Analysis of Upper Limbs Target-Reaching Movement and Muscle Co-Activation in Patients with First Time Stroke for Rehabilitation Progress Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
- First-time stroke;
- Preserved manipulative hand ability, with slight restrictions on movement and spasticity below or equal to 2 scores on the Modified Ashworth scale;
- Ability to understand instruction and perform tasks, determined by a score below 23 on the Mini-Mental State Examination (MMSE) scale.
- Cognitive impairment;
- Sensory aphasia;
- Visual impairment;
- Behavioural disorders;
- Joint stiffness.
2.2. Applied Equipment
2.3. Study Protocol
- Blue line—1—closer;
- Green line—2—further;
- Red line—L—left/contralaterally;
- Black line—P—right/ipsilaterally.
2.4. Performed Data Analysis
- —normalized JERK score;
- —third-order derivative of position with respect to time;
- t—movement time;
- a—movement amplitude.
- to denote the period during which the tibialis anterior EMG is less than the soleus EMG;
- to denote the period during which the soleus EMG is less than the tibialis anterior EMG.
2.5. Statistical Analysis
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Syme, P.D.; Byrne, A.W.; Chen, R.; Devenny, R.; Forbes, J.F. Community-based stroke incidence in a Scottish population: The Scottish Borders Stroke Study. Stroke 2005, 36, 1837–1843. [Google Scholar] [CrossRef] [Green Version]
- Kałużny, K.; Kałużna, A.; Kochański, B.; Cichosz, M.; Płoszaj, O.; Pawiłan, M.; Zukow, W.; Hagner, W. Wpływ rehabilitacji neurologicznej na funkcjonowanie pacjentów po przebytym udarze niedokrwiennym mózgu–analiza retrospektywna (The influence of neurological rehabilitation on the functioning of patients after ischemic stroke—A retrospective analysis). J. Educ. Health Sport 2016, 6, 38–52. [Google Scholar]
- Cardol, M.; de Jong, B.A.; van den Bos, G.A.; Beelen, A.; de Groot, I.J.; de Haan, R.J. Beyond disability: Perceived participation in people with a chronic disabling condition. Clin. Rehabil. 2002, 16, 27–35. [Google Scholar] [CrossRef]
- Johansson, A.; Mishina, E.; Ivanov, A.; Björklund, A. Activities of daily living among St Petersburg women after mild stroke. Occup. Ther. Int. 2007, 14, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.M.; Studenski, S.; Duncan, P.W.; Perera, S. Persisting consequences of stroke measured by the Stroke Impact Scale. Stroke 2002, 33, 1840–1844. [Google Scholar] [CrossRef] [Green Version]
- Hussain, N.; Alt Murphy, M.; Sunnerhagen, K.S. Upper limb kinematics in stroke and healthy controls using target-to-target task in virtual reality. Front. Neurol. 2018, 9, 300. [Google Scholar] [CrossRef]
- Bustrén, E.L.; Sunnerhagen, K.S.; Alt Murphy, M. Movement kinematics of the ipsilesional upper extremity in persons with moderate or mild stroke. Neurorehabilit. Neural Repair 2017, 31, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Blaszczyszyn, M.; Szczesna, A.; Opara, J.; Konieczny, M.; Pakosz, P.; Balko, S. Functional differences in upper limb movement after early and chronic stroke based on kinematic motion indicators. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2018, 162, 294–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mencel, J.; Jaskólska, A.; Marusiak, J.; Kamiński, Ł.; Kurzyński, M.; Wołczowski, A.; Jaskólski, A.; Kisiel-Sajewicz, K. Motor Imagery Training of Reaching-to-Grasp Movement Supplemented by a Virtual Environment in an Individual With Congenital Bilateral Transverse Upper-Limb Deficiency. Front. Psychol. 2021, 12, 943. [Google Scholar] [CrossRef]
