BMP-2 Delivery through Liposomes in Bone Regeneration
Abstract
:1. Introduction
2. Components of Bone Regeneration
2.1. Cells
2.2. Biomaterials
2.3. Growth Factors
2.4. Growth Factor Delivery Systems
3. Liposomes
4. Transfection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TGFβ | Transforming Growth Factor β |
MSC | Mesenchymal Stromal Cell |
BMP-2 | Bone morphogenetic protein 2 |
rhBMP-2 | recombinant human BMP-2 |
Runx2 | Runt-related transcription factor 2 |
Osx | Osterix transcription factor |
ALP | Alkaline Phosphatase |
OC | osteocalcin |
OP | osteopontin |
FDA | Food and Drug Administration |
HA | hydroxyapatite |
TCP | tricalcium phosphate |
DNA | deoxyribonucleic acid |
siRNA | small interfering ribonucleic acid |
miRNA | micro ribonucleic acid |
VEGF | Vascular Endothelial Growth Factor |
hVEGF | human Vascular Endothelial Growth Factor |
hBMP-2 | human Bone morphogenetic protein 2 |
BMSC | Bone Marrow Stromal Cell |
mRNA | messenger ribonucleic acid |
RT-PCR | Revers Transcription Polymerase Chain Reaction |
Peg | polyethylene glycol |
IGF1 | Insulin growth factor 1 |
cDNA | complementary deoxyribonucleic acid |
Q-PCR | quantitative PCR |
BP | bisphosphonates |
GADPH | glyceraldehyde 3-phosphate dehydrogenase |
References
- Peng, X.-Y.; Hu, M.; Liao, F.; Yang, F.; Ke, Q.-F.; Guo, Y.-P.; Zhu, Z.-H. La-Doped Mesoporous Calcium Silicate/Chitosan ScafFolds for Bone Tissue Engineering. Biomater. Sci. 2019, 7, 1565–1573. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.-W.; Lee, S.J.; Ko, I.K.; Kengla, C.; Yoo, J.J.; Atala, A. A 3D Bioprinting System to Produce Human-Scale Tissue Constructs with Structural Integrity. Nat. Biotechnol. 2016, 34, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Jeffcoat, M.K. Bone Loss in the Oral Cavity. J. Bone Miner. Res. 2009, 8, S467–S473. [Google Scholar] [CrossRef] [PubMed]
- Bell, A.; Templeman, D.; Weinlein, J.C. Nonunion of the Femur and Tibia. Orthop. Clin. N. Am. 2016, 47, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Gaviria, L.; Salcido, J.P.; Guda, T.; Ong, J.L. Current Trends in Dental Implants. J. Korean Assoc. Oral Maxillofac. Surg. 2014, 40, 50–60. [Google Scholar] [CrossRef]
- Goldberg, N.I.; Gershkoff, A. The Implant Lower Denture. Dent. Dig. 1949, 55, 490–494. [Google Scholar]
- Ionel, A.; Lucaciu, O.; Bondor, C.; Moga, M.; Ilea, A.; Feurdean, C.; Buhățel, D.; Hurubeanu, L.; Câmpian, R.S. Assessment of the Relationship between Periodontal Disease and Cardiovascular Disorders: A Questionnaire-Based Study. Clujul Med. 2016, 89, 534–541. [Google Scholar] [CrossRef] [Green Version]
- Lucaciu, O.; Soritau, O.; Gheban, D.; Ciuca, D.R.; Virtic, O.; Vulpoi, A.; Dirzu, N.; Campian, R.; Băciuţ, G.; Popa, C.; et al. Dental Follicle Stem Cells in Bone Regeneration on Titanium Implants. BMC Biotechnol. 2015, 15, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Lucaciu, O.; Crisan, B.; Hedesiu, M.; Soritau, O.; Dirzu, N.; Crisan, L.; Campian, R.; Baciut, G.; Baciut, M.; Onisor, F.; et al. The Role of BMP-2, Low-Level Laser Therapy and Low X-Ray Doses in Dental Follicle Stem Cell Migration. Part. Sci. Technol. 2017, 36, 981–988. [Google Scholar] [CrossRef]
- Cai, H.; Zou, J.; Wang, W.; Yang, A. BMP2 Induces hMSC Osteogenesis and Matrix Remodeling. Mol. Med. Rep. 2020, 23, 125. [Google Scholar] [CrossRef]
- Lin, W.; Zhu, X.; Gao, L.; Mao, M.; Gao, D.; Huang, Z. Osteomodulin Positively Regulates Osteogenesis through Interaction with BMP2. Cell Death Dis. 2021, 12, 1–13. [Google Scholar] [CrossRef]
- Wang, P.; Perche, F.; Midoux, P.; Cabral, C.S.; Malard, V.; Correia, I.J.; EI-Hafci, H.; Petite, H.; Logeart-Avramoglou, D.; Pichon, C. In Vivo Bone Tissue Induction by Freeze-Dried Collagen-Nanohydroxyapatite Matrix Loaded with BMP2/NS1 MRNAs Lipopolyplexes. J. Control. Release 2021, 334, 188–200. [Google Scholar] [CrossRef]
- Lutz, R.; Park, J.; Felszeghy, E.; Wiltfang, J.; Nkenke, E.; Schlegel, K.A. Bone Regeneration after Topical BMP-2-Gene Delivery in Circumferential Peri-Implant Bone Defects. Clin. Oral Implant. Res. 2008, 19, 590–599. [Google Scholar] [CrossRef]
- Agrawal, V.; Sinha, M. A Review on Carrier Systems for Bone Morphogenetic Protein-2. J. Biomed. Mater. Res. Part B Appl. Biomater. 2016, 4, 904–925. [Google Scholar] [CrossRef]
- Oliveira, A.; Ferraz, M.; Monteiro, F.; Simões, S. Cationic liposome–DNA Complexes as Gene Delivery Vectors: Development and Behaviour towards Bone-Like Cells. Acta Biomater. 2009, 5, 2142–2151. [Google Scholar] [CrossRef]
- Manolagas, S.C. Birth and Death of Bone Cells: Basic Regulatory Mechanisms and Implications for the Pathogenesis and Treatment of Osteoporosis*. Endocr. Rev. 2000, 21, 115–137. [Google Scholar] [CrossRef] [Green Version]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.C.; Krause, D.S.; Deans, R.J.; Keating, A.; Prockop, D.J.; Horwitz, E.M. Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells. The International Society for Cellular Therapy Position Statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, X.; Huang, A.; Zhang, X.; Wang, Y.; Geng, W.; Xu, R.; Li, S.; He, H.; Zheng, B.; et al. INTS7–ABCD3 Interaction Stimulates the Proliferation and Osteoblastic Differentiation of Mouse Bone Marrow Mesenchymal Stem Cells by Suppressing Oxidative Stress. Front. Physiol. 2021, 12, 758607. [Google Scholar] [CrossRef]
