Spatial Data-Based Automatic and Quantitative Approach in Analyzing Maintenance Reachability
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Generation of the Arm’s Maximum Solution Set
3.1.1. Arm Model Establishment
3.1.2. Position Expression of Each Joint in Global Coordinate
- (1)
- represents the vertical distance between the axes of near two joints (z-axis) and the length of link i;
- (2)
- represents the angle between the axes of near two joints (z-axis) and the twist angle of link i;
- (3)
- represents the distance between the vertical lines (x-axis) of near two joints’ axes and the offset distance of link i relative to link i − 1;
- (4)
- represents the angle between the vertical lines (x-axis) of near two joints’ axes and the rotation angle of link i relative to link i − 1.
- , , , represents the rotation matrix, position matrix, perspective matrix, and scale matrix, respectively;
- , represents the vertical distance and the angle between the axes of near two joints (z-axis);
- , represents the distance and the angle between the vertical lines (x-axis) of near two joints’ axes.
3.1.3. Discretization of the Continuous Arm Posture Space
3.2. Maintenance Reachability Analysis-Oriented 3D Reconstruction of Maintenance Scene
3.2.1. Product Model Reconstruction
3.2.2. Geometric Characteristic Data Acquisition of Product
3.3. Intersection Detection-Based Spatial Relationship Judgment between Arm and Product
3.3.1. Application of Typical Intersection Detection Methods Illustration
- (1)
- Intersection detection of a line segment and a sphere
- (2)
- Intersection of a line segment and an oriented bounding box (OBB)
- (3)
- Intersection of a line segment and a cylinder
- (4)
- Intersection of a line segment and a capsule
- (5)
- Intersection of a line segment and a triangular patch
3.3.2. Solving the Maintenance Reachability Feasible Region
3.3.3. Intersection Detection Efficiency Test
- (1)
- As the division value increases, the quantity of initial solutions rapidly decreases.
- (2)
- The run time of the detection between line segments and different model objects and the quantity of initial solutions is linear.
- (3)
- Therefore, as the division value increases, the run time decreases rapidly.
- (4)
- The variation coefficients of the DOR obtained by different objects under different division values are below 2.5%. Little change was exhibited, as a larger division value can be chosen to solve the DOR.
- (5)
- With the same initial solution set of arm poses, the run time of different intersection detection methods may also differ. The intersection detection efficiency ranges from high to low as line segment and sphere, cylinder, OBB, triangular patch, and capsule. In this test, efficiency is tested by one triangular patch, but the irregular model needs to be represented by several triangular patches. Therefore, according to this result, the detection order of different types of products is as follows: spheres, cylinders, OBBs, capsules, and irregular objects represented by triangular patches.
4. Case Study
4.1. Scene Construction
4.2. Calculation of DOR
Failure Rate Factor
- The irregular objects represented by triangular patches have a significant influence on run time.
- The variation coefficients of DOR obtained by different scenes under different division values are below 2.5%. The result further proves that the division values have little influence on the DOR, as a relatively large division value can be chosen to solve the DOR.
5. Conclusions and Discussion
- (1)
- All possible arm postures that are required to move freely are considered and transformed into an initial global dataset, whereas the subsequent analysis is conducted by starting from this initial global dataset. Consequently, the finitude occurring in the current methods can be reduced to some extent.
- (2)
- The determination of the initial global data set is also fully optimized and screened, which not only ensures the data of the arm are not lost, but also ensures the efficiency of the calculation process.
- (3)
- As the calculation process and resulting expression of reachability are quantitative, the judgments on whether the maintenance spot is reachable or not and how easy it is to reach have a lower dependence on a person. Hence, the proposed methodology is objective.
- (4)
- On the basis of quantitative analysis, the proposed can not only analyze the quality of accessibility design, but also show how good or how bad it is by means of quantitative expression.
