Comparative Study of Lightweight Deep Semantic Segmentation Models for Concrete Damage Detection
Abstract
:1. Introduction
- Three lightweight models (ENet) [42], context-guided network (CGNet) [45], and efficient symmetric network (ESNet) [46]) and two heavyweight models (deep dual-resolution network (DDRNet) [47] and DeepLabV3+ [48]) were compared for damage segmentation from structural images to investigate the best model that could be embedded in edge computing devices with less computational power.
- A concrete dataset that contains four types of concrete damage, i.e., cracks, efflorescence, spalling, and rebar exposure, was constructed for training and testing of the semantic segmentation models. Images were collected from online and real concrete structures in South Korea.
- The lightweight segmentation models were benchmarked for the detection of multiple types of concrete damage, and the tradeoff between the number of model parameters and accuracy was investigated.
2. Semantic Segmentation Models for Multi-Damage Detection
2.1. Efficient Neural Network (ENet)
2.2. Context Guided Network (CGNet)
2.3. Efficient Symmetric Network (ESNet)
2.4. Deep Dual-Resolution Network (DDRNet-23-Slim)
2.5. DeepLabV3+ (ResNet-50)
2.6. Loss Functions for the Five Models
3. Details for Model Training and Evaluation
3.1. Concrete Dataset
3.2. Training Details
3.3. Evaluation Metrics
4. Results and Discussion
4.1. Predicted Results Visualization
4.2. Performance Evaluation
4.3. Computational Cost Evaluation
5. Conclusions
- ➢
- By benchmarking the IoU and F1 score of DeepLabV3+, CGNet achieved a higher detectability ratio regarding both the F1 score and mIoU metrics (varying from 77% to 95%) compared with the other models, except for crack segmentation. It was evident that the decoder module of CGNet did not have any trainable layers; thus, the prediction of small objects, such as cracks, omitted some essential information.
- ➢
- Among all the models, CGNet exhibited a better inference speed of approximately 60 ms per image of 680 px × 680 px, which required only 9.8G FLOPs.
- ➢
- The tradeoff between model parameters, inference time, and accuracy indicated that CGNet was the best among the four models and could be embedded in ECDs for on-site damage detection.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jahanshahi, M.R.; Masri, S.F. Adaptive Vision-based Crack Detection using 3D Scene Reconstruction for Condition Assessment of Structures. Autom. Constr. 2012, 22, 567–576. [Google Scholar] [CrossRef]
- Koch, C.; Georgieva, K.; Kasireddy, V.; Akinci, B.; Fieguth, P. A Review on Computer Vision based Defect Detection and Condition Assessment of Concrete and Asphalt Civil Infrastructure. Adv. Eng. Informatics 2015, 29, 196–210. [Google Scholar] [CrossRef] [Green Version]
- Morgenthal, G.; Hallermann, N. Quality Assessment of Unmanned Aerial Vehicle (UAV) Based Visual Inspection of Structures. Adv. Struct. Eng. 2014, 17, 289–302. [Google Scholar] [CrossRef]
- Nick, W.; Asamene, K.; Bullock, G.; Esterline, A.; Sundaresan, M. A Study of Machine Learning Techniques for Detecting and Classifying Structural Damage. Int. J. Mach. Learn. Comput. 2015, 5, 313–318. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Xiong, W.; Cheng, J.; Chia, S.C.; Chen, W.; Huang, W.; Zhou, J. Vision Based Hole Crack Detection. IEEE Trans. Ind. Electron Appl. 2015, 1932–1936. [Google Scholar] [CrossRef]