- Hosseinzadeh, M.; Kamali, A.; Hosseini, S.; Eslaminejad, M.B. Higher Chondrogenic Potential of Extracellular Vesicles Derived from Mesenchymal Stem Cells Compared to Chondrocytes-EVs in vitro. BioMed Res. Int. 2021, 2021, 1–12. [Google Scholar] [CrossRef]
- Goodrich, A.D.; Ersek, A.; Varain, N.M.; Groza, D.; Cenariu, M.C.; Thain, D.S.; Almeida-Porada, G.; Porada, C.D.; Zanjani, E.D. In Vivo Generation of β-Cell–Like Cells from CD34+ Cells Differentiated from Human Embryonic Stem Cells. Exp. Hematol. 2010, 38, 516–525.e4. [Google Scholar] [CrossRef] [Green Version]
- Wen, Q.; Xie, X.; Ren, Q.; Du, Y. Polybrominated Diphenyl Ether Congener 99 (PBDE 99) Promotes Adipocyte Lineage Commitment of C3H10T1/2 Mesenchymal Stem Cells. Chemosphere 2021, 290, 133312. [Google Scholar] [CrossRef] [PubMed]
- Miksiunas, R.; Aldonyte, R.; Vailionyte, A.; Jelinskas, T.; Eimont, R.; Stankeviciene, G.; Cepla, V.; Valiokas, R.; Rucinskas, K.; Janusauskas, V.; et al. Cardiomyogenic Differentiation Potential of Human Dilated Myocardium-Derived Mesenchymal Stem/Stromal Cells: The Impact of HDAC Inhibitor SAHA and Biomimetic Matrices. Int. J. Mol. Sci. 2021, 22, 12702. [Google Scholar] [CrossRef] [PubMed]
- Marupanthorn, K.; Tantrawatpan, C.; Kheolamai, P.; Tantikanlayaporn, D.; Manochantr, S. Bone Morphogenetic Protein-2 Enhances the Osteogenic Differentiation Capacity of Mesenchymal Stromal Cells Derived from Human Bone Marrow and Umbilical Cord. Int. J. Mol. Med. 2017, 39, 654–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soancă, A.; Lupse, M.; Moldovan, M.; Pall, E.; Cenariu, M.C.; Roman, A.; Tudoran, O.; Surlin, P.; Șorițău, O. Applications of Inflammation-Derived Gingival Stem Cells for Testing the Biocompatibility of Dental Restorative Biomaterials. Ann. Anat. 2018, 218, 28–39. [Google Scholar] [CrossRef]
- Páll, E.; Florea, A.; Soriţău, O.; Cenariu, M.; Petruţiu, A.S.; Roman, A. Comparative Assessment of Oral Mesenchymal Stem Cells Isolated from Healthy and Diseased Tissues. Microsc. Microanal. 2015, 21, 1249–1263. [Google Scholar] [CrossRef]
- Senta, H.; Park, H.; Bergeron, E.; Drevelle, O.; Fong, D.; Leblanc, E.; Cabana, F.; Roux, S.; Grenier, G.; Faucheux, N. Cell responses to bone morphogenetic proteins and peptides derived from them: Biomedical applications and limitations. Cytokine Growth Factor Rev. 2009, 20, 213–222. [Google Scholar] [CrossRef]
- Miron, R.J.; Zhang, Y.F. Osteoinduction: A Review of Old Concepts with New Standards. J. Dent. Res. 2012, 91, 736–744. [Google Scholar] [CrossRef]
- Mishra, S.; Vaughn, A.D.; Devore, D.I.; Roth, C.M. Delivery of siRNA Silencing Runx2 Using a Multifunctional Polymer-Lipid Nanoparticle Inhibits Osteogenesis in a Cell Culture Model of Heterotopic Ossification. Integr. Biol. 2012, 4, 1498–1507. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wu, Y.; Gao, W.; Li, F.; Bo, Y.; Zhu, M.; Fu, R.; Liu, Q.; Wen, S.; Wang, B. Identification and Characterization of CD133+CD44+ Cancer Stem Cells from Human Laryngeal Squamous Cell Carcinoma Cell Lines. J. Cancer 2017, 8, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Ge, Q.; Green, D.W.; Lee, D.-J.; Kim, H.-Y.; Piao, Z.; Lee, J.-M.; Jung, H.-S. Mineralized Polysaccharide Transplantation Modules Supporting Human MSC Conversion into Osteogenic Cells and Osteoid Tissue in a Non-Union Defect. Mol. Cells 2018, 41, 1016–1023. [Google Scholar] [CrossRef]
- Cheng, L.; Li, Y.; Xia, Q.; Meng, M.; Ye, Z.; Tang, Z.; Feng, H.; Chen, X.; Chen, H.; Zeng, X.; et al. Enamel Matrix Derivative (EMD) Enhances the Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells (BMSCs). Bioengineered 2021, 12, 7033–7045. [Google Scholar] [CrossRef]
- Nie, D.; Zhou, Y.; Wang, W.; Zhang, J.; Wang, J.H.-C. Mechanical Overloading Induced-Activation of mTOR Signaling in Tendon Stem/Progenitor Cells Contributes to Tendinopathy Development. Front. Cell Dev. Biol. 2021, 9, 687856. [Google Scholar] [CrossRef]
- Ding, M.; Lu, Y.; Abbassi, S.; Li, F.; Li, X.; Song, Y.; Geoffroy, V.; Im, H.-J.; Zheng, Q. Targeting Runx2 Expression in Hypertrophic Chondrocytes Impairs Endochondral Ossification during Early Skeletal Development. J. Cell. Physiol. 2011, 227, 3446–3456. [Google Scholar] [CrossRef] [Green Version]
- Catheline, S.E.; Hoak, D.; Chang, M.; Ketz, J.P.; Hilton, M.J.; Zuscik, M.J.; Jonason, J.H. Chondrocyte-Specific RUNX2 Overexpression Accelerates Post-Traumatic Osteoarthritis Progression in Adult Mice. J. Bone Miner. Res. 2019, 34, 1676–1689. [Google Scholar] [CrossRef]
