Agreement and Differences between Fat Estimation Formulas Using Kinanthropometry in a Physically Active Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Procedure
2.4. Statistical Analysis
3. Results
3.1. Descriptive Analysis and Differences between Lipid Mass Estimation Formulas
3.2. Agreement and Concordance between Lipid Mass Estimation Formulas
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carnero, E.A.; Alvero-Cruz, J.R.; Giráldez, M.A.; Sardinha, L.B. La Evaluación de La Composición Corporal “In Vivo”; Parte I: Perspectiva Histórica. Nutr. Hosp. 2015, 31, 1957–1967. [Google Scholar] [CrossRef] [PubMed]
- Ben Mansour, G.; Kacem, A.; Ishak, M.; Grélot, L.; Ftaiti, F. The effect of body composition on strength and power in male and female students. BMC Sports Sci. Med. Rehabil. 2021, 13, 150. [Google Scholar] [CrossRef]
- Pletcher, E.R.; Lovalekar, M.; Coleman, L.C.; Beals, K.; Nindl, B.C.; Allison, K.F. Decreased Percent Body Fat but Not Body Mass is Associated with Better Performance on Combat Fitness Test in Male and Female Marines. J. Strength Cond. Res. 2022; 24, Online ahead of print. [Google Scholar] [CrossRef]
- Doran, D.A.; Mc Geever, S.; Collins, K.D.; Quinn, C.; McElhone, R.; Scott, M. The Validity of Commonly Used Adipose Tissue Body Composition Equations Relative to Dual Energy X-ray Absorptiometry (DXA) in Gaelic Games Players. Int. J. Sports Med. 2014, 35, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Vaquero-Cristóbal, R.; Albaladejo-Saura, M.; Luna-Badachi, A.E.; Esparza-Ros, F. Differences in Fat Mass Estimation Formulas in Physically Active Adult Population and Relationship with Sums of Skinfolds. Int. J. Environ. Res. Public Health 2020, 17, 7777. [Google Scholar] [CrossRef] [PubMed]
- Kasper, A.M.; Langan-Evans, C.; Hudson, J.F.; Brownlee, T.E.; Harper, L.D.; Naughton, R.J.; Morton, J.P.; Close, G.L. Come Back Skinfolds, All Is Forgiven: A Narrative Review of the Efficacy of Common Body Composition Methods in Applied Sports Practice. Nutrients 2021, 13, 1075. [Google Scholar] [CrossRef] [PubMed]
- Campa, F.; Toselli, S.; Mazzilli, M.; Gobbo, L.A.; Coratella, G. Assessment of Body Composition in Athletes: A Narrative Review of Available Methods with Special Reference to Quantitative and Qualitative Bioimpedance Analysis. Nutrients 2021, 13, 1620. [Google Scholar] [CrossRef]
- Esparza-Ros, F.; Moreira, A.C.; Vaquero-Cristóbal, R.; Barrigas, C.; Albaladejo-Saura, M.; Vieira, F. Differences between Four Skinfold Calipers in the Assessment of Adipose Tissue in Young Adult Healthy Population. Nutrients 2022, 14, 2085. [Google Scholar] [CrossRef]
- Holway, F.; Boullosa, M.; Peniche, Z. Composición Corporal En Nutrición Deportiva. In Nutrición Aplicada al Deporte; Boullosa, M.B., Peniche, Z.C., Eds.; McGraw Hill: Madrid, Spain, 2011; pp. 195–218. ISBN 9786071505705. [Google Scholar]
- Moreira, O.C.; Alonso-Aubin, D.A.; de Oliveira, C.E.P.; Candia-Luján, R.; De Paz, J.A. Métodos de Evaluación de La Composición Corporal: Una Revisión Actualizada de Descripción, Aplicación, Ventajas y Desventajas. Arch. Med. Deport. 2015, 32, 387–394. [Google Scholar]
- Duren, D.L.; Sherwood, R.J.; Czerwinski, S.A.; Lee, M.; Choh, A.C.; Siervogel, R.M.; Chumlea, W.C. Body Composition Methods: Comparisons and Interpretation. J. Diabetes Sci. Technol. 2008, 2, 1139–1146. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.M.; Heymsfield, S.B.; Sardinha, L.B. Assessing body composition in taller or broader individuals using dual-energy X-ray absorptiometry: A systematic review. Eur. J. Clin. Nutr. 2013, 67, 1012–1021. [Google Scholar] [CrossRef]
- Khalil, S.F.; Mohktar, M.S.; Ibrahim, F. The Theory and Fundamentals of Bioimpedance Analysis in Clinical Status Monitoring and Diagnosis of Diseases. Sensors 2014, 14, 10895–10928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nickerson, B.S.; Snarr, R.L.; Ryan, G.A. Validity of Foot-To-Foot Bioelectrical Impedance for Estimating Body Composition in NCAA Division I Male Athletes: A 3-Compartment Model Comparison. J. Strength Cond. Res. 2019, 33, 3361–3366. [Google Scholar] [CrossRef] [PubMed]
- Tinsley, G.M.; Morales, E.; Forsse, J.S.; Grandjean, P.W. Impact of Acute Dietary Manipulations on DXA and BIA Body Composition Estimates. Med. Sci. Sports Exerc. 2017, 49, 823–832. [Google Scholar] [CrossRef]
- Coppini, L.Z.; Waitzberg, D.L.; Campos, A.C.L. Limitations and validation of bioelectrical impedance analysis in morbidly obese patients. Curr. Opin. Clin. Nutr. Metab. Care 2005, 8, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Alvero Cruz, J.R.; Cabañas Armesilla, M.D.; Herrero deLucas, A.; Martinez Riaza, L.; Moreno Pascual, C.; Porta Manzañido, J.; Sillero Quintana, M.; Sirvent Belando, J.E. Protocolo de Valoración de La Composición Corporal Para El Reconocimiento Médico-Deportivo. Documento de Conseno Del Grupo Español de Cineantropometría de La Federación Española de Medicina Del Deporte. Arch. Med. Deporte 2009, 26, 166–179. [Google Scholar]
- Kerr, A.; Slater, G.J.; Byrne, N. Impact of food and fluid intake on technical and biological measurement error in body composition assessment methods in athletes. Br. J. Nutr. 2017, 117, 591–601. [Google Scholar] [CrossRef] [Green Version]
- Ross, W.D.; Kerr, D.A. Fraccionamiento de La Masa Corporal: Un Nuevo Método Para Utilizar En Nutrición Clínica y Medicina Deportiva. Apunts 1991, 18, 175–187. [Google Scholar]
- Durnin, J.V.G.A.; Womersley, J. Body fat assessed from total body density and its estimation from skinfold thickness: Measurements on 481 men and women aged from 16 to 72 Years. Br. J. Nutr. 1974, 32, 77–97. [Google Scholar] [CrossRef] [Green Version]
- Yuhasz, M. Physical Fitness Manual; University of Western Ontario: London, ON, Canada, 1974. [Google Scholar]
- Faulkner, J.A. Physiology of Swimming. Res. Q. Am. Assoc. Health Phys. Educ. Recreat. 1966, 37, 41–54. [Google Scholar] [CrossRef]
- Carter, J.E.L. Physical Structure of Olympic Athletes: Part I: The Montreal Olympic Games Anthropological Project; S Karger Ag: Basel, Switzerland, 1982. [Google Scholar]
- Peterson, M.J.; Czerwinski, S.A.; Siervogel, R.M. Development and validation of skinfold-thickness prediction equations with a 4-compartment model. Am. J. Clin. Nutr. 2003, 77, 1186–1191. [Google Scholar] [CrossRef] [Green Version]