- Prasanna, P.; Dana, K.J.; Gucunski, N.; Basily, B.B.; La, H.M.; Lim, R.S.; Parvardeh, H. Automated Crack Detection on Concrete Bridges. IEEE Trans. Autom. Sci. Eng. 2014, 13, 591–599. [Google Scholar] [CrossRef]
- Chen, F.-C.; Jahanshahi, M.R. NB-CNN: Deep Learning-Based Crack Detection Using Convolutional Neural Network and Naïve Bayes Data Fusion. IEEE Trans. Ind. Electron. 2018, 65, 4392–4400. [Google Scholar] [CrossRef]
- Dorafshan, S.; Thomas, R.J.; Maguire, M. Comparison of Deep Convolutional Neural Networks and Edge Detectors for Image-Based Crack Detection in Concrete. Constr. Build. Mater. 2018, 186, 1031–1045. [Google Scholar] [CrossRef]
- Yang, X.; Li, H.; Yu, Y.; Luo, X.; Huang, T.; Yang, X. Automatic Pixel-Level Crack Detection and Measurement Using Fully Convolutional Network. Comput. Aided Civil Infrastruct. Eng. 2018, 33, 1090–1109. [Google Scholar] [CrossRef]
- Cha, Y.-J.; Choi, W.; Büyüköztürk, O. Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks. Comput. Civ. Infrastruct. Eng. 2017, 32, 361–378. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, C.; Wang, J.; Wang, L.; Yue, X.-G. Concrete Cracks Detection Based on FCN with Dilated Convolution. Appl. Sci. 2019, 9, 2686. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.; Cho, S. Automated Vision-Based Detection of Cracks on Concrete Surfaces Using a Deep Learning Technique. Sensors 2018, 18, 3452. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Chen, J.; Li, Z.; Huang, Y. Structural Crack Detection and Recognition Based on Deep Learning. Appl. Sci. 2021, 11, 2868. [Google Scholar] [CrossRef]
- Ali, L. Damage Detection and Localization in Masonry Structure using Faster Region Convolutional Networks. Int. J. Geomate 2019, 17. [Google Scholar] [CrossRef]
- Wang, L.; Kawaguchi, K.; Wang, P. Damaged Ceiling Detection and Localization in Large-Span Structures using Convolutional Neural Networks. Autom. Constr. 2020, 116, 103230. [Google Scholar] [CrossRef]
- Ramli, J.; Coulson, J.; Martin, J.; Nagaratnam, B.; Poologanathan, K.; Cheung, W. Crack Detection and Localisation in Steel-Fibre-Reinforced Self-Compacting Concrete Using Triaxial Accelerometers. Sensors 2021, 21, 2044. [Google Scholar] [CrossRef]
- Ali, L.; Alnajjar, F.; Jassmi, H.; Gocho, M.; Khan, W.; Serhani, M. Performance Evaluation of Deep CNN-Based Crack Detection and Localization Techniques for Concrete Structures. Sensors 2021, 21, 1688. [Google Scholar] [CrossRef]
- Sun, L.; Kamaliardakani, M.; Zhang, Y. Weighted Neighborhood Pixels Segmentation Method for Automated Detection of Cracks on Pavement Surface Images. J. Comput. Civ. Eng. 2016, 30. [Google Scholar] [CrossRef]
- Yun, H.-B.; Mokhtari, S.; Wu, L. Crack Recognition and Segmentation Using Morphological Image-Processing Techniques for Flexible Pavements. Transp. Res. Rec. J. Transp. Res. Board 2015, 2523, 115–124. [Google Scholar] [CrossRef]
- Jenkins, M.D.; Carr, T.A.; Iglesias, M.I.; Buggy, T.; Morison, G. A Deep Convolutional Neural Network for Semantic Pixel-Wise Segmentation of Road and Pavement Surface Cracks. In Proceedings of the 2018 26th European Signal Processing Conference (EUSIPCO), Rome, Italy, 3–7 September 2018; pp. 2120–2124. [Google Scholar] [CrossRef]
