Characteristic Aroma Compound in Cinnamon Bark Extract Using Soybean Oil and/or Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Cinnamon Bark Extract Preparation
2.3. Volatile Compound Analyses
2.4. Odor Activity Value (OAV) and Its Contribution Rate
2.5. Statistical Analysis
3. Results and Discussion
3.1. Changes in the Relative Concentrations of Volatile Compounds in the Water Extract
3.2. Changes in the Relative Concentrations of Volatile Compounds in the Oil/Water Extract
3.3. Comparing the Odorant Levels of the Water Extract with Those of the Oil/Water Extract
3.4. Changes in the OAVs and Their Contribution Rate of Volatile Compounds
3.5. Changes in the Overall Flavor Profile
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Kong, D.; Wu, H. Analysis and evaluation of essential oil components of cinnamon barks using GC–MS and FTIR spectroscopy. Ind. Crops Prod. 2013, 41, 269–278. [Google Scholar] [CrossRef]
- Falleh, H.; Ben Jemaa, M.; Saada, M.; Ksouri, R. Essential oils: A promising eco-friendly food preservative. Food Chem. 2020, 330, 127268. [Google Scholar] [CrossRef] [PubMed]
- Churihar, R.; Solanki, P.; Vyas, S.; Tanwani, H.; Atal, S. Analgesic activity of cinnamaldehyde per se and it’s interaction with diclofenac sodium and pentazocine in swiss albino mice. Int. J. Pharm. 2016, 3, 97–102. [Google Scholar]
- Han, D.; Zhang, C.; Fauconnier, M.L. Effect of seasoning addition on volatile composition and sensory properties of stewed pork. Foods 2021, 10, 83. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fan, D.; Zhao, Y.; Wang, M. Effects of quercetin and cinnamaldehyde on the nutrient release from beef into soup during stewing process. LWT 2020, 131, 109712. [Google Scholar] [CrossRef]
- Sun, L.; Chen, J.; Li, M.; Liu, Y.; Zhao, G. Effect of star anise (Illicium verum) on the volatile compounds of stewed chicken. J. Food Process Eng. 2014, 37, 131–145. [Google Scholar] [CrossRef]
- Gu, M.; Gai, S.; Cui, X.; Wang, H.; Wu, J.; Zhao, Z.; Zhang, Q.; Liu, D. Effect of circulating cooking on volatile flavor compounds in Dezhou braised chicken spices packets. J. Food Qual. Saf. 2019, 10, 4906–4913. (In Chinese) [Google Scholar]
- Yin, H.; Xiao, H.; Deng, G.; Liu, Y.; Jiang, L.; Li, P.; Wang, J. Based on gc-ims technology to analyze the difference in flavor composition of different spice boiling liquids. Sci. Technol. Food Ind. 2021, 42, 278–284. (In Chinese) [Google Scholar]
- Modi, P.I.; Parikh, J.K.; Desai, M.A. Sonohydrodistillation: Innovative approach for isolation of essential oil from the bark of cinnamon. Ind. Crops Prod. 2019, 142, 111838. [Google Scholar] [CrossRef]
- Kaul, P.N.; Bhattacharya, A.K.; Rajeswara Rao, B.R.; Syamasundar, K.V.; Ramesh, S. Volatile constituents of essential oils isolated from different parts of cinnamon (Cinnamomum zeylanicum Blume). J. Sci. Food Agric. 2003, 83, 53–55. [Google Scholar] [CrossRef]