- Rashid, H.; Chen, H.; Javed, A. Runx2 is Required for Hypertrophic Chondrocyte Mediated Degradation of Cartilage Matrix during Endochondral Ossification. Matrix Biol. Plus 2021, 12, 100088. [Google Scholar] [CrossRef]
- Lai, K.; Xi, Y.; Du, X.; Jiang, Z.; Li, Y.; Huang, T.; Miao, X.; Wang, H.; Wang, Y.; Yang, G. Activation of Nell-1 in BMSC Sheet Promotes Implant Osseointegration Through Regulating Runx2/Osterix Axis. Front. Cell Dev. Biol. 2020, 8, 868. [Google Scholar] [CrossRef]
- Artigas, N.; Ureña, C.; Rodríguez-Carballo, E.; Rosa, J.L.; Ventura, F. Mitogen-Activated Protein Kinase (MAPK)-Regulated Interactions between Osterix and Runx2 Are Critical for the Transcriptional Osteogenic Program. J. Biol. Chem. 2014, 289, 27105–27117. [Google Scholar] [CrossRef] [Green Version]
- Caballé-Serrano, J.; Abdeslam-Mohamed, Y.; Munar-Frau, A.; Fujioka-Kobayashi, M.; Hernández-Alfaro, F.; Miron, R. Adsorption and Release Kinetics of Growth Factors on Barrier Membranes for Guided Tissue/Bone Regeneration: A Systematic Review. Arch. Oral Biol. 2019, 100, 57–68. [Google Scholar] [CrossRef]
- Edelhoff, D.; Schweiger, J.; Prandtner, O.; Stimmelmayr, M.; Güth, J.F. Metal-free Implant-Supported Single-Tooth Restorations. Part I: Abutments and Cemented Crowns. Quintessence Int. 2019, 50, 176–184. [Google Scholar] [CrossRef]
- Iviglia, G.; Kargozar, S.; Baino, F. Biomaterials, Current Strategies, and Novel Nano-Technological Approaches for Periodontal Regeneration. J. Funct. Biomater. 2019, 10, 3. [Google Scholar] [CrossRef] [Green Version]
- Triplett, R.G.; Frohberg, U.; Sykaras, N.; Woody, R.D. Implant Materials, Design, and Surface Topographies: Their Influence on Osseointegration of Dental Implants. J. Long-Term Eff. Med. Implant. 2003, 13, 18–501. [Google Scholar] [CrossRef]
- Boda, S.K.; Almoshari, Y.; Wang, H.; Wang, X.; Reinhardt, R.A.; Duan, B.; Wang, D.; Xie, J. Mineralized Nanofiber Segments Coupled with Calcium-Binding BMP-2 Peptides for Alveolar Bone Regeneration. Acta Biomater. 2018, 85, 282–293. [Google Scholar] [CrossRef]
- Morton, D.; Gallucci, G.; Lin, W.; Pjetursson, B.; Polido, W.; Roehling, S.; Sailer, I.; Aghaloo, T.; Albera, H.; Bohner, L.; et al. Group 2 ITI Consensus Report: Prosthodontics and Implant Dentistry. Clin. Oral Implant. Res. 2018, 29, 215–223. [Google Scholar] [CrossRef]
- Kasemo, B. Biocompatibility of Titanium Implants: Surface Science Aspects. J. Prosthet. Dent. 1983, 49, 832–837. [Google Scholar] [CrossRef]
- Becker, W.; Hujoel, P.; Becker, B.E.; Wohrle, P. Dental Implants in an Aged Population: Evaluation of Periodontal Health, Bone Loss, Implant Survival, and Quality of Life. Clin. Implant Dent. Relat. Res. 2015, 18, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Meijndert, C.M.; Raghoebar, G.M.; Stellingsma, K.; Vissink, A.; Meijer, H.J.A. Single Implants in the Aesthetic Region Preceded by Local Ridge Augmentation; a 10-year Randomized Controlled Trial. Clin. Oral Implant. Res. 2016, 28, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Barone, A.; Marconcini, S.; Giammarinaro, E.; Mijiritsky, E.; Gelpi, F.; Covani, U. Clinical Outcomes of Implants Placed in Extraction Sockets and Immediately Restored: A 7-Year Single-Cohort Prospective Study. Clin. Implant Dent. Relat. Res. 2016, 18, 1103–1112. [Google Scholar] [CrossRef] [PubMed]
- Yook, S.-W.; Jung, H.-D.; Park, C.-H.; Shin, K.-H.; Koh, Y.-H.; Estrin, Y.; Kim, H.-E. Reverse Freeze Casting: A New Method for Fabricating Highly Porous Titanium Scaffolds with Aligned Large Pores. Acta Biomater. 2012, 8, 2401–2410. [Google Scholar] [CrossRef]
- Kirmanidou, Y.; Sidira, M.; Drosou, M.-E.; Bennani, V.; Bakopoulou, A.; Tsouknidas, A.; Michailidis, N.; Michalakis, K. New Ti-Alloys and Surface Modifications to Improve the Mechanical Properties and the Biological Response to Orthopedic and Dental Implants: A Review. BioMed Res. Int. 2016, 2016, 2908570. [Google Scholar] [CrossRef] [Green Version]
- Blanc-Sylvestre, N.; Bouchard, P.; Chaussain, C.; Bardet, C. Pre-Clinical Models in Implant Dentistry: Past, Present, Future. Biomedicines 2021, 9, 1538. [Google Scholar] [CrossRef]
- Zhang, T.; Wei, Q.; Zhou, H.; Jing, Z.; Liu, X.; Zheng, Y.; Cai, H.; Wei, F.; Jiang, L.; Yu, M.; et al. Three-Dimensional-Printed Individualized Porous Implants: A New “Implant-Bone” Interface Fusion Concept for Large Bone Defect Treatment. Bioact. Mater. 2021, 6, 3659–3670. [Google Scholar] [CrossRef]
- Vo, T.N.; Kasper, F.; Mikos, A.G. Strategies for Controlled Delivery of Growth Factors and Cells for Bone Regeneration. Adv. Drug Deliv. Rev. 2012, 64, 1292–1309. [Google Scholar] [CrossRef] [Green Version]
- Poynton, A.R.; Lane, J.M. Safety Profile for the Clinical Use of Bone Morphogenetic Proteins in the Spine. Spine 2002, 27, S40–S48. [Google Scholar] [CrossRef]
- Cheng, H.; Jiang, W.; Phillips, F.M.; Haydon, R.C.; Peng, Y.; Zhou, L.; Luu, H.H.; An, N.; Breyer, B.; Vanichakarn, P.; et al. Osteogenic Activity of the Fourteen Types of Human Bone Morphogenetic Proteins (BMPs). JBJS 2003, 85, 1544–1552. [Google Scholar] [CrossRef]