- Hsieh, Y.-A.; Tsai, Y.J. Machine Learning for Crack Detection: Review and Model Performance Comparison. J. Comput. Civ. Eng. 2020, 34, 04020038. [Google Scholar] [CrossRef]
- Kim, J.J.; Kim, A.-R.; Lee, S.-W. Artificial Neural Network-Based Automated Crack Detection and Analysis for the Inspection of Concrete Structures. Appl. Sci. 2020, 10, 8105. [Google Scholar] [CrossRef]
- Zhou, S.; Song, W. Concrete Roadway Crack Segmentation using Encoder-Decoder Networks with Range Images. Autom. Constr. 2020, 120, 103403. [Google Scholar] [CrossRef]
- Junior, G.; Ferreira, J.; Millán-Arias, C.; Daniel, R.; Junior, A.; Fernandes, B. Ceramic Cracks Segmentation with Deep Learning. Appl. Sci. 2021, 11, 6017. [Google Scholar] [CrossRef]
- Cha, Y.-J.; Choi, W.; Suh, G.; Mahmoudkhani, S.; Büyüköztürk, O. Autonomous Structural Visual Inspection Using Region-Based Deep Learning for Detecting Multiple Damage Types. Comput. Civ. Infrastruct. Eng. 2017, 33, 731–747. [Google Scholar] [CrossRef]
- Li, S.; Zhao, X.; Zhou, G. Automatic Pixel-Level Multiple Damage Detection of Concrete Structure using Fully Convolutional Network. Comput. Aided Civil Infrastruct. Eng. 2019, 34, 616–634. [Google Scholar] [CrossRef]
- Shi, J.; Dang, J.; Cui, M.; Zuo, R.; Shimizu, K.; Tsunoda, A.; Suzuki, Y. Improvement of Damage Segmentation Based on Pixel-Level Data Balance Using VGG-Unet. Appl. Sci. 2021, 11, 518. [Google Scholar] [CrossRef]
- Alipour, M.; Harris, D.K. Increasing the Robustness of Material-Specific Deep Learning Models for Crack Detection across Different Materials. Eng. Struct. 2020, 206, 110157. [Google Scholar] [CrossRef]
- Hoskere, V.; Narazaki, Y.; Hoang, T.A.; Spencer, B.F. MaDnet: Multi-Task Semantic Segmentation of Multiple Types of Structural Materials and Damage in Images of Civil Infrastructure. J. Civ. Struct. Heal. Monit. 2020, 10, 757–773. [Google Scholar] [CrossRef]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar] [CrossRef]
- He, K.; Gkioxari., G.; Dollár, P.; Girshick, R. "Mask R-CNN,". In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar] [CrossRef]
- Wang, N.; Zhao, Q.; Li, S.; Zhao, X.; Zhao, P. Damage Classification for Masonry Historic Structures Using Convolutional Neural Networks Based on Still Images. Comput. Civ. Infrastruct. Eng. 2018, 33, 1073–1089. [Google Scholar] [CrossRef]
- Kim, B.; Cho, S. Automated Multiple Concrete Damage Detection Using Instance Segmentation Deep Learning Model. Appl. Sci. 2020, 10, 8008. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Maharjan, S. Deep Learning for Secure Mobile Edge Computing. arXiv 2017, arXiv:1709.08025. [Google Scholar]
- Hochstetler, J.; Padidela, R.; Chen, Q.; Yang, Q.; Fu, S. Embedded Deep Learning for Vehicular Edge Computing. IEEE ACM Symposium Edge Comput. SEC 2018, 341–343. [Google Scholar] [CrossRef]
- Li, H.; Ota, K.; Dong, M. Learning IoT in Edge: Deep Learning for the Internet of Things with Edge Computing. IEEE Netw. 2018, 32, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Han, R.; Zhao, X.; Mao, X.; Hu, W.; Jiao, D.; Li, M.; Ou, J. Initial Validation of Mobile-Structural Health Monitoring Method Using Smartphones. Int. J. Distrib. Sens. Networks 2015, 11. [Google Scholar] [CrossRef] [Green Version]