- Katch, F.I.; McArdle, W.D. Validity of body composition prediction equations for college men and women. Am. J. Clin. Nutr. 1975, 28, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Sloan, A.W. Estimation of body fat in young men. J. Appl. Physiol. 1967, 23, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Wilmore, J.H.; Behnke, A.R. An anthropometric estimation of body density and lean body weight in young men. J. Appl. Physiol. 1969, 27, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Evans, E.M.; Rowe, D.A.; Misic, M.M.; Prior, B.M.; Arngrímsson, S. Skinfold Prediction Equation for Athletes Developed Using a Four-Component Model. Med. Sci. Sports Exerc. 2005, 37, 2006–2011. [Google Scholar] [CrossRef]
- Lean, M.E.; Han, T.S.; Deurenberg, P. Predicting body composition by densitometry from simple anthropometric measurements. Am. J. Clin. Nutr. 1996, 63, 4–14. [Google Scholar] [CrossRef] [Green Version]
- Thorland, W.G.; Johnson, G.O.; Tharp, G.D.; Housh, T.J.; Cisar, C.J. Estimation of body density in adolescent athletes. Hum. Biol. 1984, 56, 439–448. [Google Scholar]
- Civar, S.; Aktop, A.; Tercan, E.; Ozdol, Y.; Ozer, K. Validity of Leg-to-Leg Bioelectrical Impedance Measurement in Highly Active Women. J. Strength Cond. Res. 2006, 20, 359–365. [Google Scholar] [CrossRef]
- Reilly, T.; George, K.; Marfell-Jones, M.; Scott, M.; Sutton, L.; Wallace, J. How Well do Skinfold Equations Predict Percent Body Fat in Elite Soccer Players? Int. J. Sports Med. 2009, 30, 607–613. [Google Scholar] [CrossRef]
- Hastuti, J.; Kagawa, M.; Byrne, N.M.; Hills, A.P. Development and validation of anthropometric prediction equations for estimation of body fat in Indonesian men. Asia Pac. J. Clin. Nutr. 2013, 22, 522–529. [Google Scholar] [CrossRef]
- Sansone, P.; Makivic, B.; Csapo, R.; Hume, P.; Martínez-Rodríguez, A.; Bauer, P. Body Fat of Basketball Players: A Systematic Review and Meta-Analysis. Sports Med. Open 2022, 8, 26. [Google Scholar] [CrossRef]
- Petri, C.; Campa, F.; Teixeira, V.H.; Izzicupo, P.; Galanti, G.; Pizzi, A.; Badicu, G.; Mascherini, G. Body Fat Assessment in International Elite Soccer Referees. J. Funct. Morphol. Kinesiol. 2020, 5, 38. [Google Scholar] [CrossRef] [PubMed]
- López-Taylor, J.R.; González-Mendoza, R.G.; Gaytan-Gonzalez, A.; Jiménez-Alvarado, J.A.; Villegas-Balcazar, M.; Jáuregui-Ulloa, E.E.; Torres-Naranjo, F. Accuracy of Anthropometric Equations for Estimating Body Fat in Professional Male Soccer Players Compared with DXA. J. Sports Med. 2018, 2018, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.-M.; Ma, R.; Pierson, R.N.; Heymsfield, S.B. Five-Level Model: Reconstruction of Body Weight at Atomic, Molecular, Cellular, and Tissue-System Levels from Neutron Activation Analysis. In Human Body Composition; Ellis, K.J., Eastman, J.D., Eds.; Springer: Boston, MA, USA, 1993; Volume 60, pp. 125–128. [Google Scholar] [CrossRef]
- Martin, A.D.; Ross, W.D.; Drinkwater, D.T.; Clarys, J.P. Prediction of body fat by skinfold caliper: Assumptions and cadaver evidence. Int. J. Obes. 1985, 9, 31–39. [Google Scholar]
- Karastergiou, K.; Smith, S.R.; Greenberg, A.S.; Fried, S.K. Sex differences in human adipose tissues–the biology of pear shape. Biol. Sex Differ. 2012, 3, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almecija, A.M.; García, J.M.; Acosta, A.P. Tamaño de Muestra y Precisión Estadística; Universidad de Almería: Almería, Spain, 2004; Volume 23. [Google Scholar]
- Vaquero-Cristóbal, R.; Alacid, F.; Esparza-Ros, F.; López-Plaza, D.; Muyor, J.M.; López-Miñarro, P.A. The effects of a reformer Pilates program on body composition and morphological characteristics in active women after a detraining period. Women Health 2016, 56, 784–806. [Google Scholar] [CrossRef]
- Vaquero-Cristóbal, R.; García-Roca, J.A.; Albaladejo, M.; Fernández-Alarcón, M.; Esparza-Ros, F. Evolution in anthropometric variables related to training and nutritional parameters in ultra-endurance mountain runners. Nutr. Hosp. 2019, 36, 706–713. [Google Scholar] [CrossRef]
- Roman-Viñas, B.; Serra-Majem, L.; Hagstromer, M.; Ribas-Barba, L.; Sjöström, M.; Segura-Cardona, R. International Physical Activity Questionnaire: Reliability and validity in a Spanish population. Eur. J. Sport Sci. 2010, 10, 297–304. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.L.; Yngve, A.; Sallis, J.F.; et al. International Physical Activity Questionnaire: 12-Country Reliability and Validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- Crespo-Salgado, J.J.; Delgado-Martín, J.L.; Blanco-Iglesias, O.; Aldecoa-Landesa, S. Guía básica de detección del sedentarismo y recomendaciones de actividad física en atención primaria. Aten. Prim. 2014, 47, 175–183. [Google Scholar] [CrossRef] [Green Version]
- Esparza-Ros, F.; Vaquero-Cristobal, R.; Marfell-Jones, M. International Standards for Anthropometric Assesment; UCAM Universidad Católica de Murcia, Ed.; International Society for the Advancement of Kinanthropometry: Murcia, Spain, 2019. [Google Scholar]
- Martin, A.D.; Daniel, M.Z.; Drinkwater, D.T.; Clarys, J.P. Adipose tissue density, estimated adipose lipid fraction and whole body adiposity in male cadavers. Int. J. Obes. Relat. Metab. Disord. 1994, 18, 79–83. [Google Scholar] [CrossRef]
- McBride, G. Statistical Calculators; NIWA: Auckland, New Zealand, 2007. [Google Scholar]
- Coratella, G.; Campa, F.; Matias, C.N.; Toselli, S.; Koury, J.C.; Andreoli, A.; Sardinha, L.B.; Silva, A.M. Generalized bioelectric impedance-based equations underestimate body fluids in athletes. Scand. J. Med. Sci. Sports 2021, 31, 2123–2132. [Google Scholar] [CrossRef] [PubMed]
- Marcos-Pardo, P.J.; González-Gálvez, N.; López-Vivancos, A.; Espeso-García, A.; Manuel Martínez-Aranda, L.; María Gea-García, G.; Orquín-Castrillón, F.J.; Carbonell-Baeza, A.; Daniel Jiménez-García, J.; Velázquez-Díaz, D.; et al. Sarcopenia, Diet, Physical Activity and Obesity in European Middle-Aged and Older Adults: The LifeAge Study. Nutrients 2020, 13, 8. [Google Scholar] [CrossRef]
- Wang, Z.; Heshka, S.; Wang, J.; Wielopolski, L.; Heymsfield, S.B. Magnitude and Variation of Fat-Free Mass Density: A Cellular-Level Body Composition Modeling Study. Am. J. Physol. Endocrinol. Metab. 2003, 284, E267–E273. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, A.; De Lucia Rolfe, E.; Sleigh, A.; Kivisild, T.; Behbehani, K.; Wareham, N.J.; Brage, S.; Mohammad, T. Validity of visceral adiposity estimates from DXA against MRI in Kuwaiti men and women. Nutr. Diabetes 2017, 7, e238. [Google Scholar] [CrossRef] [PubMed]
- Zamora Salas, J.D.; Murray Laclé, A. Evaluación Antropométrica y Composición Corporal Por medio de Óxido de Deuterio En Escolares Costarricenses. Arch. Latinoam. Nutr. 2018, 68, 313–320. Available online: http://www.alanrevista.org/ediciones/2018/4/art-4/ (accessed on 17 August 2022).