- Xu, T.; Gao, C.; Feng, X.; Yang, Y.; Shen, X.; Tang, X. Structure, physical and antioxidant properties of chitosan-gum arabic edible films incorporated with cinnamon essential oil. Int. J. Biol. Macromol. 2019, 134, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Fasihi, H.; Noshirvani, N.; Hashemi, M.; Fazilati, M.; Salavati, H.; Coma, V. Antioxidant and antimicrobial properties of carbohydrate-based films enriched with cinnamon essential oil by Pickering emulsion method. Food Packag. Shelf Life 2019, 19, 147–154. [Google Scholar] [CrossRef]
- Qi, J.; Liu, D.; Zhou, G.; Xu, X. Characteristic flavor of traditional soup made by stewing Chinese yellow-feather chickens. J. Food Sci. 2017, 82, 2031–2040. [Google Scholar] [CrossRef]
- Qi, J.; Xu, Y.; Zhang, W.; Xie, X.; Xiong, G.; Xu, X. Short-term frozen storage of raw chicken meat improves its flavor traits upon stewing. LWT 2021, 142, 111029. [Google Scholar] [CrossRef]
- Qi, J.; Zhang, W.; Xu, Y.; Xie, X.; Xiong, G.; Xu, X.; Zhou, G.; Ye, M. Enhanced flavor strength of broth prepared from chicken following short-term frozen storage. Food Chem. 2021, 356, 129678. [Google Scholar] [CrossRef] [PubMed]
- Ni, H.; Jiang, Q.; Zhang, T.; Huang, G.; Li, L.; Chen, F. Characterization of the Aroma of an Instant White Tea Dried by Freeze Drying. Molecules 2020, 25, 3628. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xiao, Q.; Zhuang, J.; Feng, T.; Ho, C.-T.; Song, S. Characterization of aroma-active compounds in four yeast extracts using instrumental and sensory techniques. J. Agric. Food Chem. 2020, 68, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Wang, P.; Xiao, Q.; Xiao, Z.; Mao, H.; Zhang, J. Characterization of odor-active volatiles and odor contribution based on binary interaction effects in mango and vodka cocktail. Molecules 2020, 25, 1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinhaus, M.; Sinuco, D.; Polster, J.; Osorio, C.; Schieberle, P. Determination of potent flavor compounds in burgundy pinot noir wines using a stable isotope dilution assay. J. Agric. Food Chem. 2009, 57, 2882–2888. [Google Scholar] [CrossRef]
- Aubry, V.; Etiévant, P.X.; Giniès, C.; Henry, R. Quantitative determination of potent flavor compounds in burgundy pinot noir wines using a stable isotope dilution assay. J. Agric. Food Chem. 1997, 45, 2120–2123. [Google Scholar] [CrossRef]
- Yu, A.; Yang, Y.; Yang, Y.; Liang, M.; Zheng, F.; Sun, B. Free and bound aroma compounds of turnjujube (Hovenia acerba lindl.) during low temperature storage. Foods 2020, 9, 488. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Gao, W.; Chen, F.; Meng, Q. HS-SPME and SDE combined with GC–MS and GC-O for characterization of flavor compounds in Zhizhonghe Wujiapi medicinal liquor. Food Res. Int. 2020, 137, 109590. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Zhao, Z.; Zou, Y.; Ma, S.; Qi, J.; Liu, D. Comparative analysis of flavor differences of six Chinese commercial smoked chicken. CyTA-J. Food 2021, 19, 163–173. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Z.; Zhang, D.; Shen, Q.W.; Pan, T.; Hui, T.; Ma, J. Characterization of key aroma compounds in Beijing roasted duck by gas chromatography-olfactometry-mass spectrometry, odor activity values and aroma recombination experiments. J. Agric. Food Chem. 2019, 67, 5847–5856. [Google Scholar] [CrossRef]
- Feng, Y.; Cai, Y.; Fu, X.; Zheng, L.; Xiao, Z.; Zhao, M. Comparison of aroma-active compounds in broiler broth and native chicken broth by aroma extract dilution analysis (AEDA), odor activity value (OAV) and omission experiment. Food Chem. 2018, 265, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Takemitsu, H.; Amako, M.; Sako, Y.; Shibakusa, K.; Kita, K.; Kitamura, S.; Inui, H. Analysis of volatile odor components of superheated steam-cooked rice with a less stale flavor. Food Sci. Technol. Res. 2016, 22, 771–778. [Google Scholar] [CrossRef] [Green Version]
- Pino, J.A.; Quijano, C.E. Study of the volatile compounds from plum (Prunus domestica L. cv. Horvin) and estimation of their contribution to the fruit aroma. Food Sci. Technol. 2012, 32, 76–83. [Google Scholar] [CrossRef] [Green Version]
- Leffingwell, J.C.; Leffingwell, D. GRAS flavor chemicals-detection thresholds. Perfum. Flavor. 1991, 16, 1–19. [Google Scholar]
- Burdock, G.A. Fenaroli’s Handbook of Flavor Ingredients; Taylor & Francis Group: Abingdon, UK, 2009; pp. 1–2162. [Google Scholar]
- Ratseewo, J.; Tangkhawanit, E.; Meeso, N.; Kaewseejan, N.; Siriamornpun, S. Changes in antioxidant properties and volatile compounds of kaffir lime leaf as affected by cooking processes. Int. Food Res. J. 2016, 23, 188–196. [Google Scholar]
- Singh, G.; Maurya, S.; de Lampasona, M.P.; Catalan, C.A.N. A comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents. Food Chem. Toxicol. 2007, 45, 1650–1661. [Google Scholar] [CrossRef] [PubMed]
- Yi, B.H.; Kim, D.H. Antioxidant Activity of Maltol, Kojic Acid, Levulinic Acid, Furfural, 5-Hydroxymethyl Furfural, and Pyrazine. Korean J. Food Sci. Technol. 1982, 14, 265–270. [Google Scholar]
- Pazos, M.; Andersen, M.L.; Medina, I.; Skibsted, L.H. Efficiency of natural phenolic compounds regenerating α-tocopherol from α-tocopheroxyl radical. J. Agric. Food Chem. 2007, 55, 3661–3666. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Idhayadhulla, A.; Lee, Y.R.; Kim, S.H.; Wee, Y.-J. Antioxidant and antibacterial evaluation of synthetic furomollugin and its diverse analogs. Med. Chem. Res. 2014, 23, 3528–3538. [Google Scholar] [CrossRef]
- Singh, H.P.; Mittal, S.; Kaur, S.; Batish, D.R.; Kohli, R.K. Chemical composition and antioxidant activity of essential oil from residues of Artemisia scoparia. Food Chem. 2009, 114, 642–645. [Google Scholar] [CrossRef]