- Davis, H.; Raja, E.; Miyazono, K.; Tsubakihara, Y.; Moustakas, A. Mechanisms of Action of Bone Morphogenetic Proteins in Cancer. Cytokine Growth Factor Rev. 2015, 27, 81–92. [Google Scholar] [CrossRef]
- Urist, M.R. Bone: Formation by Autoinduction. Science 1965, 150, 893–899. [Google Scholar] [CrossRef]
- Urist, M.R.; Strates, B.S. Bone Morphogenetic Protein. J. Dent. Res. 1971, 50, 1392–1406. [Google Scholar] [CrossRef]
- Wang, E.A.; Rosen, V.; Cordes, P.; Hewick, R.M.; Kriz, M.J.; Luxenberg, D.P.; Sibley, B.S.; Wozney, J.M. Purification and Characterization of Other Distinct Bone-Inducing Factors. Proc. Natl. Acad. Sci. USA 1988, 85, 9484–9488. [Google Scholar] [CrossRef] [Green Version]
- Wozney, J.M.; Rosen, V.; Celeste, A.J.; Mitsock, L.M.; Whitters, M.J.; Kriz, R.W.; Hewick, R.M.; Wang, E.A. Novel Regulators of Bone Formation: Molecular Clones and Activities. Science 1988, 242, 1528–1534. [Google Scholar] [CrossRef]
- Hankenson, K.D.; Dishowitz, M.; Gray, C.; Schenker, M. Angiogenesis in Bone Regeneration. Injury 2011, 42, 556–561. [Google Scholar] [CrossRef] [Green Version]
- Gerhart, T.N.; Kirker-Head, C.A.; Kriz, M.J.; Holtrop, M.E.; Hennig, G.E.; Hipp, J.; Schelling, S.H.; Wang, E. Healing Segmental Femoral Defects in Sheep Using Recombinant Human Bone Morphogenetic Protein. Clin. Orthop. Relat. Res. 1993, 293, 317–326. [Google Scholar] [CrossRef]
- Vaidya, R.; Carp, J.; Sethi, A.; Bartol, S.; Craig, J.; Les, C.M. Complications of Anterior Cervical Discectomy and Fusion Using Recombinant Human Bone Morphogenetic Protein-2. Eur. Spine J. 2007, 16, 1257–1265. [Google Scholar] [CrossRef] [Green Version]
- Tumialán, L.M.; Rodts, G.E. To the Editor. Spine J. 2007, 7, 509–510. [Google Scholar] [CrossRef]
- Smucker, J.; Rhee, J.M.; Singh, K.; Yoon, S.T.; Heller, J.G. Increased Swelling Complications Associated with Off-Label Usage of rhBMP-2 in the Anterior Cervical Spine. Spine 2006, 31, 2813–2819. [Google Scholar] [CrossRef]
- Joseph, V.; Rampersaud, Y.R. Heterotopic Bone Formation with the Use of rhBMP2 in Posterior Minimal Access Interbody Fusion. Spine 2007, 32, 2885–2890. [Google Scholar] [CrossRef]
- Chen, N.-F.; Smith, Z.A.; Stiner, E.; Armin, S.; Sheikh, H.; Khoo, L.T. Symptomatic Ectopic Bone Formation after Off-Label Use of Recombinant Human Bone Morphogenetic Protein-2 in Transforaminal Lumbar Interbody Fusion. J. Neurosurg. Spine 2010, 12, 40–46. [Google Scholar] [CrossRef]
- Park, J.; Rieß, J.; Gelse, K.; Kloss, F.; Von Der Mark, K.; Wiltfang, J.; Neukam, F.W.; Schneider, H. Bone Regeneration in Critical Size Defects by Cell-Mediated BMP-2 Gene Transfer: A Comparison of Adenoviral Vectors and Liposomes. Gene Ther. 2003, 10, 1089–1098. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhu, C.; Wu, Y.; Ye, D.; Wang, S.; Zou, D.; Zhang, X.; Kaplan, D.; Jiang, X. VEGF and BMP-2 Promote Bone Regeneration by Facilitating Bone Marrow Stem Cell Homing and Differentiation. Eur. Cells Mater. 2014, 27, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Chim, H.; Miller, E.; Gliniak, C.; Alsberg, E. Stromal-Cell-Derived Factor (SDF) 1-alpha in Combination with BMP-2 and TGF-β1 Induces Site-Directed Cell Homing and Osteogenic and Chondrogenic Differentiation for Tissue Engineering without the Requirement for Cell Seeding. Cell Tissue Res. 2012, 350, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Santo, V.E.; Gomes, M.E.; Mano, J.F.; Reis, R.L. Controlled Release Strategies for Bone, Cartilage, and Osteochondral Engineering—Part II: Challenges on the Evolution from Single to Multiple Bioactive Factor Delivery. Tissue Eng. Part B Rev. 2013, 19, 327–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khojasteh, A.; Behnia, H.; Naghdi, N.; Esmaeelinejad, M.; Alikhassy, Z.; Stevens, M. Effects of Different Growth Factors and Carriers on Bone Regeneration: A Systematic Review. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2013, 116, e405–e423. [Google Scholar] [CrossRef]
- Pranskunas, M.; Galindo-Moreno, P.; Padial-Molina, M. Extraction Socket Preservation Using Growth Factors and Stem Cells: A Systematic Review. J. Oral Maxillofac. Res. 2019, 10, e7. [Google Scholar] [CrossRef]
- Brun, P.; Zamuner, A.; Cassari, L.; D’Auria, G.; Falcigno, L.; Franchi, S.; Contini, G.; Marsotto, M.; Battocchio, C.; Iucci, G.; et al. Chitosan Covalently Functionalized with Peptides Mapped on Vitronectin and BMP-2 for Bone Tissue Engineering. Nanomaterials 2021, 11, 2784. [Google Scholar] [CrossRef]
- Cheng, A.; Krishnan, L.; Tran, L.; Stevens, H.Y.; Xia, B.; Lee, N.; Williams, J.K.; Gibson, G.; Guldberg, R.E. The Effects of Age and Dose on Gene Expression and Segmental Bone Defect Repair after BMP-2 Delivery. JBMR Plus 2018, 3, e10068. [Google Scholar] [CrossRef]