- Clarys, J.P.; Martin, A.D.; Drinkwater, D.T.; Marfell-Jones, M.J. The skinfold: Myth and reality. J. Sports Sci. 1987, 5, 3–33. [Google Scholar] [CrossRef]
- Aldosky, H.Y.Y.; Yildiz, A.; Hussein, H.A. Regional body fat distribution assessment by bioelectrical impedance analysis and its correlation with anthropometric indices. Phys. Med. 2018, 5, 15–19. [Google Scholar] [CrossRef]
- Owen, O.E.; Smalley, K.J.; D'alessio, D.A.; Mozzoli, M.A.; Knerr, A.N.; Kendrick, Z.V.; Kavle, E.C.; Donohoe, M.; Tappy, L.; Boden, G. Resting Metabolic Rate and Body Composition of Achondroplastic Dwarfs. Medicine 1990, 69, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Ross, W.D.; Wilson, N.C. A stratagem for proportional growth assessment. Acta Paediatr. Belg. 1974, 28, 169–182. [Google Scholar]
- Weiner, J.; Lourie, J. Human Biology, A Guide to Field Methods; Blackwell Scientific: Oxford, UK, 1969; p. 621. [Google Scholar]
- Olson, A.L.; Edelstein, E. Spot Reduction of Subcutaneous Adipose Tissue. Res. Q. Am. Assoc. Health Phys. Educ. Recreat. 1968, 39, 647–652. [Google Scholar] [CrossRef]
- Di Palumbo, A.S.; Guerra, E.; Orlandi, C.; Bazzucchi, I.; Sacchetti, M. Effect of combined resistance and endurance exercise training on regional fat loss. J. Sports Med. Phys. Fit. 2017, 57, 794–801. [Google Scholar] [CrossRef]
- Norton, K.I. Standards for Anthropometry Assessment. In Kinanthropometry and Exercise Physiology; Routledge: Oxfordshire, UK, 2018; pp. 68–137. ISBN 9781315385662. [Google Scholar]
Formula | Population Characteristics | Variables Included | Estimated Component | Method of Validation |
---|---|---|---|---|
Durnin-Womersley | Moderately sedentary male and female populations (students, professionals, patients from an obesity clinic, sports clubs, and ballet dancers; four age groups) | Body mass; triceps, biceps, subscapular and supraspinale skinfolds | Lipid mass | Hydrodensitometry |
Yuhasz | Elite male and female athletes (Olympic games) | Body mass; triceps, subscapular, supraspinale, abdominal, thigh, and calf skinfolds | Lipid mass | Hydrodensitometry |
Faulkner | Male and female swimmers | Body mass; triceps, subscapular, supraspinale, abdominal skinfolds | Lipid mass | Hydrodensitometry |
Carter | Elite male and female athletes (Olympic games) | Body mass; triceps, subscapular, supraspinale, abdominal, thigh, and calf skinfolds | Lipid mass | Hydrodensitometry |
Peterson | Healthy white male and female adults | Body mass; triceps, subscapular, supraspinale, and thigh skinfolds | Lipid mass | DXA |
Katch-McArdle | Physical education activity male and female students from New York (USA) | M = body mass; triceps, subscapular and abdominal skinfolds F = body mass; triceps, subscapular and thigh skinfolds | Lipid mass | Hydrodensitometry |
Sloan | White, healthy, South African medicine male and female students (18 to 26 years old) | Body mass; subscapular and thigh skinfolds | Lipid mass | Hydrodensitometry and ultrasound |
Wilmore | Healthy male and female students from California University (USA) | M = body mass; abdominal and thigh skinfolds F = body mass; triceps, subscapular and thigh skinfolds | Lipid mass | Hydrodensitometry |
Evans | White and Afro-American male and female collegiate athletes (football, basketball, volleyball, gymnastics, swimming and track and field) | Body mass; triceps, abdominal and thigh skinfolds | Lipid mass | DXA |
Lean | White and healthy male and female from Glasgow (Scotland) | Body mass; triceps, biceps, subscapular and iliac crest skinfolds | Lipid mass | Hydrodensitometry |
Reilly | Professional male soccer players from Premier League clubs (UK) | Body mass; triceps, abdominal, thigh, and calf skinfolds | Lipid mass | DXA |
Civar | Male university athletes | Body mass; triceps, biceps, and abdominal skinfolds | Lipid mass | Hydrodensitometry |
Hastuti | Healthy male adults from Indonesia | Body mass; triceps, biceps, subscapular, and iliac crest skinfolds | Lipid mass | Deuterium oxide dilution |
Thorland | Female athletes from USA national championships (track and field, gymnastics, diving, and wrestling) | Body mass; triceps, subscapular, and iliac crest skinfolds | Lipid mass | Hydrodensitometry |
Kerr | Male and female population (6 to 77 years old; cyclists, Canadian elders, children and adolescents from the Coquitlam Growth Study, professional bodybuilders, Montreal Olympic Games athletes and Pan-American Games rowers) | Height; triceps, subscapular, supraespinale, abdominal, thigh, and calf skinfolds | Adipose tissue | Cadaver dissection |
Variable | Men (n = 37) | Women (n = 54) | ||||
---|---|---|---|---|---|---|
Mean ± SD | Max.–Min. | Mean ± SD | Max.–Min. | |||
BMI | 23.03 ± 1.39 | 24.48–19.35 | 22.07 ± 1.54 | 24.50–18.50 | ||
∑4 skinfolds (mm) | 35.50 ± 11.71 | 63.50–19.75 | 46.60 ± 14.22 | 80.10–22.25 | ||
∑6 skinfolds (mm) | 60.14 ± 20.64 | 120.25–36.25 | 85.26 ± 21.61 | 133.75–42.50 | ||
∑8 skinfolds (mm) | 78.30 ± 27.35 | 153.25–44.75 | 106.83 ± 28.28 | 170.25–51.25 | ||
