Nanoindentation of Historic and Artists’ Paints
Abstract
:1. Introduction
2. Nanoindentation Studies of Artists’ Paints over the Last Two Decades
3. Instrumented Indentation Testing
3.1. Quasi-Static Method
3.2. Dynamic Method
3.3. Probe Geometries
4. Characterization of Artists’ Paints
4.1. Free Film Paint Samples
4.1.1. Testing Area
4.1.2. Depth of Indentation
4.1.3. Contact between Indenter and Sample
4.1.4. Calibration and Cleaning of Sharp Indenter
4.2. Cross-Sectional Samples
4.2.1. Preparation of Sample Surface
4.2.2. Indentation near Sample Edge
4.2.3. Measuring Gradients in Material Properties
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Rogala, D.V.; DePriest, P.T.; Charola, A.E.; Koestler, R.J. The Mechanics of Art Materials and Its Future in Heritage Science; Smithsonian Scholarly Press: Washington, DC, USA, 2019. [Google Scholar]
- Łukomski, M.; Druzik, J.; Beltran, V.; Freeman, A.; Boersma, F.; Taylor, J. The role of Micromechanics in the Epidemiology of Climate-induced Damage. Mech. Art Mater. Its Future Herit. Sci. 2016, 24–25, 155258. [Google Scholar]
- Fischer-Cripps, A. Introduction to Contact Mechanics, 2nd ed.; Springer: Boston, MA, USA, 2007. [Google Scholar]
- Fischer-Cripps, A.C. Nanoindentation, 3rd ed.; Springer: New York, NY, USA, 2011. [Google Scholar]
- Chiantore, O.; Scalarone, D. The Macro- and Microassessment of Physical and Aging Properties in Modern Paintsof Physical and Aging Properties in Modern Paints. In Proceedings of the Modern Paints Uncovered: Proceedings from the Modern Paints Uncovered Symposium, London, UK, 16–19 May 2006; Getty Publications: Los Angeles, CA, USA, 2007. [Google Scholar]
- Wright, M.S.; Hudson, M.; Kokkori, M.; Muir, K.; Casadio, F.; Faber, K.T.; Schull, K.R. Quantifying the mechanical properties of artists’ paints with nanoindentation. In Proceedings of the 2014 Annual Meeting of the Adhesion Society, San Diego, CA, USA, 23–26 February 2014. [Google Scholar]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Sturdy, L.F.; Wright, M.S.; Yee, A.; Casadio, F.; Faber, K.T.; Shull, K.R. Effects of zinc oxide filler on the curing and mechanical response of alkyd coatings. Polymer 2020, 191, 122222. [Google Scholar] [CrossRef] [Green Version]
- Depolo, G.; Walton, M.; Keune, K.; Shull, K.R. After the paint has dried: A review of testing techniques for studying the mechanical properties of artists’ paint. Herit. Sci. 2021, 9, 68. [Google Scholar] [CrossRef]
- Kaszowska, Z.; Kot, M.; Białek-Kostecka, D.; Forczek-Sajdak, A. Application of micro-indentation tests to assess the consolidation procedure of historic wall paintings. J. Cult. Herit. 2019, 36, 286–296. [Google Scholar] [CrossRef]
- Andersen, C.K.; Freeman, A.; Mortensen, M.N.; Beltran, V.; Łukomski, M.; Phenix, A. Mechanical and Moisture Sorption Properties of Commercial Artists’ Oil Paint by Dynamic Mechanical Thermal Analysis (DMA), Nanoindentation, and Dynamic Vapour Sorption (DVS). In Conservation of Modern Oil Paintings; Springer: Cham, Switzerland, 2019; pp. 403–418. [Google Scholar]
- Freeman, A.A.; Lee, J.; Andersen, C.K.; Fujisawa, N.; Łukomski, M.; Ormsby, B. A pilot study of solvent-based cleaning of yellow ochre oil paint: Effect on mechanical properties. Herit. Sci. 2021, 9, 28. [Google Scholar] [CrossRef]
- Tiennot, M.; Paardekam, E.; Iannuzzi, D.; Hermens, E. Mapping the mechanical properties of paintings via nanoindentation: A new approach for cultural heritage studies. Sci. Rep. 2020, 10, 7924. [Google Scholar] [CrossRef]
- Salvant, J.; Barthel, E.; Menu, M. Nanoindentation and the micromechanics of Van Gogh oil paints. Appl. Phys. A 2011, 104, 509–515. [Google Scholar] [CrossRef] [Green Version]
- Freeman, A.A.; Fujisawa, N.; Bridarolli, A.; Bertolin, C.; Łukomski, M. Microscale Physical and Mechanical Analyses of Distemper Paint: A Case Study of Eidsborg Stave Church, Norway. Stud. Conserv. 2021, 1–14. [Google Scholar] [CrossRef]
