Application and Comparison of Non-Contact Vibration Monitoring Methods for Concrete Railway Sleepers
Abstract
:1. Introduction
The Purpose of Research
2. Methods for Measuring Dynamic Response
Measuring Equipment and Methods
- A Minimate Plus seismograph with Instantel geophone, Canada;
- A Leica TS 50 RTS with associated geodetic target from Leica Geosystems AG, Switzerland;
- A Polytec PDV 100 laser Doppler vibrometer (LDV) from Polytec GmbH, Germany.
3. Results
3.1. Dynamic Response Measurements in a Test Field on a Section of Railway Line
3.2. Dynamic Response Measurements on the Test Field in the Laboratory
4. Analysis, Comparison and Discussion of the Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rozli, M.I.F.; Safiuddin, M.H.; Dora, A.G.K.; Senin, S.F.; Rahman, A.S.A.; Ali, M.; Amin, N.M.; Nordin, M.N.F. Investigation of prestressed concrete sleeper’s vibration located at KM71.75 And KM79. IOP Conf. Ser. Earth Environ. Sci. 2020, 476, 012060. [Google Scholar] [CrossRef]
- Kumaran, G.; Menon, D.; Nair, K.K. Dynamic studies of railtrack speepers in a truck structure system. J. Sound Vib. 2003, 286, 485–501. [Google Scholar] [CrossRef]
- Çeçen, F.; Aktaş, B. Yeni Nesil Demiryolu Traversleri ve Yerli FRP Donatı Kullanımının Deneysel Aras¸tırması. Demiryolu Mühendisliği 2021, 13, 53–64. [Google Scholar]
- Çeçen, F.; Aktas, B. Modal and Harmonic Response Analysis of New CFRP Laminate Reinforced Concrete Railway Sleepers. Eng. Fail. Anal. 2021, 127, 105471. [Google Scholar] [CrossRef]
- Coelho, B.; Holscher, P.; Priest, J.; Powrie, W.; Barends, F. An assessment of transition zone performance. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2021, 225, 129–139. [Google Scholar] [CrossRef]
- Esveld, C. Modern Railway Track, 2nd ed.; MRT-Productions, TU Delft: Zaltbommel, The Netherlands, 2001. [Google Scholar]
- Varandas, J.; Holscher, P.; Silva, M.A.G. Settlement of ballasted track under traffic loading: Application to transition zones. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2013, 228, 242–259. [Google Scholar] [CrossRef]
- Grassie, S.L. Dynamic modelling of concrete railway sleepers. J Sound Vib. 1995, 187, 799–813. [Google Scholar] [CrossRef]
- Roberts, G.W.; Meng, X.; Henry Dodson, A. Integrating a global positioning system and accelerometers to monitor the deflection of bridges. J. Surv. Eng. 2004, 130, 65–72. [Google Scholar] [CrossRef]
- Ma, W.; Mu, Y.; Wu, Q.; Sun, Z.; Liu, Y. Characteristics and mechanisms of embankment deformation along the Qinghai–Tibet Railway in permafrost regions. Cold Reg. Sci. Technol. 2011, 167, 178–186. [Google Scholar] [CrossRef]
- Stiros, S.; Psimoulis, P. Response of a historical short-span railway bridge to passing trains: 3-D deflections and dominant frequencies derived from Robotic Total Station (RTS) measurements. Eng. Struct. 2012, 45, 362–371. [Google Scholar] [CrossRef]
- Paar, R.; Marendič, A.; Jakopec, I.; Grgac, I. Vibration Monitoring of Civil Engineering Structures Using Contactless Vision-Based Low-Cost IATS Prototype. Sensors 2021, 21, 7952. [Google Scholar] [CrossRef]
- Palazzo, D.; Friedmann, R.; Nadal, C.; Filho, M.S.; Veiga, L.; Faggion, P. Dynamic Monitoring of Structures Using a Robotic Total Station. In Proceedings of the XXIII FIG Congress, Muenchen, Germany, 8–13 October 2006. [Google Scholar]