- Kong, Q.; Allen, R.M.; Kohler, M.D.; Heaton, T.H.; Bunn, J. Structural Health Monitoring of Buildings Using Smartphone Sensors. Seism. Res. Lett. 2018, 89, 594–602. [Google Scholar] [CrossRef]
- Wang, N.; Ri, K.; Liu, H.; Zhao, Z. “图像相关法 (Image Correlation) 学习内容”. IEEE Sensors J. 2018, 18, 4664–4672. [Google Scholar] [CrossRef]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenchenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Cai, Y.; Li, H.; Yuan, G.; Niu, W.; Li, Y.; Tang, X.; Ren, B.; Wang, Y. YOLObile: Real-Time Object Detection on Mobile Devices via Compression-Compilation Co-Design. Proc. Conf. AAAI Artif. Intell. 2021, 35, 955–963. [Google Scholar] [CrossRef]
- Paszke, A.; Chaurasia, A.; Kim, S.; Culurciello, E. ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. arXiv 2016, arXiv:1606.02147. [Google Scholar]
- Emara, T.; El Munim, H.E.A.; Abbas, H.M. LiteSeg: A Novel Lightweight ConvNet for Semantic Segmentation. Digital Image Comput. Tech. Appl. DICTA 2019, 1–7. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Q.; Liu, J.; Xiong, J.; Gao, G.; Wu, X.; Latecki, L.J. LEDNET: A Lightweight Encoder-Decoder Network for Real-Time Semantic Segmentation; National Engineering Research Center of Communications and Networking, Key Laboratory of Broadband Wireless Communications and Sensor Network Technology, Institute of Advanced ICIP: China, 2019; pp. 1860–1864. [Google Scholar]
- Wu, T.; Tang, S.; Zhang, R.; Cao, J.; Zhang, Y. CGNet: A Light-Weight Context Guided Network for Semantic Segmentation. IEEE Trans. Image Process. 2020, 30, 1169–1179. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Q.; Xiong, J.; Wu, X.; Jin, X. ESNet: An Efficient Symmetric Network for Real-Time Semantic Segmentation. Pattern Recognit. Comput. Vision 2019, 41–52. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Pan, H.; Sun, W.; Jia, Y. Deep Dual-resolution Networks for Real-time and Accurate Semantic Segmentation of Road Scenes. arXiv 2021, 14, 1–12. Available online: http://arxiv.org/abs/2101.06085 (accessed on 7 November 2022).
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018. [Google Scholar] [CrossRef] [Green Version]
- Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B. The Cityscapes Dataset for Semantic Urban Scene Understanding. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 3213–3223. [Google Scholar] [CrossRef] [Green Version]
- Brostow, G.J.; Fauqueur, J.; Cipolla, R. Semantic Object Classes in Video: A High-Definition Ground Truth Database. Pattern Recognit. Lett. 2009, 30, 88–97. [Google Scholar] [CrossRef]
- Tompson, J.; Goroshin, R.; Jain, A.; LeCun, Y.; Bregler, C. Efficient Object Localization using Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 648–656. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the International Conference on Computer Vision, Las Condes, Chile, 11–18 December 2015; pp. 1026–1034. [Google Scholar]
- Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J. Comput. Vis. 2009, 88, 303–338. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Sabuncu, M.R. Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels. Adv. Neural Inf. Process. Syst. 2018, 2018, 8778–8788. [Google Scholar]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv 2016, arXiv:1603.04467. [Google Scholar]