% Carter | 8.90 ± 2.17 | 15.21–6.38 | 16.77 ± 3.34 | 24.28–10.15 | ||
% Civar | 12.40 ± 2.65 | 20.22–9.35 | - | - | - | |
% Durnin | 12.95 ± 3.76 | 21.63–7.21 | 23.38 ± 5.07 | 35.72–13.03 | ||
% Evans | 17.72 ± 3.17 | 27.24–13.92 | 15.33 ± 2.94 | 21.88–8.81 | ||
% Faulkner | 12.11 ± 2.15 | 18.02–9.49 | 18.90 ± 3.56 | 27.98–13.11 | ||
% Hastuti | 17.91 ± 2.84 | 24.84–14.17 | - | - | - | |
% Katch | 10.71 ± 3.04 | 19.17–6.81 | 18.37 ± 2.93 | 25.63–13.02 | ||
% Kerr | 16.04 ± 4.89 | 33.39–10.47 | 22.73 ± 5.41 | 39.71–10.57 | ||
% Lean | 14.50 ± 4.59 | 24.84–7.25 | 26.31 ± 4.11 | 35.51–17.56 | ||
% Peterson | 18.78 ± 4.30 | 29.56–12.00 | 28.79 ± 3.30 | 33.88–21.88 | ||
% Reilly | 11.45 ± 2.33 | 18.10–8.84 | - | - | - | |
% Sloan | 9.73 ± 3.67 | 21.01–5.48 | 21.46 ± 3.54 | 29.06–14.94 | ||
% Thorland | - | - | - | 20.03 ± 5.55 | 33.20–10.67 | |
% Wilmore | 14.03 ± 3.10 | 23.48–10.06 | 23.92 ± 2.03 | 28.43–20.51 | ||
% Yuhasz | 8.90 ± 2.17 | 15.22–6.39 | 16.77 ± 3.34 | 24.28–10.15 |
Formulas | Mean Differences ± Standard Error | 95%CI (Lower; Upper) | p Value | Cohen’s d |
---|---|---|---|---|
% Carter–% Peterson | −9.887 ± 0.398 | −11.570;−8.205 | p < 0.001 | 2.90 |
% Carter–% Katch | −1.814 ± 0.179 | −2.572;−1.056 | p < 0.001 | 0.69 |
% Carter–% Sloan | −0.831 ± 0.304 | −2.117;0.454 | p = 1.000 | 0.28 |
% Carter–% Wilmore | −5.135 ± 0.213 | −6.036;−4.234 | p < 0.001 | 1.92 |
% Carter–% Evans | −8.829 ± 0.182 | −9.598;−8.059 | p < 0.001 | 3.25 |
% Carter–% Lean | −5.607 ± 0.492 | −7.687;−3.526 | p < 0.001 | 1.56 |
% Carter–% Reilly | −2.551 ± 0.70 | −2.848;−2.254 | p < 0.001 | 1.13 |
% Carter–% Civar | −3.503 ± 0.140 | −4.093;−2.912 | p < 0.001 | 1.45 |
% Carter–% Hastuti | −9.018 ± 0.189 | −9.819;−8.217 | p < 0.001 | 3.57 |
% Civar–% Hastuti | −5.515 ± 0.176 | −6.259;−4.770 | p < 0.001 | 2.49 |
% Durnin–% Yuhasz | 4.054 ± 0.385 | 2.417;5.673 | p < 0.001 | 1.32 |
% Durnin–% Faulkner | 0.833 ± 0.366 | −0.716;2.383 | p = 1.000 | 0.27 |
% Durnin–% Carter | 4.050 ± 0.385 | 2.422;5.678 | p < 0.001 | 1.32 |
% Durnin–% Peterson | −5.837 ± 0.348 | −7.310;−4.364 | p < 0.001 | 1.44 |
% Durnin–% Katch | 2.236 ± 0.311 | 0.919;3.553 | p < 0.001 | 0.66 |
% Durnin–% Sloan | 3.219 ± 0.460 | 1.274;5.163 | p < 0.001 | 0.87 |
% Durnin–% Wilmore | −1.085 ± 0.403 | −2.788;0.618 | p = 1.000 | 0.31 |
% Durnin–% Evans | −4.779 ± 0.397 | −6.458;−3.099 | p < 0.001 | 1.37 |
% Durnin–% Lean | −1.557 ± 0.268 | −2.690;−0.424 | p < 0.001 | 0.37 |
% Durnin–% Reilly | 1.499 ± 0.406 | −0.218;3.216 | p < 0.001 | 0.48 |
% Durnin–% Civar | 0.547 ± 0.358 | −0.968;2.062 | p = 1.000 | 0.17 |
% Durnin–% Hastuti | −4.968 ± 0.268 | −6.103;−3.832 | p < 0.001 | 1.49 |
% Evans–% Lean | 3.222 ± 0.452 | 1.309;5.134 | p < 0.001 | 0.82 |
% Evans–% Reilly | 6.277 ± 0.148 | 5.652;6.902 | p < 0.001 | 2.25 |
% Evans–% Civar | 5.326 ± 0.188 | 4.530;6.122 | p < 0.001 | 1.82 |
% Evans–% Hastuti | −0.189 ± 0.243 | −1.216;0.838 | p = 1.000 | 0.06 |
% Faulkner–% Carter | 3.217 ± 0.120 | 2.711;3.722 | p < 0.001 | 1.49 |
% Faulkner–% Peterson | −6.671 ± 0.436 | −8.514;−4.827 | p < 0.001 | 1.96 |
% Faulkner–% Katch | 1.403 ± 0.172 | 0.677;2.128 | p < 0.001 | 0.53 |
% Faulkner–% Sloan | 2.385 ± 0.397 | 0.709;4.062 | p < 0.001 | 0.79 |
% Faulkner–% Wilmore | −1.918 ± 0.202 | −2.774;−1.063 | p < 0.001 | 0.72 |
% Faulkner–% Evans | −5.612 ± 0.254 | −6.687;−4.537 | p < 0.001 | 2.07 |
% Faulkner–% Lean | −2.390 ± 0.488 | −4.455;−0.326 | p = 0.007 | 0.67 |
% Faulkner–% Reilly | 0.665 ± 0.181 | −0.101;1.432 | p = 0.254 | 0.29 |
% Faulkner–% Civar | −0.286 ± 0.165 | −0.983;0.410 | p = 1.000 | 0.12 |
% Faulkner–% Hastuti | −5.801 ± 0.189 | −6.599;−5.003 | p < 0.001 | 2.30 |
% Katch–% Sloan | 0.982 ± 0.323 | −0.384;2.348 | p < 0.001 | 0.29 |
% Katch–% Wilmore | −3.321 ± 0.180 | −4.080;−2.562 | p < 0.001 | 1.08 |
% Katch–% Evans | −7.015 ± 0.173 | −7.745;−6.285 | p < 0.001 | 2.26 |
% Katch–% Lean | −3.793 ± 0.389 | −5.438;−2.148 | p < 0.001 | 0.97 |
% Katch–% Reilly | −0.738 ± 0.195 | −1.563;0.088 | p = 0.185 | 0.27 |
% Katch–% Civar | −1.689 ± 0.139 | −2.279;−1.099 | p < 0.001 | 0.59 |
% Katch–% Hastuti | −7.204 ± 0.152 | −7.848;−6.560 | p < 0.001 | 2.45 |
% Kerr–% Carter | 7.002 ± 0.491 | 5.140;8.864 | p < 0.001 | 1.89 |
% Kerr–% Civar | 3.697 ± 0.508 | 1.772;5.622 | p < 0.001 | 0.93 |
% Kerr–% Durnin | 2.862 ± 0.601 | 0.582;5.141 | p = 0.003 | 0.71 |
% Kerr–% Evans | −1.625 ± 0.363 | −3.001;−0.248 | p = 0.007 | 0.41 |
% Kerr–% Faulkner | 3.731 ± 0.542 | 1.676;5.787 | p < 0.001 | 1.04 |
% Kerr–% Hastuti | −1.875 ± 0.507 | −3.798;0.047 | p = 0.065 | 0.47 |
% Kerr–% Katch | 5.359 ± 0.459 | 3.618;7.100 | p < 0.001 | 1.31 |
% Kerr–% Lean | 1.563 ± 0.566 | −0.586;3.711 | p = 0.824 | 0.32 |
% Kerr–% Peterson | −2.717 ± 0.439 | −4.383;−1.052 | p < 0.001 | 0.60 |
% Kerr–% Reilly | 4.658 ± 0.473 | 2.863;6.454 | p < 0.001 | 1.20 |
% Kerr–% Sloan | 6.368 ± 0.351 | 5.037;7.699 | p < 0.001 | 1.46 |
% Kerr–% Wilmore | 2.013 ± 0.418 | 0.428;3.599 | p = 0.002 | 0.49 |