- Rahman, M.H.; Kittel-Ouimet, T.; Saad, M.; Kenné, J.P.; Archambault, P.S. Development and control of a robotic exoskeleton for shoulder, elbow and forearm movement assistance. Appl. Bionics Biomech. 2012, 9, 275–292. [Google Scholar] [CrossRef] [Green Version]
- Trincado-Alonso, F.; Dimbwadyo-Terrer, I.; de los Reyes-Guzmán, A.; López-Monteagudo, P.; Bernal-Sahún, A.; Gil-Agudo, Á. Kinematic metrics based on the virtual reality system Toyra as an assessment of the upper limb rehabilitation in people with spinal cord injury. BioMed Res. Int. 2014, 2014, 904985. [Google Scholar] [CrossRef]
- Levin, M.F.; Michaelsen, S.M.; Cirstea, C.M.; Roby-Brami, A. Use of the trunk for reaching targets placed within and beyond the reach in adult hemiparesis. Exp. Brain Res. 2002, 143, 171–180. [Google Scholar] [CrossRef]
- Patterson, T.S.; Bishop, M.; McGuirk, T.; Sethi, A.; Richards, L. Reliability of upper extremity kinematics while performing different tasks in individuals with stroke. J. Mot. Behav. 2011, 43, 121–130. [Google Scholar] [CrossRef]
- Alt Murphy, M.; Häger, C.K. Kinematic analysis of the upper extremity after stroke—How far have we reached and what have we grasped? Phys. Ther. Rev. 2015, 20, 137–155. [Google Scholar] [CrossRef]
- Nguyen, H.B.; Lee, S.W.; Harris-Love, M.L.; Lum, P.S. Neural coupling between homologous muscles during bimanual tasks: Effects of visual and somatosensory feedback. J. Neurophysiol. 2017, 117, 655–664. [Google Scholar] [CrossRef] [Green Version]
- Neto, G.R.; Santos, H.H.; Sousa, J.B.; Júnior, A.T.; Araújo, J.P.; Aniceto, R.R.; Sousa, M.S. Effects of high-intensity blood flow restriction exercise on muscle fatigue. J. Hum. Kinet. 2014, 41, 163. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Yang, Y.; Luo, J.; Li, L.; Yan, T.; Song, R. Kinematic outcome measures using target-reaching arm movement in stroke. Ann. Biomed. Eng. 2017, 45, 2794–2803. [Google Scholar] [CrossRef]
- Nagai, K.; Yamada, M.; Tanaka, B.; Uemura, K.; Mori, S.; Aoyama, T.; Ichihashi, N.; Tsuboyama, T. Effects of balance training on muscle coactivation during postural control in older adults: A randomized controlled trial. J. Gerontol. Ser. Biomed. Sci. Med. Sci. 2012, 67, 882–889. [Google Scholar] [CrossRef]
- DeJong, S.L.; Lang, C.E. Comparison of unilateral versus bilateral upper extremity task performance after stroke. Top. Stroke Rehabil. 2012, 19, 294–305. [Google Scholar] [CrossRef] [Green Version]
- Kantak, S.; McGrath, R.; Zahedi, N. Goal conceptualization and symmetry of arm movements affect bimanual coordination in individuals after stroke. Neurosci. Lett. 2016, 626, 86–93. [Google Scholar] [CrossRef]
