.org/10.3390/app122412784