% Kerr–% Yuhasz | 7.162 ± 0.492 | 5.295;9.029 | p < 0.001 | 1.89 |
% Lean–% Reilly | 3.056 ± 0.499 | 0.945;5.166 | p < 0.001 | 0.84 |
% Lean–% Civar | 2.104 ± 0.456 | 0.176;4.032 | p = 0.016 | 0.56 |
% Lean–% Hastuti | −3.411 ± 0.330 | −4.806;−2.016 | p < 0.001 | 0.89 |
% Peterson–% Katch | 8.073 ± 0.315 | 6.743;9.403 | p < 0.001 | 2.17 |
% Peterson–% Sloan | 9.056 ± 0.303 | 7.773;10.339 | p < 0.001 | 2.26 |
% Peterson–% Wilmore | 4.752 ± 0.394 | 3.084;6.420 | p < 0.001 | 1.27 |
% Peterson–% Evans | 1.059 ± 0.312 | −0.259;2.376 | p = 0.544 | 0.28 |
% Peterson–% Lean | 4.280 ± 0.253 | 3.212;5.348 | p < 0.001 | 0.96 |
% Peterson–% Reilly | 7.336 ± 0.385 | 5.706;8.966 | p < 0.001 | 2.12 |
% Peterson–% Civar | 6.384 ± 0.383 | 4.764;8.005 | p < 0.001 | 1.79 |
% Peterson–% Hastuti | 0.869 ± 0.290 | −0.357;2.096 | p = 1.000 | 0.24 |
% Reilly–% Civar | −0.952 ± 0.149 | −1.581;−0.322 | p < 0.001 | 0.38 |
% Reilly–% Hastuti | −6.466 ± 0.219 | −7.391;−5.542 | p < 0.001 | 2.49 |
% Sloan–% Wilmore | −4.304 ± 0.351 | −5.786;−2.821 | p < 0.001 | 1.27 |
% Sloan–% Evans | −7.977 ± 0.213 | −8.896;−7.098 | p < 0.001 | 2.33 |
% Sloan–% Lean | −4.776 ± 0.479 | −6.800;−2.751 | p < 0.001 | 1.15 |
% Sloan–% Reilly | −1.720 ± 0.272 | −2.869;−0.571 | p < 0.001 | 0.56 |
% Sloan–% Civar | −2.672 ± 0.336 | −4.091;−1.252 | p < 0.001 | 0.83 |
% Sloan–% Hastuti | −8.186 ± 0.329 | −9.576;−6.797 | p < 0.001 | 2.49 |
% Wilmore–% Evans | −3.694 ± 0.182 | −4.464;−2.924 | p < 0.001 | 1.18 |
% Wilmore–% Lean | −0.472 ± 0.470 | −2.459;1.515 | p = 1.000 | 0.12 |
% Wilmore–% Reilly | 2.584 ± 0.230 | 1.610;3.557 | p < 0.001 | 0.94 |
% Wilmore–% Civar | 1.632 ± 0.233 | 0.646;2.618 | p < 0.001 | 0.57 |
% Wilmore–% Hastuti | −3.883 ± 0.265 | −5.004;−2.762 | p < 0.001 | 1.31 |
% Yuhasz–% Faulkner | −3.212 ± 0.120 | −3.717;−2.706 | p < 0.001 | 1.49 |
% Yuhasz–% Carter | 0.005 ± 0.000 | 0.005;0.005 | p < 0.001 | 0.00 |
% Yuhasz–% Peterson | −9.882 ± 0.398 | −11.565;−8.20 | p < 0.001 | 2.90 |
% Yuhasz–% Katch | −1.809 ± 0.179 | −2.567;−1.051 | p < 0.001 | 0.69 |
% Yuhasz–% Sloan | −0.826 ± 0.304 | −2.112;0.459 | p = 1.000 | 0.28 |
% Yuhasz–% Wilmore | −5.130 ± 0.213 | −6.031;−4.229 | p < 0.001 | 1.92 |
% Yuhasz–% Evans | −8.824 ± 0.182 | −9.593;−8.054 | p < 0.001 | 3.25 |
% Yuhasz–% Lean | −5.602 ± 0.492 | −7.682;−3.521 | p < 0.001 | 1.56 |
% Yuhasz–% Reilly | −2.546 ± 0.70 | −2.843;−2.249 | p < 0.001 | 1.13 |
% Yuhasz–% Civar | −3.498 ± 0.140 | −4.088;−2.907 | p < 0.001 | 1.45 |
% Yuhasz–% Hastuti | −9.013 ± 0.189 | −9.814;−8.212 | p < 0.001 | 3.57 |
Formulas | Mean Differences ± Standard Error | 95%CI (Lower; Upper) | p Value | Cohen’s d |
---|---|---|---|---|
% Carter–% Peterson | −12.018 ± 0.191 | −12.796;−11.240 | p < 0.001 | 3.62 |
% Carter–% Katch | −1.594 ± 0.331 | −2.942;−0.247 | p = 0.004 | 0.51 |
% Carter–% Sloan | −4.689 ± 0.190 | −5.463;−3.914 | p < 0.001 | 1.36 |
% Carter–% Thorland | −3.252 ± 0.380 | −4.802;−1.703 | p < 0.001 | 2.59 |
% Carter–% Wilmore | −7.147 ± 0.220 | −8.046;−6.249 | p < 0.001 | 0.46 |
% Carter–% Evans | 1.444 ± 0.138 | 0.883;2.005 | p < 0.001 | 2.55 |
% Carter–% Lean | −9.534 ± 0.264 | −10.609;−8.458 | p < 0.001 | 0.71 |
% Durnin–% Yuhasz | 6.610 ± 0.303 | 5.375;7.846 | p < 0.001 | 1.33 |
% Durnin–% Faulkner | 4.487 ± 0.273 | 3.375;5.599 | p < 0.001 | 0.88 |
% Durnin–% Carter | 6.610 ± 0.303 | 5.375;7.846 | p < 0.001 | 1.33 |
% Durnin–% Peterson | −5.408 ± 0.352 | −6.843;−3.972 | p < 0.001 | 1.13 |
% Durnin–% Katch | 5.015 ± 0.532 | 2.847;7.185 | p < 0.001 | 1.03 |
% Durnin–% Sloan | 1.922 ± 0.317 | 0.631;3.213 | p < 0.001 | 0.37 |
% Durnin–%Thorland | 3.358 ± 0.281 | 2.213;4.504 | p < 0.001 | 0.14 |
% Durnin–% Wilmore | −0.537 ± 0.450 | −2.371;1.297 | p = 1.000 | 1.67 |
% Durnin–% Evans | 8.054 ± 0.382 | 6.498;9.610 | p < 0.001 | 0.58 |
% Durnin–% Lean | −2.923 ± 0.288 | −4.097;−1.750 | p < 0.001 | 0.56 |
% Evans–% Lean | −10.978 ± 0.302 | −12.209;−9.747 | p < 0.001 | 1.29 |
% Faulkner–% Carter | 2.124 ± 0.150 | 1.511;2.736 | p < 0.001 | 0.62 |
%Faulkner-%Peterson | −9.894 ± 0.253 | −10.927;−8.862 | p < 0.001 | 2.88 |
% Faulkner–% Katch | 0.529 ± 0.370 | −0.979;2.038 | p = 1.000 | 0.16 |
% Faulkner–% Sloan | −2.565 ± 0.250 | −3.401;−1.728 | p < 0.001 | 0.72 |
%Faulkner–%Thorland | −1.128 ± 0.336 | −2.499;0.242 | p = 0.476 | 1.73 |
%Faulkner-%Wilmore | −5.024 ± 0.254 | −6.058;−3.989 | p < 0.001 | 1.09 |
% Faulkner–% Evans | 3.567 ± 0.239 | 2.594;4.541 | p < 0.001 | 1.93 |
% Faulkner–% Lean | −7.410 ± 0.267 | −8.499;−6.321 | p < 0.001 | 0.24 |
% Katch–% Sloan | −3.094 ± 0.404 | −4.743;−1.445 | p < 0.001 | 0.95 |
% Katch–% Thorland | −1.658 ± 0.537 | −3.847;0.532 | p = 1.000 | 2.20 |
% Katch–% Wilmore | −5.553 ± 0.230 | −6.490;−4.615 | p < 0.001 | 1.04 |
% Katch–% Evans | 3.038 ± 0.363 | 1.558;4.518 | p < 0.001 | 2.22 |
% Katch–% Lean | −7.939 ± 0.424 | −9.668;−6.211 | p < 0.001 | 0.37 |
%Kerr–%Carter | 6.107 ± 0.343 | 4.882;7.333 | p < 0.001 | 1.33 |
%Kerr–%Durnin | −0.465 ± 0.396 | −1.880;0.949 | p = 1.000 | 0.10 |