- Rüeger, J.M. Overview of geodetic deformation measurements of Dams, Australian National Commitee on Large Dams. In Proceedings of the Annual Congress of the Australian National Committee on Large Dams (ANCOLD), Sydney, Australia, 20–22 November 2006. [Google Scholar]
- DeLoach, S.R. Continuous deformation monitoring with GPS. J. Surv. Eng. 1989, 115, 93–110. [Google Scholar] [CrossRef]
- Lekidis, V.; Tsakiri, M.; Makra, K.; Karakostas, C.; Klimis, N.; Sous, I. Evaluation of Dynamic Response and Local Soil Effects of the Evripos Cablestayed Bridge Using Multi-Sensor Monitoring Systems. Eng. Geol. 2005, 179, 7–17. [Google Scholar]
- Lienhard, W.; Ehrhart, M.; Grick, M. High Frequent Total Station Measurements for the Monitoring of Bridge Vibrations. In Proceedings of the 3rd Joint International Symposium on Deformation Monitoring (JISDM), Vienna, Austria, 30 March–1 April 2016. [Google Scholar]
- Schmitz, B.; Holst, C.; Medic, T.; Lichti, D.D.; Kuhlmann, H. How to Efficiently Determine the Range Precision of 3D Terrestrial Laser Scanners. Sensors 2019, 19, 1466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, Z.; Kuang, C.; Wang, Y.; Yu, W.; Cai, C.; Dai, W. Combination of High- and Low-Rate GPS Receivers for Monitoring Wind-Induced Response of Tall Buildings. Sensors 2018, 18, 4100. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Steward, K.; Tang, L.; Xie, Z.; Li, Q. A Review of GPS Trajectories Classification Based on Transportation Mode. Sensors 2018, 18, 3741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Psimoulius, P.; Pytharouli, S.; Karambalis, D.; Stiros, S. Potencial of GPS to measure frequencies of oscillation of engineering structures. J. Sound Vib. 2008, 318, 606–623. [Google Scholar] [CrossRef]
- Psimoulius, P.; Stiros, S. Monitoring of Bridged Structures Using GPS and RTS Experimental and Field Evidence. In Proceedings of the 4th International Conference on Engineering Surveying INGEO, Bratislava, Slovakia, 23–24 October 2008. [Google Scholar]
- Novakovic, G.; Marendić, A.; Grgac, I.; Paar, R.; Ilijaš, R. Locata—A New Technology for High Precision Outdoor and Indoor Positioning. Geodetski List 2015, 69, 279–304. [Google Scholar]
- Psimoulis, S.; Stiros, S. Measuring deflections of a Short-span Railway Bridges Using Robotic Total Station. J. Bridge Eng. 2013, 18, 182–185. [Google Scholar] [CrossRef]
- Poyraz, F. Uncertainty in the Determination of Fault Locking Depth and Strike Slip Rates by GNSS Measurements. Tech. Gaz. 2016, 23, 107–114. [Google Scholar]
- Grgić, I.; Repanić, M.; Malović, I. Preliminary Results of Combined Geodetic Methods in Monitoring. Tech. Gaz. 2017, 24, 301–308. [Google Scholar]
- Guntel, A.; Karabork, H.; Karasaka, L. Accuracy of Control Point Distribution for Different Terrain Types on Photogrammetric Block. Tech. Gaz. 2018, 25, 66–74. [Google Scholar]
- Ilci, V.; Ozulu, I.; Arslan, E.; Alkan, R.M. Investigation on the Accuracy of Existing Qibla Directions of the Mosques from Different Periods: A Case Study in Çorum City, Turkey. Tech. Gaz. 2018, 25, 1642–1649. [Google Scholar]
- Stempfhuber, W. The Integration of Kinematic Measuring Sensors for Precision Farming. In Proceedings of the 3rd International Symposium on Mobile Mapping Technology, Cairo, Egypt, 16–21 April 2000. [Google Scholar]
- Radovanovic, R.S.; Teskey, W.F. Dynamic monitoring of deforming structures: GPS versus robotic tacheometry systems. In Proceedings of the 10th FIG Symposium on Deformation Measurements, Orange, CA, USA, 19–22 March 2001. [Google Scholar]