- Echave, M.C.; Pimenta-Lopes, C.; Pedraz, J.L.; Mehrali, M.; Dolatshahi-Pirouz, A.; Ventura, F.; Orive, G. Enzymatic Crosslinked Gelatin 3D Scaffolds for Bone Tissue Engineering. Int. J. Pharm. 2019, 562, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Ouyang, J.; Xiao, J.; Han, Z.; Yu, Q.; Tian, J.; Zhang, L. Co-Injection of Human Adipose Stromal Cells and RhBMP-2/Fibrin Gel Enhances Tendon Graft Osteointegration in a Rabbit Anterior Cruciate Ligament-Reconstruction Model. Am. J. Transl. Res. 2018, 10, 535–544. [Google Scholar]
- Bakopoulou, A.; Georgopoulou, A.; Grivas, I.; Bekiari, C.; Prymak, O.; Loza, K.; Epple, M.; Papadopoulos, G.C.; Koidis, P.; Chatzinikolaidou, M. Dental Pulp Stem Cells in Chitosan/Gelatin Scaffolds for Enhanced Orofacial Bone Regeneration. Dent. Mater. 2019, 35, 310–327. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.; Zhang, T.; Zan, Y.; Ni, T.; Cao, Y.; Wang, J.; Liu, M.; Pei, R. Injectable Hydrogels from Enzyme-Catalyzed Crosslinking as BMSCs-laden Scaffold for Bone Repair and Regeneration. Mater. Sci. Eng. C 2018, 96, 841–849. [Google Scholar] [CrossRef]
- Czerwinski, M.J.; Desiderio, V.; Shkeir, O.; Papagerakis, P.; Lapadatescu, M.C.; Owen, J.H.; Athanassiou-Papaefthymiou, M.; Zheng, L.; Papaccio, G.; Prince, M.E.; et al. In Vitro Evaluation of Sialyl Lewis X Relationship with Head and Neck Cancer Stem Cells. Otolaryngol. Neck Surg. 2013, 149, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Boyan, B.D.; Lohmann, C.H.; Somers, A.; Niederauer, G.G.; Wozney, J.M.; Dean, D.D.; Carnes, D.L.; Schwartz, Z. Potential of Porous Poly-D, L-Lactide-Co-Glycolide Particles as a Carrier for Recombinant Human Bone Morphogenetic Protein-2 during Osteoinduction in Vivo. J. Biomed. Mater. Res. 1999, 46, 51–59. [Google Scholar] [CrossRef]
- Ortega-Oller, I.; Padial-Molina, M.; Galindo-Moreno, P.; O’Valle, F.; Reyes, A.B.J.; Peula-García, J.M. Bone Regeneration from PLGA Micro-Nanoparticles. BioMed Res. Int. 2015, 2015, 415289. [Google Scholar] [CrossRef] [Green Version]
- DeConde, A.S.; Sidell, D.; Lee, M.; Bezouglaia, O.; Low, K.; Elashoff, D.; Grogan, T.; Tetradis, S.; Aghaloo, T.; John, M.S. Bone Morphogenetic Protein-2-Impregnated Biomimetic Scaffolds Successfully Induce Bone Healing in a Marginal Mandibular Defect. Laryngoscope 2013, 123, 1149–1155. [Google Scholar] [CrossRef] [Green Version]
- Zaffarin, A.S.M.; Ng, S.-F.; Ng, M.H.; Hassan, H.; Alias, E. Nano-Hydroxyapatite as a Delivery System for Promoting Bone Regeneration In Vivo: A Systematic Review. Nanomaterials 2021, 11, 2569. [Google Scholar] [CrossRef]
- Overman, J.R.; Farré-Guasch, E.; Helder, M.N.; Bruggenkate, C.M.T.; Schulten, E.A.; Klein-Nulend, J. Short (15 Minutes) Bone Morphogenetic Protein-2 Treatment Stimulates Osteogenic Differentiation of Human Adipose Stem Cells Seeded on Calcium Phosphate Scaffolds In Vitro. Tissue Eng. Part A 2013, 19, 571–581. [Google Scholar] [CrossRef] [Green Version]
- Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of Univalent Ions across the Lamellae of Swollen Phospholipids. J. Mol. Biol. 1965, 13, 238–252, IN26–IN27. [Google Scholar] [CrossRef]
- Gregoriadis, G. Enzyme Entrapment in Liposomes. Methods Enzymol. 1976, 44, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Tseng, W.-C.; Huang, L. Liposome-Based Gene Therapy. Pharm. Sci. Technol. Today 1998, 1, 206–213. [Google Scholar] [CrossRef]
- Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics 2017, 9, 12. [Google Scholar] [CrossRef] [PubMed]
- Juan, A.; Cimas, F.J.; Bravo, I.; Pandiella, A.; Ocaña, A.; Alonso-Moreno, C. Antibody Conjugation of Nanoparticles as Therapeutics for Breast Cancer Treatment. Int. J. Mol. Sci. 2020, 21, 6018. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Ishihara, H. Difference in the Lipid Nanoparticle Technology Employed in Three Approved siRNA (Patisiran) and mRNA (COVID-19 vaccine) Drugs. Drug Metab. Pharmacokinet. 2021, 41, 100424. [Google Scholar] [CrossRef]
- Evjen, T.J.; Nilssen, E.A.; Fowler, R.A.; Røgnvaldsson, S.; Brandl, M.; Fossheim, S.L. Lipid Membrane Composition Influences Drug Release from Dioleoylphosphatidylethanolamine-Based Liposomes on Exposure to Ultrasound. Int. J. Pharm. 2011, 406, 114–116. [Google Scholar] [CrossRef]
- Amstad, E.; Kohlbrecher, J.; Müller, E.; Schweizer, T.; Textor, M.; Reimhult, E. Triggered Release from Liposomes through Magnetic Actuation of Iron Oxide Nanoparticle Containing Membranes. Nano Lett. 2011, 11, 1664–1670. [Google Scholar] [CrossRef]
- Podaru, G.; Ogden, S.; Baxter, A.; Shrestha, T.; Ren, S.; Thapa, P.; Dani, R.K.; Wang, H.; Basel, M.T.; Prakash, P.; et al. Pulsed Magnetic Field Induced Fast Drug Release from Magneto Liposomes via Ultrasound Generation. J. Phys. Chem. B 2014, 118, 11715–11722. [Google Scholar] [CrossRef]
- Xing, H.; Hwang, K.; Lu, Y. Recent Developments of Liposomes as Nanocarriers for Theranostic Applications. Theranostics 2016, 6, 1336–1352. [Google Scholar] [CrossRef]