- Lee, K.-G.; Shibamoto, T. Antioxidant properties of aroma compounds isolated from soybeans and mung beans. J. Agric. Food Chem. 2000, 48, 4290–4293. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.A.; Susan, D. Binding of selected volatile flavour mixture to salt-extracted canola and pea proteins and effect of heat treatment on flavour binding. Food Hydrocoll. 2015, 43, 410–417. [Google Scholar] [CrossRef]
- Qi, J.; Xu, Y.; Xie, X.; Zhang, W.; Wang, H.; Xu, X.; Xiong, G. Gelatin enhances the flavor of chicken broth: A perspective on the ability of emulsions to bind volatile compounds. Food Chem. 2020, 333, 127463. [Google Scholar] [CrossRef]
- van Ruth, S.M.; Grossmann, I.; Geary, M.; Delahunty, C.M. Interactions between artificial saliva and 20 aroma compounds in water and oil model systems. J. Agric. Food Chem. 2001, 49, 2409–2413. [Google Scholar] [CrossRef]
- Gorle, B.S.K.; Smirnova, I.; McHugh, M.A. Adsorption and thermal release of highly volatile compounds in silica aerogels. J. Supercrit. Fluids 2009, 48, 85–92. [Google Scholar] [CrossRef]
RT | Compound | LRI | Density (g/mL) | log Kow | Vapor Pressure (mmHg) | Identification | Relative Concentrations (ng/g Extract) | ||
---|---|---|---|---|---|---|---|---|---|
30 min | 60 min | 90 min | |||||||
Aldehydes | |||||||||
7.39 | Hexanal | 1079 | 0.83 | 1.8 | 11.26 | MS + LRI | 136.47 ± 12.09c | 171.05 ± 6.31b | 274.93 ± 18.60a |
18.70 | Nonanal | 1396 | 0.83 | 3.3 | 0.37 | MS + LRI | 117.27 ± 1.70b | 142.80 ± 5.25a | 149.10 ± 6.67a |
20.61 | Furfural | 1468 | 1.16 | 0.4 | 2.21 | MS + LRI | 67.16 ± 2.92a | 44.35 ± 2.55b | 37.69 ± 4.91b |
22.16 | Benzaldehyde | 1508 | 1.05 | 1.5 | 1.27 | MS + LRI | 8.41e3 ± 0.06e3b | 11.03e3 ± 0.15e3a | 10.78e3 ± 0.42e3a |
28.32 | Benzenepropanal | 1745 | 1.01 | 1.3 | N.A. | MS + LRI | 1.19e3 ± 0.04e3b | 1.53e3 ± 0.04 e3a | 1.46e3 ± 0.07 e3a |
33.41 | p-Anisaldehyde | 2006 | 1.12 | 1.8 | 0.03 | MS + LRI | 564.81 ± 27.84c | 794.41 ± 25.07b | 870.28 ± 31.05a |
33.84 | Cinnamaldehyde | 2037 | 1.05 | 1.9 | 0.03 | MS + LRI | 81.92e3 ± 3.03e3a | 64.20e3 ± 2.27e3b | 42.79e3 ± 0.49e3c |
Subtotal | 92.40e3 ± 2.99e3a | 77.91e3 ± 2.33e3b | 56.36e3 ± 0.99e3c | ||||||
Alkenes | |||||||||
6.74 | Camphene | 1057 | 0.84 | 3.3 | 2.50 | MS + LRI | 13.38 ± 1.39b | 11.47 ± 1.03b | 57.87 ± 3.43a |
11.28 | D-Limonene | 1185 | 0.84 | 3.4 | 1.64 | MS + LRI | 187.86 ± 19.96b | 178.61 ± 10.10b | 268.35 ± 17.69a |
13.83 | Cyclooctatetraene | 1264 | 3.08 | 3.1 | 7.80 | MS + LRI | 90.58 ± 4.23c | 127.83 ± 0.88b | 224.91 ± 8.30a |
26.04 | 4-Methoxystyrene | 1670 | 0.99 | 3.1 | N.A. | MS + LRI | 240.72 ± 19.06a | 117.25 ± 5.96b | 78.78 ± 1.72c |
Subtotal | 532.55 ± 20.76b | 435.25 ± 16.14c | 629.91 ± 23.15a | ||||||
Alcohols | |||||||||
11.85 | Eucalyptol | 1209 | 0.93 | 2.5 | 1.90 | MS + LRI | 154.73 ± 9.05c | 243.54 ± 15.58b | 345.90 ± 18.09a |