Author Contributions
Funding
Conflicts of Interest
Appendix A
Objects to Be Tested | Necessary Geometric Characteristic Data (mm) | Hand Coordinates (mm) | ||
---|---|---|---|---|
Position Class | Range Class | Direction Class | ||
Object 1 (Sphere) | (100, 100, 200) | 244.9489 | — | x = 100 y = 100 z = 475 |
Object 2 (Cylinder) | (40.7, 45.2, 63.4) (182.2, 156.6, 187.3) | 75.7 | — | x = 225.1 y = 183.7 z = 216.2 |
Object 3 (Capsule) | (40.7, 45.2, 63.4) (182.2, 156.6, 187.3) | 75.7 | — | x = 275.1 y = 233.7 z = 256.2 |
Object 4 (OBB1) | (91, 28, 75) | [145, 292, 274] | u [0.4773, 0.6765, −0.5608] v [0.8208, −0.5712, 0.0096] w [0.3139, 0.4649, 0.8279] | x = 346.4 y = 317.7 z = 335.6 |
Object 5 (OBB2) | (100, 100, 200) | [244.95, 244.95, 244.95] | [1, 0, 0] [0, 1, 0] [0, 0, 1] | x = 100 y = 100 z = 475 |
Object 6 (Triangular Patch) | P1 (456.48, 433.09, 355.99) P2 (440.12, 390.40, −31.32) P3 (292.01, 15.38, 16.27) | — | (P1, P2, P3) | x = 81 y = 90 z = 12 |
Division Value | Quantity of the Initial Solution | Objects to Be Tested | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Object 1 Sphere | Object 2 Cylinder | Object 3 Capsule | Object 4 OBB1 | Object 5 OBB2 | Object 6 Triangular Patch | ||||||||
Original Value | Average Value | Original Value | Average Value | Original Value | Average Value | Original Value | Average Value | Original Value | Average Value | Original Value | Average Value | ||
3° | 4,981,824 | 3.2870 | 3.2203 | 3.9342 | 3.905560 | 15.8284 | 15.654 | 4.598788 | 4.5872 | 5.2575 | 5.2483 | 6.6144 | 6.6653 |
3.2535 | 3.8897 | 15.4594 | 4.529736 | 5.2467 | 6.6569 | ||||||||
3.1202 | 3.8926 | 15.6754 | 4.633236 | 5.2406 | 6.7244 | ||||||||
4° | 1,595,556 | 1.1313 | 1.1272 | 1.3852 | 1.448390 | 4.9639 | 5.0094 | 1.513430 | 1.5208 | 1.7770 | 1.7440 | 2.2744 | 2.2388 |
1.0894 | 1.5448 | 4.9284 | 1.532902 | 1.7374 | 2.2341 | ||||||||
1.1610 | 1.4150 | 5.1361 | 1.516288 | 1.7176 | 2.2079 | ||||||||
5° | 690,954 | 0.6418 | 0.6041 | 0.7491 | 0.713749 | 2.2695 | 2.2613 | 0.787951 | 0.7901 | 0.8753 | 0.8543 | 1.1138 | 1.0937 |
0.5722 | 0.6791 | 2.2601 | 0.860389 | 0.8434 | 1.0693 | ||||||||
0.5982 | 0.7129 | 2.2542 | 0.722244 | 0.8441 | 1.0979 | ||||||||
6° | 321,408 | 0.4115 | 0.5278 | 0.4676 | 0.452351 | 1.1390 | 1.1551 | 0.463332 | 0.4627 | 0.5616 | 0.5227 | 0.6303 | 0.6390 |
0.4155 | 0.4521 | 1.1631 | 0.439418 | 0.4862 | 0.6468 | ||||||||
0.7565 | 0.4372 | 1.1632 | 0.485351 | 0.5203 | 0.6399 | ||||||||
7° | 169,533 | 0.4939 | 0.3581 | 0.3207 | 0.313811 | 0.7050 | 0.6882 | 0.323831 | 0.3151 | 0.3390 | 0.3652 | 0.4552 | 0.4419 |
0.3080 | 0.2939 | 0.6865 | 0.302256 | 0.3322 | 0.4367 | ||||||||
0.2724 | 0.326733 | 0.673141 | 0.319245 | 0.424404 | 0.4337 | ||||||||
8° | 108,864 | 0.2366 | 0.2416 | 0.2852 | 0.2635 | 0.5276 | 0.5032 | 0.2859 | 0.2720 | 0.2848 | 0.2804 | 0.3686 | 0.3789 |
0.2424 | 0.2450 | 0.4789 | 0.2598 | 0.2756 | 0.3537 | ||||||||
0.2457 | 0.2604 | 0.5032 | 0.2702 | 0.2808 | 0.4145 | ||||||||
9° | 66,528 | 0.2237 | 0.2189 | 0.2100 | 0.2175 | 0.4062 | 0.4003 | 0.2384 | 0.2214 | 0.2773 | 0.2464 | 0.3335 | 0.3100 |
0.2109 | 0.2145 | 0.3934 | 0.2151 | 0.2389 | 0.2929 | ||||||||
0.2221 | 0.2279 | 0.4015 | 0.2108 | 0.2231 | 0.3037 | ||||||||