- Freeman, A.; Łukomski, M.; Beltran, V. Mechanical characterization of a cross-sectional TiO2 acrylic-based paint by nano-indentation. J. Am. Inst. Conserv. 2020, 59, 27–39. [Google Scholar] [CrossRef]
- Fujisawa, N.; Łukomski, M. Nanoindentation near the edge of a viscoelastic solid with a rough surface. Mater. Des. 2019, 184, 108174. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004, 19, 3–20. [Google Scholar] [CrossRef]
- Fujisawa, N.; Bronken, I.A.T.; Freeman, A.A.; Łukomski, M. Nanoindentation of softening modern oil paints. J. Mech. Phys. Solids 2021. submitted. [Google Scholar]
- Tiennot, M.; Iannuzzi, D.; Hermens, E. Evolution of the viscoelastic properties of painting stratigraphies: A moisture weathering and nanoindentation approach. Herit. Sci. 2021, 9, 77. [Google Scholar] [CrossRef]
- Giorgiutti-Dauphiné, F.; Pauchard, L. Painting cracks: A way to investigate the pictorial matter. J. Appl. Phys. 2016, 120, 065107. [Google Scholar] [CrossRef]
- Sneddon, I.N. The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 1965, 3, 47–57. [Google Scholar] [CrossRef]
- King, R. Elastic analysis of some punch problems for a layered medium. Int. J. Solids Struct. 1987, 23, 1657–1664. [Google Scholar] [CrossRef]
- Nohava, J.; Randall, N.; Conté, N. Novel ultra nanoindentation method with extremely low thermal drift: Principle and experimental results. J. Mater. Res. 2009, 24, 873–882. [Google Scholar] [CrossRef] [Green Version]
- Odegard, G.; Gates, T.; Herring, H. Characterization of viscoelastic properties of polymeric materials through nanoindentation. Exp. Mech. 2005, 45, 130–136. [Google Scholar] [CrossRef]
- White, C.C.; VanLandingham, M.R.; Drzal, P.L.; Chang, N.-K.; Chang, S.-H. Viscoelastic characterization of polymers using instrumented indentation. II. Dynamic testing. J. Polym. Sci. Part B Polym. Phys. 2005, 43, 1812–1824. [Google Scholar] [CrossRef]
- Herbert, E.G.; Oliver, W.C.; Pharr, G.M. Nanoindentation and the dynamic characterization of viscoelastic solids. J. Phys. D Appl. Phys. 2008, 41, 074021. [Google Scholar] [CrossRef]
- Hay, J.; Agee, P.; Herbert, E. Continuous stiffness measurement during instrumented indentation testing. Exp. Tech. 2010, 34, 86–94. [Google Scholar] [CrossRef]
- Lucas, B.N.; Oliver, W.C. Indentation power-law creep of high-purity indium. Met. Mater. Trans. A 1999, 30, 601–610. [Google Scholar] [CrossRef]
- Tabor, D. The Hardness of Metals; Clarendon: Oxford, UK, 1951; Chapter 2. [Google Scholar]
- Bolshakov, A.; Pharr, G.M. Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques. J. Mater. Res. 1998, 13, 1049–1058. [Google Scholar] [CrossRef]
- Field, J.; Swain, M. A simple predictive model for spherical indentation. J. Mater. Res. 1993, 8, 297–306. [Google Scholar] [CrossRef]
- Kalidindi, S.; Pathak, S. Determination of the effective zero-point and the extraction of spherical nanoindentation stress–strain curves. Acta Mater. 2008, 56, 3523–3532. [Google Scholar] [CrossRef]
- Keck, S. Mechanical alteration of the paint film. Stud. Conserv. 1969, 14, 9–30. [Google Scholar]
- Mecklenburg, M.F.; Tumosa, C.S.; Erhardt, D. The changing mechanical properties of aging oil paints. In Proceedings of the Materials Issues in Art and Archaeology VII: The Materials Research Society Symposium, Boston, MA, USA, 29 November–2 December 2004. [Google Scholar]
- Mecklenburg, M.F.; Tumosa, C.S.; Vicenzi, E.P. The influence of pigments and ion migration on the durability of drying oil and alkyd paints. In New Insights into the Cleaning of Paintings, Proceedings of the Cleaning 2010 International Conference, Universidad Politecnica de Valencia and Museum Conservation Institute, Valencia, Spain, 26–28 May 2010; Smithsonian Institution: Washington, DC, USA, 2013. [Google Scholar]
- Fuster-López, L.; Izzo, F.C.; Damato, V.; Yusá-Marco, D.J.; Zendri, E. An insight into the mechanical properties of selected commercial oil and alkyd paint films containing cobalt blue. J. Cult. Heritage 2019, 35, 225–234. [Google Scholar] [CrossRef]
