Image-Based Learning Using Gradient Class Activation Maps for Enhanced Physiological Interpretability of Motor Imagery Skills
Abstract
:1. Introduction
2. Materials and Methods
2.1. Deep and Wide CNN Learning from Image-Based Representations
2.2. Gradient-Weighted Class Activation for Visualization of Discriminating Neural Responses
2.3. Clustering of Common GradCam Maps across Subjects Using Centered Kernel Alignment
3. Experimental Set-Up
4. Results
4.1. Achieved Accuracy of Implemented D&W CNN Classifier
4.2. Grouping of Subjects with MI Skills Using Common GradCam++
4.3. Averaged GradCam Maps over MI-Skills Groups
4.4. Prediction Ability of Extracted GradCam++
5. Discussion and Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, A.; Hussain, A.; Lal, S.; Guesgen, H. A Comprehensive Review on Critical Issues and Possible Solutions of Motor Imagery Based Electroencephalography Brain-Computer Interface. Sensors 2021, 21, 2173. [Google Scholar] [CrossRef]
- Ladda, A.; Lebon, F.; Lotze, M. Using motor imagery practice for improving motor performance—A review. Brain Cogn. 2021, 150, 105705. [Google Scholar] [CrossRef]
- Al-Qaysi, Z.; Ahmed, M.; Hammash, N.; Hussein, A.; Albahri, A.; Suzani, M.; Al-Bander, B.; Shuwandy, M.; Salih, M.M. Systematic review of training environments with motor imagery brain-computer interface: Coherent taxonomy, open issues and recommendation pathway solution. Health Technol. 2021, 11, 783–801. [Google Scholar] [CrossRef]
- Amin, S.; Altaheri, H.; Muhammad, G.; Alsulaiman, M.; Abdul, W. Attention based Inception model for robust EEG motor imagery classification. In Proceedings of the 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Glasgow, UK, 17–20 May 2021; pp. 1–6. [Google Scholar]
- Ko, W.; Jeon, E.; Jeong, S.; Phyo, J.; Suk, H. A Survey on Deep Learning-Based Short/Zero-Calibration Approaches for EEG-Based Brain-Computer Interfaces. Front. Hum. Neurosci. 2021, 15, 643386. [Google Scholar] [CrossRef]
- Chavarriaga, R.; Fried-Oken, M.; Kleih, S.; Lotte, F.; Scherer, R. Heading for new shores! Overcoming pitfalls in BCI design. Brain-Comput. Interfaces 2017, 4, 60–73. [Google Scholar] [CrossRef]
- Thompson, M. Critiquing the concept of BCI illiteracy. Sci. Eng. Ethics 2019, 25, 1217–1233. [Google Scholar] [CrossRef]
- Olawunmi, G.; Roger, S.; Praveen, M.; Nasim, Y.; Sheikh, A. Motor Imagery: A Review of Existing Techniques, Challenges and Potentials. In Proceedings of the 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC), Madrid, Spain, 12–16 July 2021; pp. 1893–1899. [Google Scholar]
- Škola, F.; Tinková, S.; Liarokapis, F. Progressive Training for Motor Imagery Brain-Computer Interfaces Using Gamification and Virtual Reality Embodiment. Front. Hum. Neurosci. 2019, 13, 329. [Google Scholar] [CrossRef]
- Ghane, P.; Zarnaghinaghsh, N.; Braga-Neto, U. Comparison of Classification Algorithms Towards Subject-Specific and Subject-Independent BCI. In Proceedings of the 2021 9th International Winter Conference on Brain-Computer Interface (BCI), Gangwon, Korea, 22–24 February 2021; pp. 1–6. [Google Scholar]
- Das, R.; Lopez, P.; Ahmed Khan, M.; Iversen, H.; Puthusserypady, S. FBCSP and Adaptive Boosting for Multiclass Motor Imagery BCI Data Classification: A Machine Learning Approach. In Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada, 11–14 October 2020; pp. 1275–1279. [Google Scholar]
- Lotte, F. A Tutorial on EEG Signal-processing Techniques for Mental-state Recognition in Brain–Computer Interfaces. In Guide to Brain-Computer Music Interfacing; Springer: London, UK, 2014; pp. 133–161. [Google Scholar]