% Kerr–% Evans | 7.325 ± 0.436 | 5.769;8.881 | p < 0.001 | 0.75 |
%Kerr–%Faulkner | 3.933 ± 0.392 | 2.534;5.332 | p < 0.001 | 0.84 |
% Kerr–% Katch | 4.331 ± 0.554 | 2.352;6.309 | p < 0.001 | 1.00 |
% Kerr–% Lean | −3.611 ± 0.454 | −5.233;−1.990 | p < 0.001 | 0.49 |
%Kerr–% Peterson | −6.085 ± 0.464 | −7.743;−4.427 | p < 0.001 | 1.35 |
% Kerr–% Sloan | 1.247 ± 0.415 | −0.233;2.728 | p = 0.262 | 0.28 |
%Kerr–%Thorland | 2.601 ± 0.440 | 1.028;4.173 | p < 0.001 | 0.29 |
%Kerr–%Wilmore | −1.188 ± 0.512 | −3.016;0.640 | p = 1.000 | 1.70 |
% Kerr–% Yuhasz | 5.999 ± 0.340 | 4.784;7.214 | p < 0.001 | 1.33 |
% Peterson–% Katch | 10.424 ± 0.318 | 9.126;11.721 | p < 0.001 | 3.34 |
% Peterson–% Sloan | 7.330 ± 0.190 | 6.553;8.106 | p < 0.001 | 2.14 |
% Peterson– %Thorland | 8.766 ± 0.389 | 7.181;10.351 | p < 0.001 | 1.78 |
%Peterson–%Wilmore | 4.871 ± 0.229 | 3.937;5.805 | p < 0.001 | 4.31 |
% Peterson–% Evans | 13.462 ± 0.198 | 12.656;14.268 | p < 0.001 | 0.67 |
% Peterson–% Lean | 2.484 ± 0.240 | 1.504;3.464 | p < 0.001 | 1.92 |
% Sloan–% Thorland | 1.436 ± 0.315 | 0.152;2.721 | p = 0.010 | 0.85 |
% Sloan–% Wilmore | −2.459 ± 0.262 | −3.527;−1.390 | p < 0.001 | 1.88 |
% Sloan–% Evans | 6.132 ± 0.196 | 5.334;6.931 | p < 0.001 | 1.26 |
% Sloan–% Lean | −4.845 ± 0.236 | −5.807;−3.883 | p < 0.001 | 0.31 |
% Thorland–%Wilmore | −3.895 ± 0.497 | −5.920;−1.870 | p < 0.001 | 3.40 |
% Thorland–% Evans | 4.696 ± 0.460 | 2.821;6.571 | p < 0.001 | 0.74 |
% Thorland–% Lean | −6.282 ± 0.327 | −7.615;−4.948 | p < 0.001 | 0.93 |
% Wilmore–% Evans | 8.591 ± 0.214 | 7.719;9.463 | p < 0.001 | 3.07 |
% Wilmore–% Lean | −2.387 ± 0.339 | −3.770;−1.003 | p < 0.001 | 1.06 |
%Yuhasz–%Faulkner | −2.124 ± 0.150 | −2.736;−1.511 | p < 0.001 | 0.62 |
% Yuhasz–% Carter | 0.000 ± 0.000 | 0.000;0.000 | p < 0.001 | 0.00 |
%Yuhasz–% Peterson | −12.018 ± 0.191 | −12.796;−11.240 | p < 0.001 | 3.62 |
% Yuhasz–% Katch | −1.594 ± 0.331 | −2.942;−0.247 | p = 0.004 | 0.51 |
% Yuhasz–% Sloan | −4.689 ± 0.190 | −5.463;−3.914 | p < 0.001 | 1.36 |
%Yuhasz–% Thorland | −3.252 ± 0.380 | −4.802;−1.703 | p < 0.001 | 2.59 |
%Yuhasz–% Wilmore | −7.147 ± 0.220 | −8.046;−6.249 | p < 0.001 | 0.46 |
% Yuhasz–% Evans | 1.444 ± 0.138 | 0.883;2005 | p < 0.001 | 2.55 |
% Yuhasz–% Lean | −9.534 ± 0.264 | −10.609;−8.458 | p < 0.001 | 0.71 |
Variable | Lin’s Concordance Correlation Coefficient | |||
---|---|---|---|---|
CCC | ρ | Cb | ||
% Civar | % Carter | 0.496 | 0.916 | 0.541 |
% Durnin | 0.700 | 0.838 | 0.836 | |
% Evans | 0.318 | 0.932 | 0.341 | |
% Faulkner | 0.915 | 0.919 | 0.996 | |
% Hastuti | 0.287 | 0.930 | 0.308 | |
% Katch | 0.801 | 0.966 | 0.830 | |
% Kerr | 0.467 | 0.843 | 0.554 | |
% Lean | 0.607 | 0.843 | 0.720 | |
% Peterson | 0.467 | 0.843 | 0.554 | |
% Reilly | 0.850 | 0.932 | 0.911 | |
% Sloan | 0.558 | 0.823 | 0.678 | |
% Wilmore | 0.753 | 0.912 | 0.826 | |
% Yuhasz | 0.440 | 0.958 | 0.459 | |
% Carter | % Durnin | 0.532 | 0.907 | 0.586 |
% Evans | 0.159 | 0.917 | 0.173 | |
% Faulkner | 0.626 | 0.979 | 0.639 | |
% Hastuti | 0.140 | 0.892 | 0.157 | |
% Katch | 0.774 | 0.915 | 0.846 | |
% Kerr | 0.271 | 0.850 | 0.319 | |
% Lean | 0.323 | 0.778 | 0.415 | |
% Peterson | 0.163 | 0.883 | 0.184 | |
% Reilly | 0.607 | 0.916 | 0.662 | |
% Sloan | 0.839 | 0.892 | 0.941 | |
% Wilmore | 0.328 | 0.842 | 0.389 | |
% Yuhasz | 0.910 | 0.935 | 0.973 | |
% Durnin | % Evans | 0.417 | 0.768 | 0.542 |
% Faulkner | 0.819 | 0.924 | 0.886 | |
% Hastuti | 0.451 | 0.909 | 0.496 | |
% Katch | 0.652 | 0.862 | 0.757 | |
% Kerr | 0.579 | 0.695 | 0.833 | |
% Lean | 0.856 | 0.894 | 0.958 | |
% Peterson | 0.466 | 0.865 | 0.539 | |
% Reilly | 0.535 | 0.767 | 0.698 | |
% Sloan | 0.520 | 0.744 | 0.698 | |
% Wilmore | 0.662 | 0.722 | 0.918 | |
% Yuhasz | 0.355 | 0.816 | 0.435 | |
% Evans | % Faulkner | 0.311 | 0.864 | 0.360 |
% Hastuti | 0.875 | 0.880 | 0.994 | |
% Katch | 0.249 | 0.940 | 0.265 | |
% Kerr | 0.788 | 0.952 | 0.828 | |
% Lean | 0.552 | 0.807 | 0.684 | |
% Peterson | 0.824 | 0.910 | 0.905 | |
% Reilly | 0.240 | 0.993 | 0.242 | |
% Sloan | 0.228 | 0.932 | 0.245 | |
% Wilmore | 0.553 | 0.954 | 0.580 | |
% Yuhasz | 0.136 | 0.984 | 0.138 | |
% Faulkner | % Hastuti | 0.295 | 0.904 | 0.326 |
% Katch | 0.800 | 0.935 | 0.855 | |
% Kerr | 0.450 | 0.767 | 0.587 | |
% Lean | 0.597 | 0.790 | 0.756 | |
% Peterson | 0.289 | 0.847 | 0.341 | |
% Reilly | 0.772 | 0.850 | 0.908 | |
% Sloan | 0.228 | 0.932 | 0.245 | |
% Wilmore | 0.713 | 0.846 | 0.844 | |
% Yuhasz | 0.434 | 0.901 | 0.482 | |
% Hastuti | % Katch | 0.229 | 0.952 | 0.240 |
% Kerr | 0.632 | 0.808 | 0.782 | |
% Lean | 0.607 | 0.959 | 0.633 | |
% Peterson | 0.864 | 0.959 | 0.901 | |
% Reilly | 0.193 | 0.881 | 0.219 | |
% Sloan | 0.187 | 0.840 | 0.222 | |
% Wilmore | 0.454 | 0.855 | 0.531 | |
% Yuhasz | 0.116 | 0.927 | 0.125 | |
% Katch | % Kerr | 0.401 | 0.858 | 0.468 |
% Lean | 0.540 | 0.884 | 0.611 | |
% Peterson | 0.247 | 0.918 | 0.269 | |
% Reilly | 0.856 | 0.932 | 0.918 | |
% Sloan | 0.786 | 0.836 | 0.940 | |
% Wilmore | 0.582 | 0.944 | 0.616 | |