- Kingma, D.P.; Ba, J.L. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference on Learning Representations, Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015; pp. 1–15. [Google Scholar]
- Kim, B.; Cho, S. Image-Based Concrete Crack Assessment using Mask and Region-Based Convolutional Neural Network. Struct. Control. Heal. Monit. 2019, e2381. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Zhang, W.; Zhan, Y.; Guo, S.; Zheng, Q.; Wang, X. A Survey on Deploying Mobile Deep Learning Applications: A Systemic and Technical Perspective. Digit. Commun. Netw. 2021, 8, 1–17. [Google Scholar] [CrossRef]
Damage Class | Models | Precision | Recall | F1 Score | IoU |
---|---|---|---|---|---|
Cracks | ENet | 0.58 | 0.71 | 0.64 (91.31) * | 0.45 (84.00) ** |
CGNet | 0.50 | 0.71 | 0.59 (84.09) * | 0.42 (77.74) ** | |
ESNet | 0.56 | 0.74 | 0.64 (91.61) * | 0.46 (86.77) ** | |
DDRNet-23-Slim | 0.48 | 0.66 | 0.56 (80.24) * | 0.38 (70.75) ** | |
DeepLabV3+ | 0.62 | 0.79 | 0.70 (100.00) * | 0.54 (100.00) ** | |
Efflorescence | ENet | 0.76 | 0.67 | 0.71 (91.41) * | 0.55 (88.15) ** |
CGNet | 0.71 | 0.71 | 0.71 (91.69) * | 0.59 (94.54) ** | |
ESNet | 0.81 | 0.61 | 0.69 (89.25) * | 0.52 (82.25) ** | |
DDRNet-23-Slim | 0.74 | 0.68 | 0.71 (90.96) * | 0.56 (89.63) ** | |
DeepLabV3+ | 0.81 | 0.75 | 0.78 (100.00) * | 0.63 (100.00) ** | |
Rebar Exposure | ENet | 0.72 | 0.56 | 0.63 (85.26) * | 0.45 (77.01) ** |
CGNet | 0.68 | 0.62 | 0.65 (87.70) * | 0.47 (79.91) ** | |
ESNet | 0.66 | 0.57 | 0.61 (82.86) * | 0.43 (74.32) ** | |
DDRNet-23-Slim | 0.63 | 0.45 | 0.53 (70.98) * | 0.33 (57.01) ** | |
DeepLabV3+ | 0.77 | 0.72 | 0.74 (100.00) * | 0.58 (100.00) ** | |
Spalling | ENet | 0.72 | 0.71 | 0.71 (91.55) * | 0.54 (83.90) ** |
CGNet | 0.77 | 0.72 | 0.75 (95.83) * | 0.61 (94.36) ** | |
ESNet | 0.72 | 0.65 | 0.68(87.63) * | 0.51 (79.68) ** | |
DDRNet-23-Slim | 0.75 | 0.65 | 0.70 (89.75) * | 0.52 (81.44) ** | |
DeepLabV3+ | 0.80 | 0.75 | 0.78 (100.00) * | 0.64 (100.00) ** |
Sr. No | Models | Parameters Millions (m) | FLOPs(G) | Inference Speed Milliseconds (ms) |
---|---|---|---|---|
1 | ENet | 0.4 | 6.98 | 140 |
2 | CGNet | 0.5 | 9.8 | 60 |
3 | ESNet | 1.6 | 41.42 | 96 |
4 | DDRNet-23-Slim | 5.7 | 16.27 | 85 |
5 | DeepLabV3+ | 17 | 156.67 | 80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanveer, M.; Kim, B.; Hong, J.; Sim, S.-H.; Cho, S. Comparative Study of Lightweight Deep Semantic Segmentation Models for Concrete Damage Detection. Appl. Sci. 2022, 12, 12786. https://doi.org/10.3390/app122412786
Tanveer M, Kim B, Hong J, Sim S-H, Cho S. Comparative Study of Lightweight Deep Semantic Segmentation Models for Concrete Damage Detection. Applied Sciences. 2022; 12(24):12786. https://doi.org/10.3390/app122412786
Chicago/Turabian StyleTanveer, Muhammad, Byunghyun Kim, Jonghwa Hong, Sung-Han Sim, and Soojin Cho. 2022. "Comparative Study of Lightweight Deep Semantic Segmentation Models for Concrete Damage Detection" Applied Sciences 12, no. 24: 12786. https://doi.org/10.3390/app122412786
APA StyleTanveer, M., Kim, B., Hong, J., Sim, S. -H., & Cho, S. (2022). Comparative Study of Lightweight Deep Semantic Segmentation Models for Concrete Damage Detection. Applied Sciences, 12(24), 12786. https://doi.org/10.3390/app122412786