- Wu, H.; Niu, Y.; Li, F.; Li, Y.; Fu, B.; Shi, G.; Dong, M. A Parallel Multiscale Filter Bank Convolutional Neural Networks for Motor Imagery EEG Classification. Front. Neurosci. 2019, 13, 1275. [Google Scholar] [CrossRef] [Green Version]
- Olivas-Padilla, B.; Chacon-Murguia, M. Classification of multiple motor imagery using deep convolutional neural networks and spatial filters. Appl. Soft Comput. 2019, 75, 461–472. [Google Scholar] [CrossRef]
- Craik, A.; He, Y.; Contreras-Vidal, J. Deep learning for electroencephalogram (EEG) classification tasks: A review. J. Neural Eng. 2019, 16, 031001. [Google Scholar] [CrossRef]
- León, J.; Escobar, J.; Ortiz, A.; Ortega, J.; González, J.; Martín-Smith, P.; Gan, J.; Damas, M. Deep learning for EEG-based Motor Imagery classification: Accuracy-cost trade-off. PLoS ONE 2020, 15, e0234178. [Google Scholar] [CrossRef]
- Tokovarov, M. Convolutional Neural Networks with Reusable Full-Dimension-Long Layers for Feature Selection and Classification of Motor Imagery in EEG Signals. In Artificial Neural Networks and Machine Learning—ICANN 2020; Farkaš, I., Masulli, P., Wermter, S., Eds.; Springer: Cham, Switzerland, 2020; pp. 79–91. [Google Scholar]
- Sun, S.; Li, C.; Lv, N.; Zhang, X.; Yu, Z.; Wang, H. Attention based convolutional network for automatic sleep stage classification. Biomed. Eng./Biomed. Tech. 2021, 66, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Schirrmeister, R.; Springenberg, J.; Fiederer, L.; Glasstetter, M.; Eggensperger, K.; Tangermann, M.; Hutter, F.; Burgard, W.; Ball, T. Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 2017, 38, 5391–5420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Kim, Y.; Eskandarian, A. EEG-inception: An accurate and robust end-to-end neural network for EEG-based motor imagery classification. J. Neural Eng. 2021, 18, 046014. [Google Scholar] [CrossRef] [PubMed]
- Bashivan, P.; Rish, I.; Yeasin, M.; Codella, N. Learning representations from EEG with deep recurrent-convolutional neural networks. arXiv 2015, arXiv:1511.06448. [Google Scholar]
- Yao, Y.; Plested, J.; Gedeon, T. Deep Feature Learning and Visualization for EEG Recording Using Autoencoders. In Neural Information Processing; Cheng, L., Leung, A.C.S., Ozawa, S., Eds.; Springer: Cham, Switzerland, 2018; pp. 554–566. [Google Scholar]
- Lotte, F.; Bougrain, L.; Cichocki, A.; Clerc, M.; Congedo, M.; Rakotomamonjy, A.; Yger, F. A review of classification algorithms for EEG-based brain–computer interfaces: A 10 year update. J. Neural Eng. 2018, 15, 031005. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Yao, L.; Sun, A.; Tay, Y. Deep Learning Based Recommender System: A Survey and New Perspectives. ACM Comput. Surv. 2019, 52, 1–38. [Google Scholar] [CrossRef] [Green Version]
- Johnstone, S.; Jiang, H.; Sun, L.; Rogers, J.; Valderrama, J.; Zhang, D. Development of frontal EEG differences between eyes-closed and eyes-open resting conditions in children: Data from a single-channel dry-sensor portable device. Clin. EEG Neurosci. 2021, 52, 235–245. [Google Scholar] [CrossRef]
- Farahat, A.; Reichert, C.; Sweeney-Reed, C.; Hinrichs, H. Convolutional neural networks for decoding of covert attention focus and saliency maps for EEG feature visualization. J. Neural Eng. 2019, 16, 066010. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Wang, X.; Liu, X.; Liu, Q.; Song, J.; Sebe, N.; Kim, B. Explainable deep learning for efficient and robust pattern recognition: A survey of recent developments. Pattern Recognit. 2021, 120, 108102. [Google Scholar] [CrossRef]