% Yuhasz | 0.730 | 0.967 | 0.756 | |
% Kerr | % Lean | 0.695 | 0.736 | 0.944 |
% Peterson | 0.632 | 0.941 | 0.671 | |
% Reilly | 0.399 | 0.957 | 0.417 | |
% Sloan | 0.407 | 0.922 | 0.442 | |
% Wilmore | 0.718 | 0.893 | 0.804 | |
% Yuhasz | 0.240 | 0.938 | 0.255 | |
% Lean | % Peterson | 0.632 | 0.941 | 0.671 |
% Reilly | 0.454 | 0.809 | 0.561 | |
% Sloan | 0.435 | 0.771 | 0.564 | |
% Wilmore | 0.731 | 0.791 | 0.924 | |
% Yuhasz | 0.283 | 0.843 | 0.336 | |
% Peterson | % Reilly | 0.215 | 0.915 | 0.235 |
% Sloan | 0.234 | 0.903 | 0.260 | |
% Wilmore | 0.437 | 0.841 | 0.520 | |
% Yuhasz | 0.136 | 0.927 | 0.146 | |
% Reilly | % Sloan | 0.711 | 0.935 | 0.760 |
% Wilmore | 0.583 | 0.931 | 0.626 | |
% Yuhasz | 0.580 | 0.986 | 0.588 | |
% Sloan | % Wilmore | 0.434 | 0.826 | 0.526 |
% Yuhasz | 0.785 | 0.924 | 0.850 | |
% Wilmore | % Yuhasz | 0.301 | 0.948 | 0.318 |
Variable | Lin’s Concordance Correlation Coefficient | |||
---|---|---|---|---|
CCC | ρ | Cb | ||
% Carter | % Durnin | 0.460 | 0.958 | 0.480 |
% Evans | 0.808 | 0.888 | 0.910 | |
% Faulkner | 0.823 | 0.959 | 0.858 | |
% Katch | 0.578 | 0.677 | 0.854 | |
% Kerr | 0.443 | 0.922 | 0.480 | |
% Lean | 0.198 | 0.851 | 0.233 | |
% Peterson | 0.120 | 0.886 | 0.136 | |
% Sloan | 0.453 | 0.886 | 0.511 | |
% Thorland | 0.610 | 0.866 | 0.704 | |
% Wilmore | 0.185 | 0.910 | 0.203 | |
% Yuhasz | 0.974 | 0.974 | 1.000 | |
% Durnin | % Evans | 0.257 | 0.834 | 0.308 |
% Faulkner | 0.645 | 0.963 | 0.669 | |
% Katch | 0.324 | 0.625 | 0.519 | |
% Kerr | 0.847 | 0.850 | 0.996 | |
% Lean | 0.707 | 0.891 | 0.793 | |
% Peterson | 0.438 | 0.881 | 0.498 | |
% Sloan | 0.768 | 0.892 | 0.860 | |
% Thorland | 0.762 | 0.886 | 0.860 | |
% Wilmore | 0.594 | 0.905 | 0.656 | |
% Yuhasz | 0.419 | 0.932 | 0.450 | |
% Evans | % Faulkner | 0.521 | 0.830 | 0.628 |
% Katch | 0.372 | 0.576 | 0.647 | |
% Kerr | 0.293 | 0.875 | 0.335 | |
% Lean | 0.133 | 0.832 | 0.160 | |
% Peterson | 0.081 | 0.860 | 0.094 | |
% Sloan | 0.313 | 0.903 | 0.346 | |
% Thorland | 0.433 | 0.844 | 0.513 | |
% Wilmore | 0.114 | 0.846 | 0.135 | |
% Yuhasz | 0.806 | 0.897 | 0.899 | |
% Faulkner | % Katch | 0.636 | 0.657 | 0.969 |
% Kerr | 0.587 | 0.864 | 0.680 | |
% Lean | 0.298 | 0.867 | 0.344 | |
% Peterson | 0.166 | 0.853 | 0.194 | |
% Sloan | 0.700 | 0.898 | 0.780 | |
% Thorland | 0.812 | 0.917 | 0.885 | |
% Wilmore | 0.309 | 0.915 | 0.337 | |
% Yuhasz | 0.808 | 0.944 | 0.856 | |
% Katch | % Kerr | 0.370 | 0.661 | 0.559 |
% Lean | 0.180 | 0.664 | 0.271 | |
% Peterson | 0.111 | 0.732 | 0.152 | |
% Sloan | 0.406 | 0.602 | 0.675 | |
% Thorland | 0.568 | 0.739 | 0.768 | |
% Wilmore | 0.226 | 0.828 | 0.273 | |
% Yuhasz | 0.613 | 0.707 | 0.868 | |
% Kerr | % Lean | 0.587 | 0.783 | 0.750 |
% Peterson | 0.367 | 0.790 | 0.464 | |
% Sloan | 0.746 | 0.845 | 0.884 | |
% Thorland | 0.738 | 0.823 | 0.897 | |
% Wilmore | 0.546 | 0.864 | 0.631 | |
% Yuhasz | 0.451 | 0.927 | 0.487 | |
% Lean | % Peterson | 0.731 | 0.911 | 0.802 |
% Sloan | 0.497 | 0.910 | 0.546 | |
% Thorland | 0.484 | 0.919 | 0.527 | |
% Wilmore | 0.546 | 0.884 | 0.618 | |
% Yuhasz | 0.208 | 0.880 | 0.236 | |
% Peterson | % Sloan | 0.278 | 0.919 | 0.303 |
% Thorland | 0.286 | 0.911 | 0.313 | |
% Wilmore | 0.311 | 0.906 | 0.343 | |
% Yuhasz | 0.126 | 0.916 | 0.137 | |
% Sloan | % Thorland | 0.839 | 0.965 | 0.870 |
% Wilmore | 0.571 | 0.900 | 0.634 | |
% Yuhasz | 0.126 | 0.916 | 0.137 | |
% Thorland | % Wilmore | 0.433 | 0.951 | 0.456 |
% Yuhasz | 0.642 | 0.903 | 0.711 | |
% Wilmore | % Yuhasz | 0.191 | 0.920 | 0.207 |
Equation | Variable (Mean ± SD) | Pearson’s r (p) | Kerr—Equation | |||||
---|---|---|---|---|---|---|---|---|
Mean Diff | 95% CI | 95% Limits of Agreement | p | |||||
Lower Limit | Upper Limit | |||||||
Men | ||||||||
Durnin | 2.862 ± 0.601 | 0.695 | 2.86 | 1.64 to 4.08 | −4.30 | 10.03 | 0.000 | |
Yuhasz | 7.162 ± 0.492 | 0.938 | 7.16 | 6.16 to 8.16 | 1.29 | 13.03 | 0.000 | |
Faulkner | 3.731 ± 0.542 | 0.767 | 3.73 | 2.63 to 4.83 | −2.73 | 10.19 | 0.000 | |
Carter | 7.002 ± 0.491 | 0.850 | 7.00 | 6.01 to 8.00 | 1.15 | 12.86 | 0.000 | |
Peterson | −2.717 ± 0.439 | 0.838 | −2.72 | −3.61 to −1.83 | −7.95 | 2.52 | 0.000 | |
Hastuti | −1.875 ± 0.507 | 0.808 | −1.88 | −2.90 to −0.85 | −7.92 | 4.17 | 0.001 | |
Katch | 5.359 ± 0.459 | 0.858 | 5.36 | 4.43 to 6.29 | −0.11 | 10.83 | 0.000 | |
Sloan | 6.368 ± 0.351 | 0.922 | 6.37 | 5.66 to 7.08 | 2.19 | 10.55 | 0.000 | |
Wilmore | 2.013 ± 0.418 | 0.892 | 2.01 | 1.17 to 2.86 | −2.97 | 7.00 | 0.000 | |
Evans | −1.625 ± 0.363 | 0.952 | −1.62 | −2.36 to −0.89 | −5.95 | 2.70 | 0.000 | |
Reilly | 4.658 ± 0.473 | 0.957 | 4.66 | 3.70 to 5.62 | −0.99 | 10.30 | 0.000 | |
Civar | 3.697 ± 0.508 | 0.843 | 3.70 | 2.67 to 4.73 | −2.35 | 9.75 | 0.000 | |
Lean | 1.563 ± 0.566 | 0.736 | 1.56 | 0.41 to 2.71 | −5.19 | 8.32 | 0.009 | |
Women | ||||||||
Carter | 6.107 ± 0.343 | 0.922 | 6.11 | 5.42 to 6.80 | 1.12 | 11.10 | 0.000 | |
Durnin | −0.465 ± 0.396 | 0.850 | −0.47 | −1.26 to 0.33 | −6.22 | 5.29 | 0.245 | |