- Mohammadi, M.; Alibolandi, M.; Abnous, K.; Salmasi, Z.; Jaafari, M.R.; Ramezani, M. Fabrication of Hybrid Scaffold Based on Hydroxyapatite-Biodegradable Nanofibers Incorporated with Liposomal Formulation of BMP-2 Peptide for Bone Tissue Engineering. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 1987–1997. [Google Scholar] [CrossRef]
- Matsuo, T.; Sugita, T.; Kubo, T.; Yasunaga, Y.; Ochi, M.; Murakami, T. Injectable Magnetic Liposomes as a Novel Carrier of Recombinant Human BMP-2 for Bone Formation in a Rat Bone-Defect Model. J. Biomed. Mater. Res. 2003, 66A, 747–754. [Google Scholar] [CrossRef]
- Hassan, A.H.; Hosny, K.M.; Murshid, Z.A.; Alhadlaq, A.; Yamani, A.; Naguib, G.; Alkhalidi, H.M.; Afify, A.R. Controlled Release of Injectable Liposomal in Situ Gel Loaded with Recombinant Human Bone Morphogenetic Protein-2 for the Repair of Alveolar Bone Clefts in Rabbits. J. Liposome Res. 2015, 26, 1–8. [Google Scholar] [CrossRef]
- Okada, E.; Nakata, H.; Yamamoto, M.; Kasugai, S.; Kuroda, S. Indirect Osteoblast Differentiation by Liposomal Clodronate. J. Cell. Mol. Med. 2017, 22, 1127–1137. [Google Scholar] [CrossRef] [Green Version]
- Apostu, D.; Lucaciu, O.; Lucaciu, G.D.O.; Crisan, B.; Crisan, L.; Baciut, M.; Onisor, F.; Baciut, G.; Câmpian, R.S.; Bran, S. Systemic Drugs that Influence Titanium Implant Osseointegration. Drug Metab. Rev. 2016, 49, 92–104. [Google Scholar] [CrossRef]
- Wang, G.; Mostafa, N.Z.; Incani, V.; Kucharski, C.; Uludağ, H. Bisphosphonate-Decorated Lipid Nanoparticles Designed as Drug Carriers for Bone Diseases. J. Biomed. Mater. Res. Part A 2011, 100A, 684–693. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, C.; Zhao, Y.; Cao, C.; Wu, K.; Zhao, L.; Zhang, Y. Non-Viral Oligonucleotide antimiR-138 Delivery to Mesenchymal Stem Cell Sheets and the Effect on Osteogenesis. Biomaterials 2014, 35, 7734–7749. [Google Scholar] [CrossRef] [PubMed]
- Elsabahy, M.; Nazarali, A.; Foldvari, M. Non-Viral Nucleic Acid Delivery: Key Challenges and Future Directions. Curr. Drug Deliv. 2011, 8, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Lundstrom, K. Viral Vectors in Gene Therapy. Diseases 2018, 6, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blum, J.S.; Parrott, M.B.; Mikos, A.G.; Barry, M.A. Early Osteoblastic Differentiation Induced by Dexamethasone Enhances Adenoviral Gene Delivery to Marrow Stromal Cells. J. Orthop. Res. 2004, 22, 411–416. [Google Scholar] [CrossRef]
- Dragoo, J.L.; Choi, J.Y.; Lieberman, J.R.; Huang, J.; Zuk, P.A.; Zhang, J.; Hedrick, M.H.; Benhaim, P. Bone Induction byBMP-2 Transduced Stem Cells Derived from Human Fat. J. Orthop. Res. 2003, 21, 622–629. [Google Scholar] [CrossRef]
- Laitinen, M.; Jortikka, L.; Halttunen, T.; Nevalainen, J.; Aho, A.J.; Marttinen, A.; Lindholm, T.S. Measurement of Total and Local Bone Morphogenetic Protein Concentration in Bone Tumours. Int. Orthop. 1997, 21, 188–193. [Google Scholar] [CrossRef] [Green Version]
- Jo, J.-I.; Tabata, Y. Non-Viral Gene Transfection Technologies for Genetic Engineering of Stem Cells. Eur. J. Pharm. Biopharm. 2008, 68, 90–104. [Google Scholar] [CrossRef]
- Yoshikawa, H.; Rettig, W.J.; Lane, J.M.; Takaoka, K.; Alderman, E.; Rup, B.; Rosen, V.; Healey, J.; Huvos, A.G.; Garin-Chesa, P. Immunohistochemical Detection of Bone Morphogenetic Proteins in Bone and Soft-Tissue Sarcomas. Cancer 1994, 74, 842–847. [Google Scholar] [CrossRef]
- Luo, J.; Sun, M.; Kang, Q.; Peng, Y.; Jiang, W.; Luu, H.; Luo, Q.; Park, J.; Li, Y.; Haydon, R. Gene Therapy for Bone Regeneration. Curr. Gene Ther. 2005, 5, 167–179. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.; Chawla, A.; Yang, Y.; Li, Y.; Zhang, J.; Jang, H.L.; Khademhosseini, A. Development of Nanomaterials for Bone-Targeted Drug Delivery. Drug Discov. Today 2017, 22, 1336–1350. [Google Scholar] [CrossRef]
- Park, J.; Lutz, R.; Felszeghy, E.; Wiltfang, J.; Nkenke, E.; Neukam, F.W.; Schlegel, K.A. The Effect on Bone Regeneration of a Liposomal Vector to Deliver BMP-2 Gene to Bone Grafts in Peri-Implant Bone Defects. Biomaterials 2007, 28, 2772–2782. [Google Scholar] [CrossRef]
- Patel, Z.; Young, S.; Tabata, Y.; Jansen, J.A.; Wong, M.E.; Mikos, A.G. Dual Delivery of an Angiogenic and an Osteogenic Growth Factor for Bone Regeneration in a Critical Size Defect Model. Bone 2008, 43, 931–940. [Google Scholar] [CrossRef] [Green Version]
- Kempen, D.H.; Lu, L.; Heijink, A.; Hefferan, T.E.; Creemers, L.B.; Maran, A.; Yaszemski, M.J.; Dhert, W.J. Effect of Local Sequential VEGF and BMP-2 Delivery on Ectopic and Orthotopic Bone Regeneration. Biomaterials 2009, 30, 2816–2825. [Google Scholar] [CrossRef]
- Shah, N.J.; Macdonald, M.L.; Beben, Y.M.; Padera, R.F.; Samuel, R.E.; Hammond, P.T. Tunable Dual Growth Factor Delivery from Polyelectrolyte Multilayer Films. Biomaterials 2011, 32, 6183–6193. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.-B.; Sun, L.; Yang, S.-H.; Fu, R.-Y.; Wang, L.; Lu, T.-S.; Zhang, Y.-K.; Fu, D.-H. Ectopic Osteogenesis of Mouse Bone Marrow Stromal Cells Transfected with BMP 2/VEGF165genesin Vivo. Orthop. Surg. 2009, 1, 322–325. [Google Scholar] [CrossRef]