- Qin, Z.; Yu, F.; Liu, C.; Chen, X. How convolutional neural network see the world—A survey of convolutional neural network visualization methods. arXiv 2018, arXiv:1804.11191. [Google Scholar] [CrossRef] [Green Version]
- Lawhern, V.; Solon, A.; Waytowich, N.; Gordon, S.; Hung, C.; Lance, B. EEGNet: A compact convolutional neural network for EEG-based brain–computer interfaces. J. Neural Eng. 2018, 15, 056013. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Gong, Y.; Zhou, G.; Liu, Y.; Zhang, L.; He, B. A channel-mixing convolutional neural network for motor imagery EEG decoding and feature visualization. Biomed. Signal Process. Control 2021, 70, 103021. [Google Scholar] [CrossRef]
- Aellen, F.; Göktepe-Kavis, P.; Apostolopoulos, S.; Tzovara, A. Convolutional neural networks for decoding electroencephalography responses and visualizing trial by trial changes in discriminant features. J. Neurosci. Methods 2021, 364, 109367. [Google Scholar] [CrossRef]
- Zeiler, M.; Fergus, R. Visualizing and Understanding Convolutional Networks. In Computer Vision—ECCV 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer: Cham, Switzerland, 2014; pp. 818–833. [Google Scholar]
- Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning Deep Features for Discriminative Localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Li, Y.; Yang, H.; Li, J.; Chen, D.; Du, M. EEG-based intention recognition with deep recurrent-convolution neural network: Performance and channel selection by Grad-CAM. Neurocomputing 2020, 415, 225–233. [Google Scholar] [CrossRef]
- Li, D.; Xu, J.; Wang, J.; Fang, X.; Ji, Y. A Multi-Scale Fusion Convolutional Neural Network Based on Attention Mechanism for the Visualization Analysis of EEG Signals Decoding. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 2615–2626. [Google Scholar] [CrossRef]
- Li, X.; Xiong, H.; Li, X.; Wu, X.; Zhang, X.; Liu, J.; Bian, J.; Dou, D. Interpretable Deep Learning: Interpretations, Interpretability, Trustworthiness, and Beyond. arXiv 2021, arXiv:2103.10689. [Google Scholar]
- Zhang, X.; Yao, L.; Wang, X.; Monaghan, J.; McAlpine, D.; Zhang, Y. A survey on deep learning-based non-invasive brain signals: Recent advances and new frontiers. J. Neural Eng. 2020, 18, 031002. [Google Scholar] [CrossRef]
- Ieracitano, C.; Mammone, N.; Hussain, A.; Morabito, F. A novel explainable machine learning approach for EEG-based brain-computer interface systems. Neural Comput. Appl. 2021, 33, 1–14. [Google Scholar] [CrossRef]
- Souto, D.; Cruz, T.; Fontes, P.; Batista, R.; Haase, V. Motor Imagery Development in Children: Changes in Speed and Accuracy with Increasing Age. Front. Pediatr. 2020, 8, 100. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.; Choi, K.; Qin, J.; Pang, W.; Wang, Q.; Heng, P. Improving the discrimination of hand motor imagery via virtual reality based visual guidance. Comput. Methods Programs Biomed. 2016, 132, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Nakanishi, M.; Zhang, D. EEG-Based Brain-Computer Interfaces. In Neural Interface: Frontiers and Applications; Springer: Singapore, 2019; pp. 41–65. [Google Scholar]
- Shajil, N.; Mohan, S.; Srinivasan, P.; Arivudaiyanambi, J.; Murrugesan, A. Multiclass classification of spatially filtered motor imagery EEG signals using convolutional neural network for BCI based applications. J. Med. Biol. Eng. 2020, 40, 663–672. [Google Scholar] [CrossRef]
- Bang, J.; Lee, M.; Fazli, S.; Guan, C.; Lee, S. Spatio-Spectral Feature Representation for Motor Imagery Classification Using Convolutional Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–12. [Google Scholar] [CrossRef]