Evans | 7.325 ± 0.436 | 0.875 | 7.33 | 6.45 to 8.20 | 0.99 | 13.66 | 0.000 | |
Faulkner | 3.933 ± 0.392 | 0.864 | 3.93 | 3.15 to 4.72 | −1.76 | 9.63 | 0.000 | |
Katch | 4.331 ± 0.554 | 0.661 | 4.33 | 3.22 to 5.44 | −3.72 | 12.39 | 0.000 | |
Lean | −3.611 ± 0.454 | 0.783 | −3.61 | −4.52 to −2.70 | −10.21 | 2.99 | 0.000 | |
Peterson | −6.085 ± 0.464 | 0.790 | −6.08 | −7.02 to −5.15 | −12.83 | 0.67 | 0.000 | |
Sloan | 1.247 ± 0.415 | 0.845 | 1.25 | 0.42 to 2.08 | −4.78 | 7.27 | 0.004 | |
Thorland | 2.601 ± 0.440 | 0.823 | 2.60 | 1.72 to 3.48 | −3.80 | 9.00 | 0.000 | |
Wilmore | −1.188 ± 0.512 | 0.864 | −1.19 | −2.21 to −0.16 | −8.63 | 6.25 | 0.024 | |
Yuhasz | 5.999 ± 0.340 | 0.927 | 6.00 | 5.32 to 6.68 | 1.05 | 10.94 | 0.000 |
Percentile | BMI (kg/m2) | ∑8 Skinfolds (mm) | ∑6 Skinfolds (mm) | ∑4 Skinfolds (mm) | % Kerr | % Durnin | % Yuhasz | % Faulkner | % Carter | % Peterson | % Katch | % Sloan | % Wilmore | % Evans | % Lean | % Reilly | % Civar | % Hastuti |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10 | 21.04 | 51.90 | 41.65 | 23.3 | 19.59 | 8.47 | 6.96 | 9.88 | 6.95 | 13.79 | 7.56 | 6.39 | 10.68 | 14.42 | 8.88 | 9.12 | 9.94 | 14.94 |
20 | 21.43 | 56.91 | 44.19 | 25.15 | 21.20 | 9.07 | 7.22 | 10.44 | 7.22 | 14.83 | 8.41 | 7.16 | 11.12 | 15.16 | 9.93 | 9.72 | 10.36 | 15.35 |
30 | 22.59 | 61.10 | 47.10 | 28.00 | 22.27 | 10.73 | 7.53 | 10.77 | 7.53 | 16.18 | 8.77 | 7.71 | 11.94 | 15.90 | 11.11 | 9.94 | 10.54 | 15.97 |
40 | 23.10 | 64.40 | 50.10 | 29.85 | 22.64 | 11.19 | 7.85 | 10.95 | 7.84 | 16.95 | 9.33 | 8.30 | 12.95 | 16.16 | 12.78 | 10.19 | 10.94 | 16.90 |
50 | 23.21 | 69.50 | 53.50 | 33.25 | 23.67 | 12.32 | 8.20 | 11.48 | 8.20 | 18.00 | 9.81 | 8.85 | 13.27 | 16.88 | 14.37 | 10.85 | 11.32 | 17.33 |
60 | 23.54 | 77.50 | 59.59 | 35.85 | 24.57 | 13.26 | 8.84 | 11.87 | 8.84 | 18.86 | 10.26 | 9.24 | 14.23 | 17.77 | 14.64 | 11.37 | 12.37 | 17.75 |
70 | 23.97 | 83.46 | 63.55 | 39.92 | 25.53 | 15.00 | 9.26 | 13.03 | 9.25 | 20.41 | 11.88 | 9.69 | 15.04 | 18.79 | 16.76 | 11.79 | 13.22 | 19.04 |
80 | 24.34 | 92.55 | 71.75 | 42.29 | 28.62 | 16.96 | 10.12 | 13.40 | 10.12 | 22.06 | 12.71 | 11.61 | 16.58 | 19.74 | 19.65 | 13.18 | 14.05 | 20.05 |
90 | 24.62 | 135.33 | 100.66 | 58.42 | 32.39 | 18.42 | 13.16 | 15.57 | 13.15 | 25.68 | 15.30 | 15.49 | 18.55 | 22.54 | 21.56 | 14.93 | 16.97 | 22.98 |
Percentile | BMI (kg/m2) | ∑8 Skinfolds (mm) | ∑6 Skinfolds (mm) | ∑4 Skinfolds (mm) | % Kerr | % Durnin | % Yuhasz | % Faulkner | % Carter | % Peterson | % Katch | % Sloan | % Wilmore | % Evans | % Lean | % Thorland |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10 | 20.13 | 70.37 | 57.87 | 28.50 | 24.64 | 15.68 | 12.53 | 14.76 | 12.53 | 23.93 | 14.60 | 16.75 | 21.08 | 11.16 | 20.46 | 13.15 |
20 | 20.73 | 77.75 | 63.00 | 32.25 | 27.32 | 18.68 | 13.33 | 15.46 | 13.33 | 25.27 | 15.56 | 17.88 | 21.99 | 12.51 | 22.10 | 13.74 |
30 | 21.33 | 89.62 | 72.62 | 36.12 | 28.76 | 20.20 | 14.82 | 16.68 | 14.82 | 27.14 | 16.64 | 19.18 | 22.35 | 13.62 | 24.67 | 16.06 |
40 | 21.71 | 98.00 | 79.50 | 42.00 | 29.74 | 22.76 | 15.88 | 17.88 | 15.88 | 28.03 | 17.29 | 20.12 | 23.65 | 15.08 | 25.89 | 17.89 |
50 | 22.02 | 111.05 | 89.25 | 47.75 | 32.31 | 23.44 | 17.39 | 18.49 | 17.39 | 29.20 | 18.31 | 21.87 | 23.75 | 15.84 | 26.79 | 20.76 |
60 | 22.29 | 115.75 | 92.00 | 52.30 | 33.65 | 24.93 | 17.82 | 19.61 | 17.82 | 30.27 | 19.39 | 22.40 | 24.48 | 16.70 | 27.93 | 21.93 |
70 | 22.96 | 123.37 | 95.37 | 53.62 | 34.37 | 26.29 | 18.34 | 20.54 | 18.34 | 31.26 | 20.14 | 23.44 | 25.32 | 17.04 | 28.88 | 22.96 |
80 | 23.58 | 128.50 | 102.70 | 57.50 | 35.68 | 27.80 | 19.47 | 21.90 | 19.47 | 32.05 | 20.59 | 24.45 | 25.82 | 17.49 | 29.29 | 25.09 |
90 | 24.36 | 140.25 | 113.87 | 65.32 | 36.91 | 29.66 | 21.20 | 23.55 | 21.20 | 32.95 | 21.83 | 26.55 | 26.33 | 18.34 | 30.82 | 26.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mecherques-Carini, M.; Esparza-Ros, F.; Albaladejo-Saura, M.; Vaquero-Cristóbal, R. Agreement and Differences between Fat Estimation Formulas Using Kinanthropometry in a Physically Active Population. Appl. Sci. 2022, 12, 13043. https://doi.org/10.3390/app122413043
Mecherques-Carini M, Esparza-Ros F, Albaladejo-Saura M, Vaquero-Cristóbal R. Agreement and Differences between Fat Estimation Formulas Using Kinanthropometry in a Physically Active Population. Applied Sciences. 2022; 12(24):13043. https://doi.org/10.3390/app122413043
Chicago/Turabian StyleMecherques-Carini, Malek, Francisco Esparza-Ros, Mario Albaladejo-Saura, and Raquel Vaquero-Cristóbal. 2022. "Agreement and Differences between Fat Estimation Formulas Using Kinanthropometry in a Physically Active Population" Applied Sciences 12, no. 24: 13043. https://doi.org/10.3390/app122413043
APA StyleMecherques-Carini, M., Esparza-Ros, F., Albaladejo-Saura, M., & Vaquero-Cristóbal, R. (2022). Agreement and Differences between Fat Estimation Formulas Using Kinanthropometry in a Physically Active Population. Applied Sciences, 12(24), 13043. https://doi.org/10.3390/app122413043