10° | 48,450 | 0.1981 | 0.2081 | 0.1888 | 0.1956 | 0.3139 | 0.3313 | 0.2141 | 0.2204 | 0.2224 | 0.2233 | 0.3202 | 0.2769 |
0.2241 | 0.2063 | 0.3046 | 0.2304 | 0.2089 | 0.3121 | ||||||||
0.2020 | 0.1917 | 0.3754 | 0.2168 | 0.2387 | 0.3604 |
Division Value | Quantity of the Initial Solution | Objects to Be Tested | |||||
---|---|---|---|---|---|---|---|
Object 1 Sphere | Object 2 Cylinder | Object 3 Capsule | Object 4 OBB1 | Object 5 OBB2 | Object 6 Triangular Patch | ||
3° | 4,981,824 | 0.514630 | 0.851506 | 0.847068 | 0.810667 | 0.359932 | 0.839534 |
4° | 1,595,556 | 0.510923 | 0.845773 | 0.840718 | 0.809181 | 0.360957 | 0.841159 |
5° | 690,954 | 0.518665 | 0.842771 | 0.837923 | 0.807433 | 0.362903 | 0.845120 |
6° | 321,408 | 0.525805 | 0.855813 | 0.852431 | 0.817802 | 0.366680 | 0.841382 |
7° | 169,533 | 0.531826 | 0.845334 | 0.840238 | 0.808893 | 0.369285 | 0.842119 |
8° | 108,864 | 0.504896 | 0.840204 | 0.835198 | 0.812895 | 0.362030 | 0.848067 |
9° | 66,528 | 0.522953 | 0.852829 | 0.850078 | 0.819429 | 0.372490 | 0.848289 |
10° | 48,450 | 0.518514 | 0.841940 | 0.840475 | 0.816429 | 0.362270 | 0.853437 |
Objects to Be Tested | Average Value | Variance | Standard Deviation | Variable Coefficient |
---|---|---|---|---|
Object 1 Sphere | 0.51852650 | 0.00006353 | 0.00797067 | 0.01537177 |
Object 2 Cylinder | 0.84702125 | 0.00002824 | 0.00531391 | 0.00627365 |
Object 3 Capsule | 0.84301613 | 0.00003268 | 0.00571672 | 0.00678127 |
Object 4 OBB1 | 0.81284113 | 0.00001798 | 0.00424036 | 0.00521671 |
Object 5 OBB2 | 0.36456838 | 0.00001731 | 0.00416075 | 0.01141282 |
Object 6 Triangular Patch | 0.84488838 | 0.00001967 | 0.00443484 | 0.00524902 |
References
- MIL-HDBH-470A; Military Standardization Handbook, Designing And Developing Maintainable Products And Systems. Naval Publications and Form Center (NPFC): Philadelphia, PA, USA, 1997.
- Louison, C.; Ferlay, F.; Keller, D.; Mestre, D.R. Operators’ accessibility studies for assembly and maintenance scenarios using virtual reality. Fusion Eng. Des. 2017, 124, 610–614. [Google Scholar] [CrossRef]
- Gaoliang, P.; Yu, H.; Xinhua, L.; Yang, J.; He, X. A desktop virtual reality-based integrated system for complex product maintainability design and verification. Assem. Autom. 2010, 30, 333–344. [Google Scholar] [CrossRef]
- Liu, R.; Issa, R.R.A. Design for maintenance accessibility using BIM tools. Facilities 2014, 32, 153–159. [Google Scholar] [CrossRef]
- Geng, J.; Zhou, D.; Lv, C.; Wang, Z. A modeling approach for maintenance safety evaluation in a virtual maintenance environment. Comput.-Aided Des. 2013, 45, 937–949. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, R.; Kumar, U. Applying human factor analysis tools to a railway brake and wheel maintenance facility. J. Qual. Maint. Eng. 2015, 21, 89–99. [Google Scholar] [CrossRef]
- Sanjog, J.; Karmakar, S.; Patel, T.; Chowdhury, A. Towards virtual ergonomics: Aviation and aerospace. Aircr. Eng. Aerosp. Technol. Int. J. 2015, 87, 266–273. [Google Scholar] [CrossRef]
- Wolfa, A.; Krüger, D.; Miehling, J.; Wartzack, S. Approaching an ergonomic future: An affordance-based interaction concept for digital human models. Procedia CIRP 2019, 84, 520–525. [Google Scholar] [CrossRef]