20.51 | 1-Octen-3-ol | 1456 | 0.84 | 2.6 | N.A. | MS + LRI | 127.31 ± 4.34a | 38.70 ± 1.11b | 36.23 ± 1.76b |
23.07 | Linalool | 1552 | 0.87 | 2.7 | 0.16 | MS + LRI | 473.30 ± 14.13b | 473.10 ± 18.37b | 683.91 ± 31.20a |
24.36 | Isopulegol | 1617 | 0.90 | 3 | N.A. | MS + LRI | 834.35 ± 31.34a | 485.51 ± 21.57b | 466.64 ± 16.60b |
26.65 | α-Terpineol | 1680 | 0.93 | 1.8 | 0.04 | MS + LRI | 690.93 ± 13.96a | 507.52 ± 14.96b | 508.01 ± 38.52b |
26.77 | Borneol | 1690 | 1.10 | 2.7 | 0.05 | MS + LRI | 997.79 ± 40.01 | 973.50 ± 30.48 | 935.43 ± 35.49 |
30.54 | Benzyl alcohol | 1861 | 1.05 | 1.1 | 0.09 | MS + LRI | 23.55 ± 1.72 | 23.31 ± 0.54 | 20.87 ± 2.82 |
Subtotal | 3.30e3 ± 0.06e3a | 2.75e3 ± 0.05e3c | 3.00e3 ± 0.13e3b | ||||||
Ethers | |||||||||
25.89 | Estragole | 1661 | 0.96 | 3.4 | 0.165 | MS + LRI | 243.84 ± 34.84a | 132.02 ± 4.81b | 225.98 ± 14.28a |
29.40 | Anethole | 1815 | 0.99 | 3.3 | 0.07 | MS + LRI | 1.65e3 ± 0.05e3c | 2.40e3 ± 0.06e3b | 5.91e3 ± 0.39e3a |
Subtotal | 1.90e3 ± 0.03e3c | 2.53e3 ± 0.07e3b | 6.14e3 ± 0.40e3a | ||||||
Ketones | |||||||||
16.87 | 6-methyl-5-Hepten-2-one | 1341 | 0.85 | 1.9 | N.A. | MS + LRI | 129.37 ± 2.25a | 118.04 ± 1.35b | 104.82 ± 4.67c |
19.67 | 2-Cyclohexen-1-one | 1412 | 0.98 | 0.6 | N.A. | MS + LRI | 77.22 ± 3.69a | 67.14 ± 2.44b | 52.76 ± 5.06c |
25.37 | Acetophenone | 1645 | 1.03 | 1.6 | 0.4 | MS + LRI | 339.27 ± 29.74a | 290.24 ± 6.71b | 232.62 ± 15.08c |
Subtotal | 545.86 ± 19.83a | 475.42 ± 3.93b | 390.20 ± 12.10c | ||||||
Esters | |||||||||
23.75 | Isobornyl acetate | 1583 | 0.98 | 3.3 | 0.107 | MS + LRI | 220.23 ± 10.06a | 106.39 ± 3.16c | 197.40 ± 4.51b |
35.45 | Ethyl cinnamate | 2106 | 1.05 | 3 | 0.00 | MS + LRI | 128.16 ± 0.91 | 135.01 ± 11.88 | 128.69 ± 14.89 |
35.79 | Cinnamyl acetate | 2150 | 1.05 | 2.3 | N.A. | MS + LRI | 1708.64 ± 14.92a | 781.35 ± 14.34b | 602.13 ± 47.93c |
Subtotal | 2.06e3 ± 0.02e3a | 1.02e3 ± 0.02e3b | 0.93e3 ± 0.06e3c | ||||||
Total | 100.73e3 ± 3.01e3a | 85.12e3 ± 2.49e3b | 67.45e3 ± 1.59e3c |
RT | Compound | LRI | Density (g/mL) | log Kow | Vapo Pressure (mmHg) | Identification | Relative Concentrations (ng/g Extract) | ||
---|---|---|---|---|---|---|---|---|---|
30 min | 60 min | 90 min | |||||||
Aldehyde | |||||||||
7.39 | Hexanal | 1079 | 0.83 | 1.8 | 11.26 | MS + RI | 223.14 ± 7.49b | 316.24 ± 14.57a | 12.78 ± 0.50c |
18.70 | Nonanal | 1396 | 0.83 | 3.3 | 0.37 | MS + RI | 30.73 ± 1.89a | 33.17 ± 0.94a | 9.74 ± 1.83b |
20.61 | Furfural | 1468 | 1.16 | 0.4 | 2.21 | MS + RI | 19.11 ± 0.60b | 35.88 ± 4.37a | 10.32 ± 0.65c |
22.16 | Benzaldehyde | 1508 | 1.05 | 1.5 | 1.27 | MS + RI | 3115.85 ± 101.70b | 3504.35 ± 170.50a | 69.45 ± 5.41c |
28.32 | Benzenepropanal | 1745 | 1.01 | 1.3 | N.A. | MS + RI | 306.43 ± 6.69b | 404.53 ± 8.21a | 15.22 ± 3.14c |
33.41 | p-Anisaldehyde | 2006 | 1.12 | 1.8 | 0.03 | MS + RI | 91.19 ± 4.83b | 176.85 ± 8.97a | 10.85 ± 1.99c |