- Kopačik, A.; Kyronović, P.; Kadlecikova, V. Laboratory Tests of Robotic Stations. In Proceedings of the FIG Working Week, Cairo, Egypt, 16–21 April 2005. [Google Scholar]
- Ceryova, I.; Kubanka, P.; Kopačik, A.; Kyrinović, P. Dynamic Tests of Robot Stations. In Proceedings of the FIF XXII International Congress, Washington, DC, USA, 15–19 March 2002. [Google Scholar]
- Chua, S.C. Testing of Robotic Total Stations for Dynamic Tracking. Bachelor’s Thesis, University of Southern Queensland, Faculty of Engineering and Surveying, Toowoomba, Australia, 2004. [Google Scholar]
- Garget, D. Testing of Robotic Total Stations for Dynamic Tracking. Bachelor’s Thesis, University of Southern Queensland, Faculty of Engineering ang Surveying, Toowoomba, Australia, 2005. [Google Scholar]
- Gikas, V.; Daskalakis, S. Full Scale Validation of Tracking Total Stations Using a Long Stroke Electrodynamic Shaker. In Proceedings of the 13th FIG Congress Shaping the Change, Munich, Germany, 8–13 October 2006. [Google Scholar]
- Cosser, E.; Roberts, G.W.; Meng, X.; Dodson, A.H. Measuring the dynamic deformation of bridges using a total station. In Proceedings of the 11th FIG Symposium of Deformation Monitoring, Santorini, Greece, 25–28 May 2003. [Google Scholar]
- Ferrer, B.; Espinosa, J.; Roig, A.; Perez, J.; Mas, D. Vibration frequency measurement using a local multithreshold technique. Opt. Express 2013, 21, 26198–26208. [Google Scholar] [CrossRef] [PubMed]
- Ugwiri, M.A.; Carratù, M.; Pietrosanto, A.; Paciello, V.; Lay-Ekuakille, A. Vibrations Measurement and Current Signatures for Fault Detection in Asynchronous Motor. In Proceedings of the 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Dubrovnik, Croatia, 25–28 May 2020; pp. 1–6. [Google Scholar]
- Górski, P.; Napieraj, M.; Konopka, E. Variability evaluation of dynamic characteristics of highway steel bridge based on daily traffic-induced vibrations. Measurement 2020, 164, 108074. [Google Scholar] [CrossRef]
- Durand-Texte, T.; Melon, M.; Simonetto, E.; Durand, S.; Moulet, S.H. Single-camera single-axis vision method applied to measure vibrations. J. Sound Vib. 2020, 465, 115012. [Google Scholar] [CrossRef]
- Komarizadehasl, S.; Mobaraki, B.; Ma, H.; Lozano-Galant, J.-A.; Turmo, J. Development of a Low-Cost System for the Accurate Measurement of Structural Vibrations. Sensors 2021, 21, 6191. [Google Scholar] [CrossRef]
- Shang, Z.; Sun, L.; Xia, Y.; Zhang, W. Vibration-based damage detection for bridges by deep convolutional denoising autoencoder. Struct. Health Monit. 2021, 20, 1880–1903. [Google Scholar] [CrossRef]
- Zhao, J.; Li, W.; Guo, X.; Wang, H.; Rogers, J.A.; Huang, Y. Theoretical modeling of tunable vibrations of three-dimensional serpentine structures for simultaneous measurement of adherent cell mass and modulus. MRS Bull. 2021, 46, 107–114. [Google Scholar] [CrossRef]
- Cardona, C.I.; Tinoco, H.A.; Perdomo-Hurtado, L.; López-Guzmán, J.; Pereira, D.A. Vibrations Analysis of the Fruit-Pedicel System of Coffea arabica var. Castillo Using Time–Frequency and Wavelets Techniques. Appl. Sci. 2021, 11, 9346. [Google Scholar] [CrossRef]
- Li, L.; Cai, H.; Jiang, Q. Adaptive synchrosqueezing transform with a time-varying parameter for non-stationary signal separation. Appl. Comput. Harmon. Anal. 2020, 49, 1075–1106. [Google Scholar] [CrossRef] [Green Version]