- Zhu, W.; Fan, X.; Zhang, Y. Applications and research trends of digital human models in the manufacturing industry. Virtual Real. Intell. Hardw. 2019, 1, 558–579. [Google Scholar] [CrossRef]
- Emmatty, F.J.; Panicker, V.V.; Baradwaj, K.C. Ergonomic evaluation of work table for waste sorting tasks using digital human modelling. Int. J. Ind. Ergon. 2021, 84, 103–146. [Google Scholar] [CrossRef]
- Fabio, G.; Margherita, P.; Luca, Z.; Marcello, P. An automatic procedure based on virtual ergonomic analysis to promote human-centric manufacturing. Procedia Manuf. 2019, 38, 488–496. [Google Scholar] [CrossRef]
- Jin, Y.; Geng, J.; He, Z.; Lv, C.; Zhao, T. A capsule-based collision detection approach of irregular objects in virtual maintenance. Assem. Autom. 2021, 41, 89–105. [Google Scholar] [CrossRef]
- Geng, J.; Li, Y.; Wang, R.; Wang, Z.; Lv, C.; Zhou, D. A virtual maintenance-based approach for satellite assembling and troubleshooting assessment. Acta Astronaut. 2017, 138, 434–453. [Google Scholar] [CrossRef]
- MIL-HDBH-472; Military Standardization Handbook. Maintainability Prediction. Naval Publications and Form Center (NPFC): Philadelphia, PA, USA, 1996.
- Achouch, M.; Dimitrova, M.; Ziane, K.; Karganroudi, S.S.; Dhouib, R.; Ibrahim, H.; Adda, M. On Predictive Maintenance in Industry 4.0: Overview, Models, and Challenges. Appl. Sci. 2022, 12, 8081. [Google Scholar] [CrossRef]
- Pech, M.; Vrchota, J.; Bednar, J. Predictive Maintenance and Intelligent Sensors in Smart Factory: A review. Sensors 2021, 21, 1470. [Google Scholar] [CrossRef] [PubMed]
- Vrchota, J.; Řehoř, P.; Maříková, M.; Pech, M. Critical success factors of the project management in relation to industry 4.0 for sustainability of projects. Sustainability 2020, 13, 281. [Google Scholar] [CrossRef]
- Aminzadeh, A.; Karganroudi, S.S.; Meiabadi, M.S.; Mohan, D.G.; Ba, K. A Survey of Process Monitor-ing Using Computer-Aided Inspection in Laser-Welded Blanks of Light Metals Based on the Digital Twins Concept. Quantum. Beam. Sci. 2022, 6, 19. [Google Scholar] [CrossRef]
- Carreira, P.; Castelo, T.; Gomes, C.C.; Ferreira, A.; Ribeiro, C.; Costa, A.A. Virtual reality as integration environments for facilities management Application and users perception. Eng. Constr. Archit. Manag. 2018, 25, 90–112. [Google Scholar] [CrossRef]
- Honglun, H.; Shouqian, S.; Yunhe, P. Research on virtual human in ergonomic simulation. Comput. Ind. Eng. 2007, 53, 350–356. [Google Scholar] [CrossRef]
- Lee, J.Y. Shape representation and interoperability for virtual prototyping in a distributed design environment. Int. J. Adv. Manuf. Technol. 2001, 17, 425–434. [Google Scholar] [CrossRef]
- Liu, X.H.; Song, G.M.; Cui, X.L.; Xu, B.H.; Wang, K.; Wang, Z.B. Development of a virtual maintenance system for complex mechanical product. Adv. Mech. Eng. 2013, 5, 730925. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, W.; Chablat, D.; Bennis, F.; Guillaume, F. Multi-objective optimisation method for posture prediction and analysis with consideration of fatigue effect and its application case. Comput. Ind. Eng. 2009, 57, 1235–1246. [Google Scholar] [CrossRef] [Green Version]