- Collazos-Huertas, D.; Caicedo-Acosta, J.; Castaño-Duque, G.A.; Acosta-Medina, C.D. Enhanced Multiple Instance Representation Using Time-Frequency Atoms in Motor Imagery Classification. Front. Neurosci. 2020, 14, 155. [Google Scholar] [CrossRef]
- Chattopadhay, A.; Sarkar, A.; Howlader, P.; Balasubramanian, V. Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks. In Proceedings of the 2018 IEEE winter conference on applications of computer vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018; pp. 839–847. [Google Scholar]
- Mammone, N.; Ieracitano, C.; Morabito, F. A deep CNN approach to decode motor preparation of upper limbs from time–frequency maps of EEG signals at source level. Neural Netw. 2020, 124, 357–372. [Google Scholar] [CrossRef]
- Selvaraju, R.; Das, A.; Vedantam, R.; Cogswell, M.; Parikh, D.; Batra, D. Grad-CAM: Why did you say that? arXiv 2017, arXiv:stat.ML/1611.07450. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. Int. J. Comput. Vis. 2019, 128, 336–359. [Google Scholar] [CrossRef] [Green Version]
- Springenberg, J.; Dosovitskiy, A.; Brox, T.; Riedmiller, M. Striving for Simplicity: The All Convolutional Net. arXiv 2015, arXiv:cs.LG/1412.6806. [Google Scholar]
- Cortes, C.; Mohri, M.; Rostamizadeh, A. Algorithms for learning kernels based on centered alignment. J. Mach. Learn. Res. 2012, 13, 795–828. [Google Scholar]
- Alvarez-Meza, A.M.; Orozco-Gutierrez, A.; Castellanos-Dominguez, G. Kernel-Based Relevance Analysis with Enhanced Interpretability for Detection of Brain Activity Patterns. Front. Neurosci. 2017, 11, 550. [Google Scholar] [CrossRef]
- Velasquez, L.; Caicedo, J.; Castellanos-Dominguez, G. Entropy-Based Estimation of Event-Related De/Synchronization in Motor Imagery Using Vector-Quantized Patterns. Entropy 2020, 22, 703. [Google Scholar] [CrossRef] [PubMed]
- McFarland, D.; Miner, L.; Vaughan, T.; Wolpaw, J. Mu and Beta Rhythm Topographies during Motor Imagery and Actual Movements. Brain Topogr. 2004, 12, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Sannelli, C.; Vidaurre, C.; Müller, K.; Blankertz, B. Ensembles of adaptive spatial filters increase BCI performance: An online evaluation. J. Neural Eng. 2016, 13, 046003. [Google Scholar] [CrossRef]
- Roy, S.; Chowdhury, A.; McCreadie, K.; Prasad, G. Deep learning based inter-subject continuous decoding of motor imagery for practical brain-computer interfaces. Front. Neurosci. 2020, 14, 918. [Google Scholar] [CrossRef]
- Tilgner, S.; Wagner, D.; Kalischewski, K.; Schmitz, J.; Kummert, A. Study on the Influence of Multiple Image Inputs of a Multi-View Fusion Neural Network Based on Grad-CAM and Masked Image Inputs. In Proceedings of the 2020 28th European Signal Processing Conference (EUSIPCO), Amsterdam, The Netherlands, 18–21 January 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1427–1431. [Google Scholar]
- Mohdiwale, S.; Sahu, M.; Sinha, G.; Nisar, H. Investigating Feature Ranking Methods for Sub-Band and Relative Power Features in Motor Imagery Task Classification. J. Healthc. Eng. 2021, 2021. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Wang, W.; Hou, Z.; Liang, X.; Wang, J.; Shi, W. Enhanced Motor Imagery Based Brain- Computer Interface via FES and VR for Lower Limbs. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1846–1855. [Google Scholar] [CrossRef] [PubMed]
- Ferrero, L.; Ortiz, M.; Quiles, V.; Iáñez, E.; Flores, J.; Azorín, J. Brain Symmetry Analysis during the Use of a BCI Based on Motor Imagery for the Control of a Lower-Limb Exoskeleton. Symmetry 2021, 13, 1746. [Google Scholar] [CrossRef]