- Guo-Ping, W.; Xiao-Chuan, H.; Zhi-Hui, Y.; Li, G. Influence on the Osteogenic Activity of the Human Bone Marrow Mesenchymal Stem Cells Transfected by Liposome-Mediated Recombinant Plasmid pIRES-hBMP2-hVEGF165 In Vitro. Ann. Plast. Surg. 2010, 65, 80–84. [Google Scholar] [CrossRef]
- Xu, X.; Yang, J.; Ding, L.; Li, J. Bone Morphogenetic Protein-2-Encapsulated Grafted-Poly-Lactic Acid–Polycaprolactone Nanoparticles Promote Bone Repair. Cell Biophys. 2014, 71, 215–225. [Google Scholar] [CrossRef]
- Jiang, Q.-H.; Liu, L.; Shen, J.-W.; Peel, S.; Yang, G.-L.; Zhao, S.-F.; He, F.-M. Influence of Multilayer rhBMP-2 DNA Coating on the Proliferation and Differentiation of MC3T3-E1 Cells Seeded on Roughed Titanium Surface. J. Biomed. Mater. Res. Part A 2012, 100A, 2766–2774. [Google Scholar] [CrossRef]
- Jiang, Q.-H.; Liu, L.; Peel, S.; Yang, G.-L.; Zhao, S.-F.; He, F.-M. Bone Response to the Multilayer BMP-2 Gene Coated Porous Titanium Implant Surface. Clin. Oral Implant. Res. 2011, 24, 853–861. [Google Scholar] [CrossRef]
- Wehrhan, F.; Amann, K.; Molenberg, A.; Lutz, R.; Neukam, F.W.; Schlegel, K.A. PEG Matrix Enables Cell-Mediated Local BMP-2 Gene Delivery and Increased Bone Formation in a Porcine Critical Size Defect Model of Craniofacial Bone Regeneration. Clin. Oral Implant. Res. 2011, 23, 805–813. [Google Scholar] [CrossRef]
- Wehrhan, F.; Amann, K.; Molenberg, A.; Lutz, R.; Neukam, F.W.; Schlegel, K.A. Critical Size Defect Regeneration Using PEG-Mediated BMP-2 Gene Delivery and the Use of Cell Occlusive Barrier Membranes-the Osteopromotive Principle Revisited. Clin. Oral Implant. Res. 2012, 24, 910–920. [Google Scholar] [CrossRef]
- Kroczek, A.; Park, J.; Birkholz, T.; Neukam, F.; Wiltfang, J.; Kessler, P. Effects of Osteoinduction on Bone Regeneration in Distraction: Results of a Pilot Study. J. Cranio-Maxillofac. Surg. 2009, 38, 334–344. [Google Scholar] [CrossRef]
- Carvalho, M.S.; Poundarik, A.A.; Cabral, J.M.S.; Da Silva, C.L.; Vashishth, D. Biomimetic Matrices for Rapidly Forming Mineralized Bone Tissue Based on Stem Cell-Mediated Osteogenesis. Sci. Rep. 2018, 8, 14388. [Google Scholar] [CrossRef] [Green Version]
- Ono, I.; Yamashita, T.; Jin, H.-Y.; Ito, Y.; Hamada, H.; Akasaka, Y.; Nakasu, M.; Ogawa, T.; Jimbow, K. Combination of Porous Hydroxyapatite and Cationic Liposomes as a Vector for BMP-2 Gene Therapy. Biomaterials 2004, 25, 4709–4718. [Google Scholar] [CrossRef]
- Wu, S.; Xiao, Z.; Song, J.; Li, M.; Li, W. Evaluation of BMP-2 Enhances the Osteoblast Differentiation of Human Amnion Mesenchymal Stem Cells Seeded on Nano-Hydroxyapatite/Collagen/Poly(l-Lactide). Int. J. Mol. Sci. 2018, 19, 2171. [Google Scholar] [CrossRef] [Green Version]
- Jian, C.-X.; Fan, Q.-S.; Hu, Y.-H.; He, Y.; Li, M.-Z.; Zheng, W.-Y.; Ren, Y.; Li, C.-J. Effects of rhBMP-2 Gene Transfection to Periodontal Ligament Cells on Osteogenesis. Biosci. Rep. 2017, 37, BSR20160585. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; He, X.; Yang, Z.; Guo, L. Influence of Liposome-Mediated Recombinant Plasmid PIRES-HBMP-2-HVEGF165 on Osteogenic Activity of HBMSCs in Vitro. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi Chin. J. Reparative Reconstr. Surg. 2009, 23, 1124–1128. [Google Scholar]
- Wang, Z.; Xu, X.; Yang, J.; Ding, L.; Li, J. Bone Morphogenetic Protein-2-Encupsulated PEG-Grafted-Poly-Lactic Acid-PolyCaprolactone Nanoparticles Promote Bone Repair. Zhonghua Yi Xue Za Zhi 2015, 95, 865–869. [Google Scholar] [PubMed]
- Thorwarth, M.; Schlegel, K.A.; Wiltfang, J.; Rupprecht, S.; Park, J.H. Experimentelle Untersuchung zur Oberflächenaktivierung von Implantaten Durch Liposomale Vektoren—eine Pilotstudie. Mund- Kiefer-und Gesichtschirurgie 2004, 8, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Gelse, K.; Mühle, C.; Franke, O.; Park, J.; Jehle, M.; Durst, K.; Göken, M.; Hennig, F.; Von Der Mark, K.; Schneider, H. Cell-Based Resurfacing of Large Cartilage Defects: Long-Term Evaluation of Grafts from Autologous Transgene-Activated Periosteal Cells in a Porcine Model of Osteoarthritis. Arthritis Care Res. 2008, 58, 475–488. [Google Scholar] [CrossRef] [PubMed]
Molecule | Liposome/Scaffolds | Cells | Entrapment Efficiency | Animal Intervention | Examination | Citation |
---|---|---|---|---|---|---|
BMP-2 | HSPC DSPC DPPC Chol mPEG2000-DSPE Film hydration Electrospinned PLLA Nanofibers with HA covering | Human adipose MSCS | Maleimide quantification assay Confocal laser scanning microscopy FE-SEM (field emission SEM) Osteogenic differentiation Cytocompatibility and proliferation ALP activity Gene expression analysis RunX2, OC, GAPDH RT-PCR | Male Wistar rats Subcutaneous pocket for ectopic bone formation | Histology, hematoxylin-eosin | [95] |
rhBMP-2 | Magnetic liposomes | - | Fluorescence spectrophotometry Dynamic light scattering TEM | 31 Male Sprague Dawley rats with critical size bone defect in the femur | Radiography once a week for 9 weeks Microcomputed tomography Histology Mechanical testing by torsion | [96] |