- Geng, J.; Peng, X.; Qiu, B.; Wu, Q.; Lv, C.; Wang, Z.; Zhou, D. Simulation data integration-based approach for motion synthesis in virtual maintenance. Int. J. Adv. Manuf. Technol. 2018, 99, 1481–1501. [Google Scholar] [CrossRef]
- Jin, Y.; Lv, C.; Geng, J. A fingertips-based approach to select maintenance tool automatically in virtual environment. Int. J. Comput. Integr. Manuf. 2019, 32, 761–776. [Google Scholar] [CrossRef]
- Qiu, S.; He, Q.; Fan, X.; Wu, D. Virtual human hybrid control in virtual assembly and maintenance simulation. Int. J. Prod. Res. 2014, 52, 867–887. [Google Scholar] [CrossRef]
- Li, B.; Bi, Y.; He, Q.; Ren, J.; Li, Z. A low-complexity method for authoring an interactive virtual maintenance training system of hydroelectric generating equipment. Comput. Ind. 2018, 100, 159–172. [Google Scholar] [CrossRef]
- Li, J.R.; Khoo, L.P.; Tor, S.B. Desktop virtual reality for maintenance training: An object oriented prototype system (V-REALISM). Comput. Ind. 2003, 52, 109–125. [Google Scholar] [CrossRef]
- Ho, P.T.; Albajez, J.A.; Santolaria, J.; Yagüe-Fabra, J.A. Study of Augmented Reality Based Manufacturing for Further Inte-gration of Quality Control 4.0: A Systematic Literature Review. Appl. Sci. 2022, 12, 1961. [Google Scholar] [CrossRef]
- Pouliquen, M.; Bernard, A.; Marsot, J.; Chodorge, L. Virtual hands and virtual reality multimodal platform to design safer industrial systems. Comput. Ind. 2007, 58, 46–56. [Google Scholar] [CrossRef]
- Cai, K.; Zhang, W.; Chen, W.; Zhao, H. A study on product assembly and disassembly time prediction methodology based on virtual maintenance. Assem. Autom. 2019, 39, 566–580. [Google Scholar] [CrossRef]
- Qiu, S.; Yang, Y.; Fan, X.; He, Q. Human factors automatic evaluation for entire maintenance processes in virtual environment. Assem. Autom. 2014, 34, 357–369. [Google Scholar] [CrossRef]
- Ritucci, A.L.; Frizziero, L.; Liverani, A. Maintainability Approach: Hydraulic Pump with External Gears Explored with De-sign for Disassembly and Augmented Reality. Appl. Sci. 2021, 11, 666. [Google Scholar] [CrossRef]
- Aromaa, S.; Väänänen, K. Suitability of virtual prototypes to support human factors/ergonomics evaluation during the design. Appl. Ergon. 2016, 56, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Abdel-Malek, K. Human reach envelope and zone differentiation for ergonomic design. Hum. Factors Ergon. Manuf. 2009, 19, 15–34. [Google Scholar] [CrossRef]
- Yang, J.; Sinokrot, T.; Abdel-Malek, K. A general analytic approach for SantosTM upper extremity workspace. Comput. Ind. Eng. 2008, 54, 242–258. [Google Scholar] [CrossRef]
- Chen, J.; Yang, Y.; Ge, Z.; Luo, X.; Guan, F. A modeling method for continuous quantization of maintenance accessibility. In Proceedings of the 2014 Prognostics and System Health Management Conference, PHM, Zhangjiajie, China, 24–27 August 2014; pp. 593–597. [Google Scholar]
- Wang, W.; Zhang, W.; Feng, W. The Research of Maintainability Analysis Based on Immersive Virtual Maintenance Technology. In BT-Advances in Human Factors in Simulation and Modeling; Cassenti, D.N., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 573–582. [Google Scholar]
- Grignon, P.M.; Fadel, G.M. A GA Based Configuration Design Optimization Method. Journal of Mechanical Design. Trans. ASME 2004, 126, 6–15. [Google Scholar] [CrossRef]