- Sandu, I.C.A.; Schäfer, S.; Magrini, D.; Bracci, S.; Roque, C.A. Cross-section and staining-based techniques for investigating organic materials in painted and polychrome works of art: A review. Microsc. Microanal. 2012, 18, 860–875. [Google Scholar] [CrossRef]
- Karpowicz, A. A study on development of cracks on paintings. J. Am. Inst. Conserv. 1990, 29, 169–180. [Google Scholar] [CrossRef]
- Michalski, S. Crack Mechanisms in Gildin; Gilded Wood Conservation and History Journal: Madison, CT, USA, 1991; pp. 171–181. [Google Scholar]
- Mecklenburg, M.F. Some mechanical and physical properties of gilding gesso. In Gilded Wood Conservation and Histor; Bigelow, D., Cornu, E., Landrey, G.J., van Horne, C., Eds.; Sound View Press: Madison, CT, USA, 1991; pp. 163–170. [Google Scholar]
- Krzemień, L.; Łukomski, M.; Bratasz, Ł.; Kozłowski, R.; Mecklenburg, M.F. Mechanism of craquelure pattern formation on panel paintings. Stud. Conserv. 2016, 61, 324–330. [Google Scholar] [CrossRef]
- Hay, J. Introduction to Instrumented Indentation Testing. Exp. Tech. 2009, 33, 66–72. [Google Scholar] [CrossRef]
- Bronken, I.A.T.; Boon, J.J. Hard Dry Paint, Softening Tacky Paint, and Exuding Drips on Composition (1952) by Jean-Paul Riopelle. In Issues in Contemporary Oil Paint; Springer: Singapore, 2014; pp. 247–262. [Google Scholar]
- Van den Berg, K.J.; Burnstock, A.; de Keijzer, M.; Krueger, J.; Learner, T.; de Tagle, A.; Heydenreich, G. Issues in Contemporary Oil Paint; Springer: New York, NY, USA, 2014. [Google Scholar]
- Cao, Y.; Ma, D.; Raabe, D. The use of flat punch indentation to determine the viscoelastic properties in the time and frequency domains of a soft layer bonded to a rigid substrate. Acta Biomater. 2009, 5, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Khandekar, N. Preparation of cross-sections from easel paintings. Stud. Conserv. 2003, 48, 52–64. [Google Scholar] [CrossRef]
- Jakes, J.; Frihart, C.; Beecher, J.; Moon, R.; Stone, D. Experimental method to account for structural compliance in nanoindentation measurements. J. Mater. Res. 2008, 23, 1113–1127. [Google Scholar] [CrossRef]
- Jakes, J.; Stone, D.S. The edge effect in nanoindentation. Philos. Mag. 2011, 91, 1387–1399. [Google Scholar] [CrossRef]
- Holl, Y.; Keddie, J.L.; McDonald, P.J.; Winnik, W.A. Drying Modes of Polymer Colloids. ACS Symp. Ser. 2001, 790, 2–26. [Google Scholar]
- Learner, T.J.S.; Smithen, P.; Krueger, J.W.; Michael, R. Modern Paints Uncovered. In Proceedings of the Modern Paints Uncovered Symposium, London, UK, 16–19 May 2007; Getty Publications: Los Angeles, CA, USA, 2007. [Google Scholar]
Specific Geometry | Benefits | Limitations | Studies on Mock-Ups or Original Historic/Artists’ Paints | ||
---|---|---|---|---|---|
Quasi-Static Method | Dynamic Method | ||||
Sharp | Three-sided pyramid—Berkovich | Manufacturable with high precision; constant strain and strain rate during the test | Underestimated contact radius due to ‘pile-up’, hence overestimated modulus | [5] [2] [6] [10] [16] [8] [15] | [14] [2] [11] [17] [16] [12] |
Flat punch | Column with flat circular base | Well defined and constant contact radius when in full contact | Small deformation assumption; pronounced substrate effect | [19] | |
Spherical | Sphere | Solely elastic deformation at initial contact at a small load | Non-scalable strain field, hence ‘pile-up’ with depth | [21] [13] [20] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łukomski, M.; Bridarolli, A.; Fujisawa, N. Nanoindentation of Historic and Artists’ Paints. Appl. Sci. 2022, 12, 1018. https://doi.org/10.3390/app12031018
Łukomski M, Bridarolli A, Fujisawa N. Nanoindentation of Historic and Artists’ Paints. Applied Sciences. 2022; 12(3):1018. https://doi.org/10.3390/app12031018
Chicago/Turabian StyleŁukomski, Michał, Alexandra Bridarolli, and Naoki Fujisawa. 2022. "Nanoindentation of Historic and Artists’ Paints" Applied Sciences 12, no. 3: 1018. https://doi.org/10.3390/app12031018
APA StyleŁukomski, M., Bridarolli, A., & Fujisawa, N. (2022). Nanoindentation of Historic and Artists’ Paints. Applied Sciences, 12(3), 1018. https://doi.org/10.3390/app12031018