rhBMP-2 | Multilamellar Included in gel | - | Spectrophotometer at 280 nm | 30 New Zealand rabbits Maxillary critical sized alveolar defect | Plasma levels of BMP-2 by ELISA Histology, HE light microscopy Quantitative histomorphometric analysis | [97] |
rhBMP-2 | PEG BP | Human C2C12 Rat BMSC | Doxorubicin model for encapsulation Lipophilic fluorescent tracer MTT cytotoxicity Bioactivity assay, ALP Spectroscopy In vitro HA binding assay | Female Sprague Dawley rats | [100] |
Molecule(s) | Liposome/ Substrate | Cells Used | In Vitro Testing | Animal Intervention | Examination | Citation |
---|---|---|---|---|---|---|
hBMP-2 (pCMVBMP-2 plasmid) | NA | Pig BMSC | Immunohistochemical staining for BMP-2 Green fluorescent protein (GFP) | 8 Pigs with calvarial peri-implant bone defects | Biopsy at 7 and 28 days Microradiography Immunohistochemistry | [111] |
BMP-2 | NA | - | - | 8 Domestic pigs with calvarial defects | Microradiography Masson–Goldner trichrome staining, light microscopy | [13] |
BMP-2/VEGF165 | pIRES | Mouse BMSC | RT-PCR: BMP-2 and VEGF165 Immunohistochemistry | 4 Male nude mice, injection in thigh muscle poach | Digital radiography for ectopic bone formation at 4 weeks hematoxylin-eosin staining | [115] |
hBMP-2 hVEGF165 | pIRES | Human BMSC 14 days | RT-PCR: BMP-2 and VEGF165 Western blot: BMP-2 and VEGF165 RT-PCR: of OC mRNA Immunohistochemistry: Collagen I ALP activity assay | - | - | [116,127] |
hBMP-2 | NA | Rat BMSC | GFP In situ hybridization Immunohistochemical staining: OC, collagen I, OP RT-PCR Alizarin red: Calcium deposits | Rat mandibular critical size defect | Trichrome–Goldner staining Immunohistochemical staining, OC | [67] |
NA | Rabbit BMSC | Fluorescent microscopy Flow cytometry: Cell cycle analysis Western blot Q-PCR: mRNA BMP-2, OC Immunohistochemistry ALP activity assay | - | - | [128] | |
BMP-2 + BMP-2/EGFP | NA | Mouse pre-osteoblastic MC3T3-E1 cells | Hoechst 33258: DNA Immunofluorescence Alamar blue: Cell viability | 15 New Zealand white rabbit femur | Fluorescent labeling: Oxytetracycline hydrochloride 7 days Alizarin-complexion at 28 days Calcein green at 46 and 53 days Histomorphometric analysis | [119] |
rhBMP-2 | NA | Mouse pre-osteoblastic MC3T3-E1 cells | Fluorescence: Nucleic acid labeling- ELISA: BMP-2 Alamar Blue: Cell morphology, attachment and proliferation Hoechst 33258: Phalloidin (actin), DNA ALP activity assay from cells OC from culture media Alizarin red: Calcium deposits Q-PCR: Runx2, ALP, OC, Osx | - | - | [118] |
BMP-2 BMP-4 | HA/TCP | Human fetal osteoblasts | - | 15 Domestic pigs with frontal skull monocortical critical size defect | Histological sections, toluidine blue O Immunohistochemical staining for BMP-2/4, ALP, and V5 | [120] |
BMP-2 | PEG | - | 20 Domestic pigs with critical size defect in frontal skull | Histological sections, toluidine blue O Immunohistochemical staining for BMP-2/4 and Sox9 V5-tag, | [121] | |
BMP-2 BMP-7 TGF-β IGF-1 | BMSCs | - | 24 Skeletally immature Goettingen mini pigs | BMP-2 and OC expression, immunostaining Histological analysis Micro radiological analysis | [122] | |
BMP-2 + GFP | - | 3 Adult pigs withfrontal bone defect | Expression of GFP and BMP-2 Immunohistochemistry: Semiquantitative evaluation of GFP and BMP2 | [129] | ||
BMP-2 | HA | - | 36 Japanese white rabbits with craniotomy | Histopathology: Cole, hematoxylin-eosin Immunohistochemistry: BMP-2 | [124] | |
rhBMP-2 | HA/Col l/PLA | hAMSCs amnion | SEM Osteoblastic differentiation: ALP, alizarin red, calcium phosphate, OC Q-PCR: OC, Runx2 Western blot MTT: Cell proliferation | - | - | [125] |
rhBMP-2/EnhancedGFP | Periodontal ligament cells | Western blot ALP activity assay Q-PCR: BMP-2, Runx2, Col type I, BMP-2, OC MTT assay: Cell proliferation Alizarin red staining: Calcium deposits | - | - | [126] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dirzu, N.; Lucaciu, O.; Dirzu, D.S.; Soritau, O.; Cenariu, D.; Crisan, B.; Tefas, L.; Campian, R.S. BMP-2 Delivery through Liposomes in Bone Regeneration. Appl. Sci. 2022, 12, 1373. https://doi.org/10.3390/app12031373
Dirzu N, Lucaciu O, Dirzu DS, Soritau O, Cenariu D, Crisan B, Tefas L, Campian RS. BMP-2 Delivery through Liposomes in Bone Regeneration. Applied Sciences. 2022; 12(3):1373. https://doi.org/10.3390/app12031373
Chicago/Turabian StyleDirzu, Noemi, Ondine Lucaciu, Dan Sebastian Dirzu, Olga Soritau, Diana Cenariu, Bogdan Crisan, Lucia Tefas, and Radu Septimiu Campian. 2022. "BMP-2 Delivery through Liposomes in Bone Regeneration" Applied Sciences 12, no. 3: 1373. https://doi.org/10.3390/app12031373
APA StyleDirzu, N., Lucaciu, O., Dirzu, D. S., Soritau, O., Cenariu, D., Crisan, B., Tefas, L., & Campian, R. S. (2022). BMP-2 Delivery through Liposomes in Bone Regeneration. Applied Sciences, 12(3), 1373. https://doi.org/10.3390/app12031373