i | Joint Angles | Zero Position | |||
---|---|---|---|---|---|
1 | −90° | −90° | 0 | 0 | |
2 | −90° | −90° | 0 | 0 | |
3 | −90° | 0° | l | 0 | |
4 | 0° | 90° | h | 0 | |
5 | 0° | −90° | 0 | 0 | |
6 | 90° | −90° | 0 | 0 | |
7 | 0° | 0° | 0 | 0 |
Product Model | Geometric Characteristic Data | ||
---|---|---|---|
Position Class | Range Class | Direction Class | |
Sphere | Center Coordinate | Radius | — |
OBB | Center Coordinate | Range Vector (Half Length of Three Sides) | Local Axes (Direction Vector of Three Sides) |
Cylinder | Axis Ends’ Coordinates | Radius | — |
Capsule | Axis Ends’ Coordinates | Radius | — |
Triangular Patch | Coordinates for Vertexes | — | Face’s Vertexes Connection Order |
Objects to Be Tested | Necessary Geometric Characteristic Data (mm) | Hand Coordinates (mm) | ||
---|---|---|---|---|
Position Class | Range Class | Direction Class | ||
Object 1 (Sphere) | (68.17, −387.15, 72.26) | 250.4977 | — | x = 217.24 y = 71.10 z = 27.97 |
Object 2 (Cylinder) | (796.61, 0.53, −73.66) (672.16, 64.31, 29.61) | 134.2806 | — | |
Object 3 (OBB) | (94.898, 388.26, 33.30) | [133.41, 140.89, 196.39] | u [-0.1902, 0.3570, −0.9145] v [0.4300, −0.8071, −0.4045] v [−0.8826, −0.4702, 0] |
Objects to Be Tested | Necessary Geometric Characteristic Data (mm) | Hand Coordinates (mm) | ||
---|---|---|---|---|
Position Class | Range Class | Direction Class | ||
Object 1 (Sphere) | (−306.84, 33.05, 0) | 148.65 | — | x = −14.76 y = −25.77 z = 45.49 |
Object 2 (Cylinder) | (−128.13, 463.47, 23.52) (−145.23, 335.65, 176.75) | 102.64 | — | |
Object 3 (OBB) | (240.31, 423.67, 73.945) | [124.49, 82.90, 73.95] | u [0.8708, −0.4763, −0.1214] v [−0.0529, 0.1547, −0.9865] w [−0.4887, −0.8655, −0.1095] | |
Object 4 (OBB) | (493.56, 115.57, 18.635) | [67.06, 63.16, 82.47] | u [0.1930, 0.3982, −0.8968] v [−0.7581, −0.5197, −0.3939] w [0.6229, −0.7559, −0.2015] | |
Object 5 (OBB) | (28.5, −331.99, 77.8) | [70.58, 143.56, 77.80] | u [0.2798, 0.4915, −0.8247] v [0.2627, −0.8654, −0.4266] w [−0.9234, −0.0973, −0.3714] |
Objects to Be Tested | Necessary Geometric Characteristic Data (mm) | Hand Coordinate (mm) | ||
---|---|---|---|---|
Position Class | Range Class | Direction Class | ||
Object 1 (Sphere) | (−304.78, 58.23, 2.84) | 135.48 | — | x = 74.02 y = 284.65 z = 60.80 |
Object 2 (Sphere) | (174.60, −5.64, 37.27) | 148.65 | — | |
Object 3 (Cylinder) | (−215.70, 383.47, 208.77) (−198.60, 511.29, 55.55) | 102.64 | — | |
Object 3 (Capsule) | (85.13, 312.14, 361.81) (343.23, 258.90, 361.81) | 95.76 | — | |
Object 5 (OBB) | (248.80, 457.52, 107.06) | [124.50, 82.90, 73.95] | u [0.7437, −0.3476, −0.5710] v [0.0847, 0.8964, −0.4352] w [-0.6631, −0.2752, −0.6961] | |
Object 6 (OBB) | (−103.40, 263.99, −242.31) | [142.10, 170.63, 77.80] | u [0.5516, −0.1250, 0.8247] v [0.7518, 0.5029, −0.4266] w [0.3613, −0.8553, −0.3713] | |
Object 7 (OBB) | (490.63, 103.71, 30.84) | [87.15, 66.75, 90.91] | u [−0.6229, 0.7559, 0.2016] v [0.7581, 0.5196, 0.3939] w [0.1930, 0.3982, −0.8968] |
Objects to Be Tested | Necessary Geometric Characteristic Data (mm) | Hand Coordinates (mm) | |||||
---|---|---|---|---|---|---|---|
Position Class | Range Class | Direction Class | |||||