- Rueda, F.M.; Montero, F.R.; de Heredia Torres, M.P.; Diego, I.A.; Sánchez, A.M.; Page, J.M. Análisis del movimiento de la extremidad superior hemiparética en pacientes con accidente cerebrovascular: Estudio piloto. Neurología 2012, 27, 343–347. [Google Scholar] [CrossRef]
- Alt Murphy, M.; Willén, C.; Sunnerhagen, K.S. Responsiveness of upper extremity kinematic measures and clinical improvement during the first three months after stroke. Neurorehabilit. Neural Repair 2013, 27, 844–853. [Google Scholar] [CrossRef]
- Coderre, A.M.; Abou Zeid, A.; Dukelow, S.P.; Demmer, M.J.; Moore, K.D.; Demers, M.J.; Bretzke, H.; Herter, T.M.; Glasgow, J.I.; Norman, K.E.; et al. Assessment of upper-limb sensorimotor function of subacute stroke patients using visually guided reaching. Neurorehabilit. Neural Repair 2010, 24, 528–541. [Google Scholar] [CrossRef]
- Longhi, M.; Merlo, A.; Prati, P.; Giacobbi, M.; Mazzoli, D. Instrumental indices for upper limb function assessment in stroke patients: A validation study. J. Neuroeng. Rehabil. 2016, 13, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Otaka, E.; Otaka, Y.; Kasuga, S.; Nishimoto, A.; Yamazaki, K.; Kawakami, M.; Ushiba, J.; Liu, M. Clinical usefulness and validity of robotic measures of reaching movement in hemiparetic stroke patients. J. Neuroeng. Rehabil. 2015, 12, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Aprile, I.; Rabuffetti, M.; Padua, L.; Di Sipio, E.; Simbolotti, C.; Ferrarin, M. Kinematic analysis of the upper limb motor strategies in stroke patients as a tool towards advanced neurorehabilitation strategies: A preliminary study. BioMed Res. Int. 2014, 2014, 636123. [Google Scholar] [CrossRef]
- Massie, C.L.; Malcolm, M.P. Instructions emphasizing speed improves hemiparetic arm kinematics during reaching in stroke. NeuroRehabilitation 2012, 30, 341–350. [Google Scholar] [CrossRef]
- Kotov-Smolenskiy, A.; Khizhnikova, A.; Klochkov, A.; Suponeva, N.; Piradov, M. Surface EMG: Applicability in the Motion Analysis and Opportunities for Practical Rehabilitation. Hum. Physiol. 2021, 47, 237–247. [Google Scholar] [CrossRef]
- Campanini, I.; Disselhorst-Klug, C.; Rymer, W.Z.; Merletti, R. Surface EMG in clinical assessment and neurorehabilitation: Barriers limiting its use. Front. Neurol. 2020, 11, 934. [Google Scholar] [CrossRef]
- Barker, R.N.; Brauer, S.; Carson, R. Training-induced changes in the pattern of triceps to biceps activation during reaching tasks after chronic and severe stroke. Exp. Brain Res. 2009, 196, 483–496. [Google Scholar] [CrossRef]
- Chaytor, C.P.; Forman, D.; Byrne, J.; Loucks-Atkinson, A.; Power, K.E. Changes in muscle activity during the flexion and extension phases of arm cycling as an effect of power output are muscle-specific. PeerJ 2020, 8, e9759. [Google Scholar] [CrossRef]
- Gribble, P.L.; Mullin, L.I.; Cothros, N.; Mattar, A. Role of cocontraction in arm movement accuracy. J. Neurophysiol. 2003, 89, 2396–2405. [Google Scholar] [CrossRef] [Green Version]
Mean/SD | Min | Max | |||
---|---|---|---|---|---|
EXP | Pre | CI Closer | 62.50 ± 18.40 | 28.80 | 87.10 |
CI Further | 66.20 ± 14.80 | 50.00 | 88.80 | ||
CI Contralaterally | 64.60 ± 20.40 | 29.80 | 88.80 | ||
CI Ipsilaterally | 62.60 ± 15.90 | 40.70 | 87.00 | ||