33.84 | Cinnamaldehyde | 2037 | 1.05 | 1.9 | 0.03 | MS + RI | 21.60e3 ± 0.41e3a | 21.07e3 ± 1.33e3a | 1.80e3 ± 0.06e3b |
Subtotal | 25.38e3 ± 0.51e3a | 25.54e3 ± 1.47e3a | 1.93e3 ± 0.06e3b | ||||||
Alkenes | |||||||||
6.74 | Camphene | 1057 | 0.84 | 3.3 | 2.50 | MS + RI | 53.85 ± 7.02c | 208.84 ± 13.01a | 125.43 ± 6.46b |
11.28 | D-Limonene | 1185 | 0.84 | 3.4 | 1.64 | MS + RI | 156.12 ± 7.46b | 170.56 ± 7.42a | 173.78 ± 6.21a |
13.83 | Cyclooctatetraene | 1264 | 3.08 | 3.1 | 7.80 | MS + RI | 49.12 ± 4.13b | 100.99 ± 5.40a | 23.48 ± 1.34c |
26.04 | 4-Methoxystyrene | 1670 | 0.99 | 3.1 | N.A. | MS + RI | 21.03 ± 3.40a | 16.59 ± 1.45b | 6.49 ± 0.10c |
Subtotal | 280.12 ± 15.73c | 496.98 ± 20.33a | 329.19 ± 12.16b | ||||||
Alcohols | |||||||||
11.85 | Eucalyptol | 1209 | 0.93 | 2.5 | 1.90 | MS + RI | 149.53 ± 4.10a | 77.91 ± 5.94b | 40.52 ± 3.49c |
14.16 | 1-Pentanol | 1275 | 0.82 | 1.6 | 3.04 | MS + RI | 12.07 ± 2.08b | 13.87 ± 1.49b | 55.70 ± 1.57a |
20.51 | 1-Octen-3-ol | 1456 | 0.84 | 2.6 | N.A. | MS + RI | 22.14 ± 1.97c | 30.61 ± 2.82a | 26.45 ± 0.77b |
23.07 | Linalool | 1552 | 0.87 | 2.7 | 0.16 | MS + RI | 55.28 ± 1.25b | 58.10 ± 3.27ab | 61.84 ± 0.98a |
24.36 | Isopulegol | 1617 | 0.90 | 3 | N.A. | MS + RI | 60.48 ± 2.98b | 66.83 ± 3.05a | 37.76 ± 0.87c |
26.65 | α-Terpineol | 1680 | 0.93 | 1.8 | 0.04 | MS + RI | 104.69 ± 1.81a | 97.51 ± 5.82a | 50.59 ± 1.36b |
26.77 | Borneol | 1690 | 1.10 | 2.7 | 0.05 | MS + RI | 310.14 ± 6.95a | 241.82 ± 8.39b | 144.20 ± 3.00c |
30.54 | Benzyl alcohol | 1861 | 1.05 | 1.1 | 0.09 | MS + RI | 9.73 ± 2.04b | 9.11 ± 1.47b | 77.02 ± 6.79a |
Subtotal | 724.05 ± 7.88a | 595.77 ± 18.80b | 494.08 ± 12.84c | ||||||
Ethers | |||||||||
25.89 | Estragole | 1661 | 0.96 | 3.4 | 0.165 | MS + RI | 21.03 ± 2.60b | 27.80 ± 2.22a | 21.43 ± 1.05b |
29.40 | Anethole | 1815 | 0.99 | 3.3 | 0.07 | MS + RI | 607.54 ± 12.89c | 747.43 ± 13.68a | 644.98 ± 10.36b |
Subtotal | 628.57 ± 13.90c | 775.23 ± 15.83a | 666.41 ± 9.35b | ||||||
Ketones | |||||||||
16.87 | 6-methyl-5-Hepten-2-one | 1341 | 0.85 | 1.9 | N.A. | MS + RI | 60.78 ± 1.34a | 53.34 ± 1.64b | 29.21 ± 1.17c |
19.67 | 2-Cyclohexen-1-one | 1412 | 0.98 | 0.6 | N.A. | MS + RI | N.D. | N.D. | 15.36 ± 0.38 |
25.37 | Acetophenone | 1645 | 1.03 | 1.6 | 0.4 | MS + RI | 65.94 ± 0.18a | 57.60 ± 3.49b | 26.93 ± 2.38c |
Subtotal | 126.72 ± 1.21a | 110.95 ± 5.11b | 71.50 ± 1.35c | ||||||
Esters | |||||||||
23.75 | Isobornyl acetate | 1583 | 0.98 | 3.3 | 0.107 | MS + RI | 14.88 ± 1.65b | 18.07 ± 0.62a | 10.79 ± 1.08c |
35.45 | Ethyl cinnamate | 2106 | 1.05 | 3 | 0.00 | MS + RI | 18.75 ± 2.08b | 25.92 ± 1.93a | 5.01 ± 0.62c |
35.79 | Cinnamyl acetate | 2150 | 1.05 | 2.3 | N.A. | MS + RI | 69.65 ± 6.54a | 64.07 ± 4.55a | 19.31 ± 3.37b |
Subtotal | 103.28 ± 5.54a | 108.06 ± 6.37a | 35.11 ± 4.83b | ||||||