Object 1 (Sphere) | (22.21, 599.09, 630.79) | 147.34 | — | x = 58.45 y = 265.98 z = 29.46 | |||
Object 2 (Sphere) | (515.04, 1.04, 471.33) | 126.01 | — | ||||
Object 3 (Sphere) | (−65.00, −396.52, 169.93) | 147.69 | — | ||||
Object 4 (Sphere) | (−557.83, 201.53, 329.40) | 103.68 | — | ||||
Object 5 (Sphere) | (268.62, 300.07, 551.06) | 110.35 | — | ||||
Object 6 (Sphere) | (−311.41, −97.50, 249.67) | 138.75 | — | ||||
Object 7 (Cylinder) | (427.98, 581.87, −13.35) | (337.05, 394.31, 409.04) | 140.84 | — | |||
Object 8 (Cylinder) | (372.07, 34.36, −268.50) | (281.14, −153.20, 153.89) | 126.45 | — | |||
Object 9 (Cylinder) | (−220.15, 137.65, −350.12) | (−311.08, −49.91, 72.27) | 134.72 | — | |||
Object 10 (Cylinder) | (−164.24, 685.16, −94.97) | (−255.17, 497.60, 327.42) | 110.62 | — | |||
Object 11 (Capsule) | (181.90, 928.48, −111.01) | (674.73, 330.43, −270.48) | 127.16 | — | |||
Object 12 (Capsule) | (−398.14, 530.92, −412.41) | (94.69, −67.13, −571.87) | 135.13 | — | |||
Object 13 (Capsule) | (−108.12, 729.70, −261.71) | (384.71, 131.65, −421.18) | 147.82 | — | |||
Object 14 (OBB) | (102.05, 763.79, 259.89) | [131.33, 104.72, 109.00] | u [0.1656, 0.9473, 0.2744] v [0.6893, −0.3101, 0.6547] w [0.7053, 0.0807, −0.7043] | ||||
Object 15 (OBB) | (594.89, 165.74, 100.43) | [126.94, 143.88, 146.31] | u [0.7549, 0.0344, −0.6549] v [0.6547, −0.0990, 0.7494] w [0.0391, 0.9945, 0.0972] | ||||
Object 16 (OBB) | (14.85, −231.83, −200.97) | [132.53, 100.72, 103.41] | u [0.8001, −0.1798, 0.5724] v [0.5981, 0.1639, −0.7845] w [0.0472, 0.9700, 0.2386] | ||||
Object 17 (OBB) | (−477.99, 366.22, −41.51) | [136.33, 114.72, 129.05] | u [0.5842, −0.7341, −0.3462] v [0.5084, −0.0016, 0.8611] w [0.6327, 0.6791, −0.3723] | ||||
Object 18 (Irregular Object Represented by Triangular Patches) | P1 (225.02, −197.74, 370.88) P2 (276.28, −197.74, 320.63) P3 (240.86, −148.99, 320.63) P4 (183.55, −167.61, 320.63) | P5 (183.55, −227.87, 320.63) P6 (240.86, −246.49, 320.63) P7 (225.02, −197.74, 270.38) | — | (P1, P2, P3) | (P1, P6, P2) | (P4, P5, P7) | |
(P1, P3, P4) | (P2, P3, P7) | (P5, P6, P7) | |||||
(P1, P4, P5) | (P3, P4, P7) | (P6, P2, P7) | |||||
(P1, P5, P6) | |||||||
Object 19 (Irregular Object Represented by Triangular Patches) | P1 (−267.81, 400.31, 541.67) P2 (−214.75, 400.31, 480.10) P3 (−241.28, 446.26, 480.10) P4 (−294.34, 446.26, 480.10) | P5 (−320.87, 400.31, 480.10) P6 (−294.34, 354.36, 480.10) P7 (−241.28, 354.36, 480.10) P8 (−267.81, 400.31, 418.53) | — | (P1, P2, P3) | (P1, P6, P7) | (P4, P5, P8) | |
(P1, P3, P4) | (P1, P7, P2) | (P5, P6, P8) | |||||
(P1, P4, P5) | (P2, P3, P8) | (P6, P7, P8) | |||||
(P1, P5, P6) | (P3, P4, P8) | (P7, P2, P8) |
Division Value | Quantity of the Initial Solution | Scene 1 | Scene 2 | Scene 3 | Scene 4 | ||||
---|---|---|---|---|---|---|---|---|---|
Original Value | Average Value | Original Value | Average Value | Original Value | Average Value | Original Value | Average Value | ||
3° | 4,981,824 | 7.563694 | 7.540827 | 11.908870 | 11.86982 | 13.781394 | 14.091758 | 49.09117 | 48.913218 |
7.521761 | 11.652367 | 13.962062 | 48.86793 | ||||||
7.537027 | 12.048212 | 14.531819 | 48.78056 | ||||||
4° | 1,595,556 | 2.534249 | 2.511348 | 3.927523 | 3.884259 | 4.821261 | 4.743497 | 19.41575 | 19.420245 |