Jerk Closer | 0.28 ± 0.14 | 0.12 | 0.54 | ||
Jerk Further | 0.75 ± 0.57 | 0.10 | 1.77 | ||
Jerk Contralaterally | 0.61 ± 0.51 | 0.18 | 1.53 | ||
Jerk Ipsilaterally | 0.61 ± 0.54 | 0.10 | 1.79 | ||
Post | CI Closer | 51 ± 6.50 | 31.20 | 78.50 | |
CI Further | 52.70 ± 14.80 | 31.60 | 78.40 | ||
CI Contralaterally | 55.60 ± 15.30 | 36.40 | 77.20 | ||
CI Ipsilaterally | 51.80 ± 17.10 | 30.10 | 77.80 | ||
Jerk Closer | 0.11 ± 0.10 | 0.03 | 0.33 | ||
Jerk Further | 0.26 ± 0.13 | 0.10 | 0.54 | ||
Jerk Contralaterally | 0.21 ± 0.12 | 0.09 | 0.41 | ||
Jerk Ipsilaterally | 0.19 ± 0.05 | 0.10 | 0.25 | ||
CON | CI Closer | 57.40 ± 6.23 | 49.60 | 69.4 | |
CI Further | 44.40 ± 1.21 | 42.90 | 46.7 | ||
CI Contralaterally | 59.50 ± 5.52 | 52.60 | 70.2 | ||
CI Ipsilaterally | 50.60 ± 4.47 | 45.00 | 59.2 | ||
Jerk Closer | 0.12 ± 0.03 | 0.06 | 0.14 | ||
Jerk Further | 0.29 ± 0.13 | 0.14 | 0.52 | ||
Jerk Contralaterally | 0.14 ± 0.05 | 0.08 | 0.23 | ||
Jerk Ipsilaterally | 0.17 ± 0.07 | 0.08 | 0.30 |
W | p | Mean | SE | Cohen’s d | |
---|---|---|---|---|---|
Difference | Difference | Effect Size | |||
CI Closer | 2.00 | 0.09 | 11.42 | 5.71 | 0.71 |
CI Further | 2.44 | 0.04 | 13.49 | 5.53 | 0.86 |
CI Contralaterally | 1.62 | 0.15 | 8.99 | 5.53 | 0.57 |
CI Ipsilaterally | 1.74 | 0.13 | 10.83 | 6.22 | 0.62 |
Jerk Closer | 5.98 | <0.01 | 0.17 | 0.03 | 2.11 |
Jerk Further | 2.52 | 0.04 | 0.49 | 0.20 | 0.89 |
Jerk Contralaterally | 2.12 | 0.07 | 0.41 | 0.19 | 0.75 |
Jerk Ipsilaterally | 2.22 | 0.06 | 0.42 | 0.19 | 0.79 |
W | p | Effect Size | |
---|---|---|---|
CI Closer | 24.00 | 0.28 | 0.33 |
CI Further | 18.00 | 0.09 | 0.50 |
CI Contralaterally | 30.00 | 0.61 | 0.17 |
CI Ipsilaterally | 35.00 | 0.96 | 0.03 |
Jerk Closer | 23.00 | 0.24 | 0.36 |
Jerk Further | 32.00 | 0.74 | 0.11 |
Jerk Contralaterally | 25.00 | 0.32 | 0.31 |
Jerk Ipsilaterally | 28.00 | 0.48 | 0.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konieczny, M.; Pakosz, P.; Domaszewski, P.; Błaszczyszyn, M.; Kawala-Sterniuk, A. Analysis of Upper Limbs Target-Reaching Movement and Muscle Co-Activation in Patients with First Time Stroke for Rehabilitation Progress Monitoring. Appl. Sci. 2022, 12, 1551. https://doi.org/10.3390/app12031551
Konieczny M, Pakosz P, Domaszewski P, Błaszczyszyn M, Kawala-Sterniuk A. Analysis of Upper Limbs Target-Reaching Movement and Muscle Co-Activation in Patients with First Time Stroke for Rehabilitation Progress Monitoring. Applied Sciences. 2022; 12(3):1551. https://doi.org/10.3390/app12031551
Chicago/Turabian StyleKonieczny, Mariusz, Paweł Pakosz, Przemysław Domaszewski, Monika Błaszczyszyn, and Aleksandra Kawala-Sterniuk. 2022. "Analysis of Upper Limbs Target-Reaching Movement and Muscle Co-Activation in Patients with First Time Stroke for Rehabilitation Progress Monitoring" Applied Sciences 12, no. 3: 1551. https://doi.org/10.3390/app12031551
APA StyleKonieczny, M., Pakosz, P., Domaszewski, P., Błaszczyszyn, M., & Kawala-Sterniuk, A. (2022). Analysis of Upper Limbs Target-Reaching Movement and Muscle Co-Activation in Patients with First Time Stroke for Rehabilitation Progress Monitoring. Applied Sciences, 12(3), 1551. https://doi.org/10.3390/app12031551