- Sakurai, N.; Akimoto, H.; Takashima, T. Measurement of vertical and horizontal vibrations of a probe for acoustic evaluation of food texture. J. Text. Stud. 2020, 52, 25–35. [Google Scholar] [CrossRef]
- Meng, X.; Dodson, A.; Roberts, G.W. Detecting bridge dynamics with GPS and triaxial accelometers. Eng. Struct. 2007, 29, 3178–3184. [Google Scholar] [CrossRef]
- Celebi, M.; Sanli, A. GPS in Pioneering Dynamic Monitoring of Long-Period Structures. Earth-Quake Spectra 2001, 18, 47–61. [Google Scholar] [CrossRef]
- Marendič, A.; Paar, R.; Duvnjak, I.; Buterin, A. Determination of dynamic displacements of the roof of sports hall Arena Zagreb. In Proceedings of the Conference INGEO 2014, Prague, Czech Republic, 3–4 April 2014. [Google Scholar]
- D’Apuzzo, M.; Festa, B.; Giuliana, G.; Mancini, L.; Nicolosi, V. The Evaluation of Runway Surface Properties. A New Approach. Procedia Soc. Behav. Sci. 2012, 53, 1192–1201. [Google Scholar] [CrossRef]
- Bianchini Ciampoli, L.; Gagliardi, V.; Ferrante, C.; Calvi, A.; D’Amico, F.; Tosti, F. Displacement Monitoring in Airport Runways by Persistent Scatterers SAR Interferometry. Remote Sens. 2020, 12, 3564. [Google Scholar] [CrossRef]
- Ding, W.; Wu, J. An Airport Knowledge-Based Method for Accurate Change Analysis of Airport Runways in VHR Remote Sensing Images. Remote Sens. 2020, 12, 3163. [Google Scholar] [CrossRef]
- Đapo, A. Obrada i intrepretacija geodetskih mjerenja na Geodinamičkoj mreži Grada Zagreba. Master’s Thesis, University of Zagreb, Faculty of Geodesy, Zagreb, Croatia, 2005. [Google Scholar]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatterers in SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Pribičević, B.; Medak, D.; Đapo, A. Densification of the Zagreb Geodynamic Network in the area of northeast Medvednica. Geodetski List 2007, 61, 247–258. [Google Scholar]
- Mileusnic, M.; Parlov, J.; Bacani, A.; Durn, G. Conceptual model for groundwater status and risk assessment—Case study of the Zagreb aquifer system. Geol. Croat. 2013, 66, 55–76. [Google Scholar]
- Osmanoglu, B.; Sunar, F.; Wdowinski, S.; Cabral-Cano, E. Time series analysis of InSAR data: Methods and trends. ISPRS J. Photogramm. Remote Sens. 2016, 115, 90–102. [Google Scholar] [CrossRef]
- Wang, W. Protocol Based Pavement Cracking Measurement with 1 mm 3D Pavement Surface Model. Ph.D. Thesis, Oklahoma State University, Stillwater, OK, USA, 2015. [Google Scholar]
- Kamath, V.R.; Martinez, J.C. Generic representation of 3D motion paths in dynamic animations of simulated construction processes. Autom. Constr. 2008, 17, 188–200. [Google Scholar] [CrossRef]
- Khoemarga, K.V.; Tajudin, A.N. Structural design of Airport runway Case study: Jos Orno Imsula MOA Airport. IOP Conf. Ser. Mater. Sci. Eng. 2020, 852, 012013. [Google Scholar] [CrossRef]
- Becek, K.; Koppe, W.; Kutoğlu, Ş.H. Evaluation of Vertical Accuracy of the WorldDEM™ Using the Runway Method. Remote Sens. 2016, 8, 934. [Google Scholar] [CrossRef] [Green Version]
- Shewale, M.S.; Mulik, S.S.; Deshmukh, S.P.; Patange, A.D.; Zambare, H.B.; Sundare, A.P. Novel Machine Health Monitoring System. In Proceedings of the 2nd International Conference on Data Engineering and Communication Technology, Advances in Intelligent Systems and Computing; Springer: Singapore, 2019; Volume 828, pp. 461–468. [Google Scholar]
- Patange, A.D.; Jegadeeshwaran, R.; Bajaj, N.S.; Khairnar, A.N.; Gavade, N.A. Application of Machine Learning for Tool Condition Monitoring in Turning. Sound Vib. 2022, 56, 127–145. [Google Scholar] [CrossRef]