2.488741 | 3.850726 | 4.773427 | 19.24142 | ||||||
2.511055 | 3.874527 | 4.635803 | 19.60356 | ||||||
5° | 690,954 | 1.215654 | 1.198221 | 1.891283 | 1.857310 | 2.462933 | 2.432991 | 11.46066 | 11.461423 |
1.190019 | 1.878364 | 2.436729 | 11.47515 | ||||||
1.188991 | 1.802282 | 2.399312 | 11.44846 | ||||||
6° | 321,408 | 0.736962 | 0.689658 | 1.065829 | 1.015121 | 1.410491 | 1.374507 | 8.246137 | 8.243521 |
0.679460 | 0.973468 | 1.351717 | 8.265693 | ||||||
0.652551 | 1.006067 | 1.361314 | 8.218733 | ||||||
7° | 169,533 | 0.514386 | 0.492571 | 0.700348 | 0.683232 | 0.869385 | 0.883408 | 6.866653 | 6.916059 |
0.477544 | 0.663157 | 0.860397 | 6.985432 | ||||||
0.485783 | 0.686192 | 0.920443 | 6.896092 | ||||||
8° | 108,864 | 0.389968 | 0.378775 | 0.581512 | 0.576356 | 0.742773 | 0.724335 | 6.280376 | 6.295347 |
0.364600 | 0.610199 | 0.70081 | 6.320756 | ||||||
0.381758 | 0.537356 | 0.729423 | 6.284908 | ||||||
9° | 66,528 | 0.315801 | 0.297481 | 0.449422 | 0.432285 | 0.556314 | 0.558371 | 5.995492 | 5.282333 |
0.294360 | 0.429213 | 0.573013 | 6.030587 | ||||||
0.282283 | 0.418219 | 0.545785 | 5.971768 | ||||||
10° | 48,450 | 0.291584 | 0.287173 | 0.404568 | 0.408200 | 0.511533 | 0.527139 | 5.651172 | 5.670438 |
0.265109 | 0.391777 | 0.528807 | 5.760809 | ||||||
0.304827 | 0.428255 | 0.541078 | 5.599334 |
Division Value (Quantity of the Initial Solution) | Scene 1 | Scene 2 | Scene 3 | Scene 4 |
---|---|---|---|---|
3° (4,981,824) | 0.660797 | 0.670268 | 0.176648 | 0.148202 |
4° (1,595,556) | 0.663554 | 0.672205 | 0.178140 | 0.151271 |
5° (690,954) | 0.662927 | 0.671952 | 0.178584 | 0.152019 |
6° (321,408) | 0.661381 | 0.673322 | 0.177351 | 0.147205 |
7° (169,533) | 0.664514 | 0.666684 | 0.177659 | 0.157727 |
8° (108,864) | 0.665812 | 0.676495 | 0.181915 | 0.152732 |
9° (66,528) | 0.658475 | 0.673626 | 0.180435 | 0.148855 |
10° (48,450) | 0.67356 | 0.676533 | 0.176718 | 0.152219 |
Scene | Average Value | Variance | Standard Deviation | Variable Coefficient |
---|---|---|---|---|
Scene 1 | 0.66387750 | 0.00001798 | 0.00423992 | 0.00638660 |
Scene 2 | 0.67263563 | 0.00000915 | 0.00302524 | 0.00449759 |
Scene 3 | 0.17843125 | 0.00000302 | 0.00173703 | 0.00973501 |
Scene 4 | 0.15127875 | 0.00000963 | 0.00310363 | 0.02051600 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, J.; Li, Y.; Guo, H.; Zhang, H.; Lv, C. Spatial Data-Based Automatic and Quantitative Approach in Analyzing Maintenance Reachability. Appl. Sci. 2022, 12, 12804. https://doi.org/10.3390/app122412804
Geng J, Li Y, Guo H, Zhang H, Lv C. Spatial Data-Based Automatic and Quantitative Approach in Analyzing Maintenance Reachability. Applied Sciences. 2022; 12(24):12804. https://doi.org/10.3390/app122412804
Chicago/Turabian StyleGeng, Jie, Ying Li, Hailong Guo, Huan Zhang, and Chuan Lv. 2022. "Spatial Data-Based Automatic and Quantitative Approach in Analyzing Maintenance Reachability" Applied Sciences 12, no. 24: 12804. https://doi.org/10.3390/app122412804
APA StyleGeng, J., Li, Y., Guo, H., Zhang, H., & Lv, C. (2022). Spatial Data-Based Automatic and Quantitative Approach in Analyzing Maintenance Reachability. Applied Sciences, 12(24), 12804. https://doi.org/10.3390/app122412804