Total | 26.52e3 ± 0.52e3a | 27.03e3 ± 1.51e3a | 3.03e3 ± 0.07e3b |
Compound | Odor Descriptors | Odor Thresholdn (ng/g) | Water Extract | Oil/Water Extract | Reference | ||
---|---|---|---|---|---|---|---|
OAVs | Contribution Rates (%) | OAVs | Contribution Rates (%) | ||||
Aldehyde | |||||||
Hexanal | grass, green | 5 | 27–55 | 3–5 | 2–63 | 2–21 | [24] |
Nonanal | green, fatty | 1 | 117–149 | 14–18 | 10–33 | 8–12 | [30] |
Furfural | almond, bread, sweet | 10,000 | <1 | <1 | <1 | <1 | [17] |
Benzaldehyde | almond, burnt sugar | 350 | 24–32 | 3–4 | 0–10 | 0–3 | [23] |
p-Anisaldehyde | fennel, hawthorn | 21 | 27–41 | 3–5 | 1–8 | 0–3 | [22] |
Cinnamaldehyde | cinnamon | 385 | 111–213 | 11–26 | 5–56 | 4–12 | [22] |
Alkene | |||||||
Camphene | green, camphoreous | 450 | <1 | <1 | <1 | <1 | [16] |
D-Limonene | citrus, mint | 10 | 19–27 | 2–3 | 16–17 | 6–14 | [4] |
Alcohols | |||||||
Eucalyptol | minty, eucalyptus | 12 | 13–29 | 2–3 | 3–12 | 2–5 | [23] |
1-Pentanol | rubber, phenolic | 3 | N.D. | N.D. | 4–19 | 2–13 | |
1-Octen-3-ol | mushroom | 1 | 36–127 | 3–15 | 22–31 | 9–18 | [30] |
Linalool | flower, lavender | 6 | 79–114 | 9–11 | 9–10 | 3–7 | [4] |
Isopulegol | minty | 1000 | 0–1 | <1 | <1 | <1 | [29] |
α-Terpineol | green | 330 | 2 | <1 | <1 | <1 | [27] |
Borneol | camphor | 140 | 7 | 1 | 1–2 | 1 | [21] |
Benzyl alcohol | popcorn, sweet | 900 | <1 | <1 | <1 | <1 | [26] |
Ether | |||||||
Estragole | licorice, anise | 6 | 22–41 | 3–5 | 4–5 | 1–2 | [4] |
Anethole | anissed-like | 15 | 110–394 | 13–37 | 41–50 | 16–30 | [4] |
Ketones | |||||||
6-methyl-5-Hepten-2-one | green, nutty | 50 | 2–3 | <1 | <1 | 0.85 | [28] |
Acetophenone | floral, almond | 65 | 4–5 | 0–1 | <1 | 1.03 | [23] |
Ester | |||||||
Isobornyl acetate | woody, camphor | 1800 | <1 | <1 | <1 | 0.98 | [18] |
Ethyl cinnamate | honey | 16 | 8 | 1 | 0–1 | 1.05 | [20] |
Cinnamyl acetate | floral | 150 | 4–11 | 0–1 | <1 | 1.05 | [19] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Jia, C.; Yan, H.; Peng, Y.; Hu, E.; Qi, J.; Lin, Q. Characteristic Aroma Compound in Cinnamon Bark Extract Using Soybean Oil and/or Water. Appl. Sci. 2022, 12, 1284. https://doi.org/10.3390/app12031284
Zhang W, Jia C, Yan H, Peng Y, Hu E, Qi J, Lin Q. Characteristic Aroma Compound in Cinnamon Bark Extract Using Soybean Oil and/or Water. Applied Sciences. 2022; 12(3):1284. https://doi.org/10.3390/app12031284
Chicago/Turabian StyleZhang, Wenwen, Chuankang Jia, Huimin Yan, Yalin Peng, Enmin Hu, Jun Qi, and Qing Lin. 2022. "Characteristic Aroma Compound in Cinnamon Bark Extract Using Soybean Oil and/or Water" Applied Sciences 12, no. 3: 1284. https://doi.org/10.3390/app12031284
APA StyleZhang, W., Jia, C., Yan, H., Peng, Y., Hu, E., Qi, J., & Lin, Q. (2022). Characteristic Aroma Compound in Cinnamon Bark Extract Using Soybean Oil and/or Water. Applied Sciences, 12(3), 1284. https://doi.org/10.3390/app12031284