- Marendić, A. Primjena geodetskih mjernih sustava u nadgledanju građevina s naglaskom na praćenje dinamičkih pomaka. Ph.D. Thesis, University of Zagreb Faculty of Geodesy, Zagreb, Croatia, 2011. [Google Scholar]
- Motoh, T. Možnost merjenja dinamičnega odziva konstrukcij z nekontaktnimi geodetskimi metodami. Master’s Thesis, University of Maribor, Maribor, Slovenia, 2017. [Google Scholar]
- Benoit, P.; Le Donatien, H. Diagnosis and prediction of vibration from railway trains. Soil Dyn. Earthq. Eng. 2005, 25, 905–921. [Google Scholar]
Measuring range | Up to 254 mm/s |
Resolution | 0.127 mm/s |
Accuracy | ±0.5% |
Frequency range | 2–250 Hz |
Angle Measurement Accuracy | 0.5″ |
Minimum reading | 0.01″ |
Accuracy of the reflector measurement | 0.6″ + 1 ppm |
Measurement accuracy without reflector | 2.0″ + 2 ppm |
Capture frequency—original Capture frequency with GeoCOM/ZG | Up to 9 Hz Up to 30 Hz |
Frequency range | 0–22 kHz |
Full-scale peak | 20/100/500 mm/s |
Scaling factor | 5/25/125 m s−1/V |
Velocity resolution | ˂0.02 μm s−1/Hz0.5 |
Maximum acceleration | 2760/13,800/69,000 m s−2 |
Passenger Train | Vertical Displacement (mm) |
---|---|
RTS | 2.97 |
LDV | 2.62 |
Freight Train | Vertical Displacement (mm) |
---|---|
RTS | 8.13 |
LDV | 9.12 |
Passenger Train | Transversal | Vertical | Longitudinal |
---|---|---|---|
Peak particle velocity (mm/s) | 8.128 | 23.11 | 5.715 |
ZC frequency (Hz) | 9.3 | 7.2 | >100 |
Peak acceleration (g) | 0.848 | 1.551 | 0.729 |
Peak displacement (mm) | 0.161 | 0.292 | 0.093 |
FFT dominant frequency (fHz) | 2.936 | 3.500 | 4.125 |
Freight Train | Transversal | Vertical | Longitudinal |
---|---|---|---|
Peak particle velocity (mm/s) | 17.91 | 69.09 | 20.70 |
ZC frequency (fHzg) | >100 | >100 | >100 |
Peak acceleration (fg) | 2.678 | 5.780 | 2.492 |
Peak displacement (fmm) | 0.115 | 0.492 | 0.063 |
FFT dominant frequency (fHz) | 2.563 | 2.563 | 2.563 |
Vertical Displacement (mm) | Lomb Scargle Periodogram (Range 0–1 Hz) | A(f) | |||||
---|---|---|---|---|---|---|---|
Min | Max | Δ | Min | Max | Δ | ||
TS50 | −5.03 | 1.21 | 6.23 | −47.7113 | −22.7398 | 24.9715 | 0.005322 |
Measuring Device | Frequency Range (Hz) | Dominant Frequency (Hz) | Amplitude | Vertical Displacement (mm) |
---|---|---|---|---|
RTS Leica TS50 | 26 Hz | 2.5555 | 0.5200 | 5.18 |
Instantel Minimate Plus | 250 Hz | 3.307 | 0.307 | - |
Polytec PDV 100 | 2.4 kHz | 1.484 | 1.559 | 5.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovačič, B.; Toplak, S.; Paar, R.; Lubej, S. Application and Comparison of Non-Contact Vibration Monitoring Methods for Concrete Railway Sleepers. Appl. Sci. 2022, 12, 12875. https://doi.org/10.3390/app122412875
Kovačič B, Toplak S, Paar R, Lubej S. Application and Comparison of Non-Contact Vibration Monitoring Methods for Concrete Railway Sleepers. Applied Sciences. 2022; 12(24):12875. https://doi.org/10.3390/app122412875
Chicago/Turabian StyleKovačič, Boštjan, Sebastian Toplak, Rinaldo Paar, and Samo Lubej. 2022. "Application and Comparison of Non-Contact Vibration Monitoring Methods for Concrete Railway Sleepers" Applied Sciences 12, no. 24: 12875. https://doi.org/10.3390/app122412875
APA StyleKovačič, B., Toplak, S., Paar, R., & Lubej, S. (2022). Application and Comparison of Non-Contact Vibration Monitoring Methods for Concrete Railway Sleepers. Applied Sciences, 12(24), 12875. https://doi.org/10.3390/app122412875