- Alonso-Valerdi, L. Python Executable Script for Estimating Two Effective Parameters to Individualize Brain-Computer Interfaces: Individual Alpha Frequency and Neurophysiological Predictor. Front. Neuroinform. 2016, 10, 22. [Google Scholar] [CrossRef] [Green Version]
- Velasquez-Martinez, L.; Caicedo-Acosta, J.; Acosta-Medina, C.; Alvarez-Meza, A.; Castellanos-Dominguez, G. Regression Networks for Neurophysiological Indicator Evaluation in Practicing Motor Imagery Tasks. Brain Sci. 2020, 10, 707. [Google Scholar] [CrossRef]
- Gilbert, N.; Mewis, R.; Sutcliffe, O. Classification of fentanyl analogues through principal component analysis (PCA) and hierarchical clustering of GC-MS data. Forensic Chem. 2020, 21, 100287. [Google Scholar] [CrossRef]
- Farmer, W.; Rix, A. Evaluating power system network inertia using spectral clustering to define local area stability. Int. J. Electr. Power Energy Syst. 2022, 134, 107404. [Google Scholar] [CrossRef]
- Meng, J.; He, B. Exploring Training Effect in 42 Human Subjects Using a Non-invasive Sensorimotor Rhythm Based Online BCI. Front. Hum. Neurosci. 2019, 13, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, Y.; Banville, H.; Albuquerque, I.; Gramfort, A.; Falk, T.; Faubert, J. Deep learning-based electroencephalography analysis: A systematic review. J. Neural Eng. 2019, 16, 051001. [Google Scholar] [CrossRef] [PubMed]
- Altaheri, H.; Muhammad, G.; Alsulaiman, M.; Amin, S.; Altuwaijri, G.; Abdul, W.; Bencherif, M.A.; Faisal, M. Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: A review. Neural Comput. Appl. 2021, 1–42. [Google Scholar] [CrossRef]
- Stasiak, B.; Opałka, S.; Szajerman, D.; Wojciechowski, A. EEG-Based Mental Task Classification with Convolutional Neural Networks—Parallel vs. 2D Data Representation. In Information Technology in Biomedicine; Pietka, E., Badura, P., Kawa, J., Wieclawek, W., Eds.; Springer: Cham, Switzerland, 2019; pp. 549–560. [Google Scholar]
- Mahamune, R.; Laskar, S.H. Classification of the four-class motor imagery signals using continuous wavelet transform filter bank-based two-dimensional images. Int. J. Imaging Syst. Technol. 2021, 31, 2237–2248. [Google Scholar] [CrossRef]
- Keelawat, P.; Thammasan, N.; Numao, M.; Kijsirikul, B. A Comparative Study of Window Size and Channel Arrangement on EEG-Emotion Recognition Using Deep CNN. Sensors 2021, 21, 1678. [Google Scholar] [CrossRef]
- Xu, L.; Xu, M.; Ke, Y.; An, X.; Liu, S.; Ming, D. Cross-Dataset Variability Problem in EEG Decoding with Deep Learning. Front. Hum. Neurosci. 2020, 14, 103. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, A.; Tsunoda, T. Brain wave classification using long short-term memory network based OPTICAL predictor. Sci. Rep. 2019, 9, 9153. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Xu, M.; Ma, Z.; Wang, K.; Jung, T.; Ming, D. Enhancing transfer performance across datasets for brain-computer interfaces using a combination of alignment strategies and adaptive batch normalization. J. Neural Eng. 2021, 18, 0460e5. [Google Scholar] [CrossRef]
- Zhao, X.; Zhao, J.; Liu, C.; Cai, W. Deep Neural Network with Joint Distribution Matching for Cross-Subject Motor Imagery Brain-Computer Interfaces. BioMed Res. Int. 2020, 2020, 7285057. [Google Scholar] [CrossRef] [Green Version]
- Jeon, E.; Ko, W.; Yoon, J.; Suk, H. Mutual Information-driven Subject-invariant and Class-relevant Deep Representation Learning in BCI. arXiv 2020, arXiv:1910.07747. [Google Scholar] [CrossRef] [PubMed]
- Ko, W.; Jeon, E.; Jeong, S.; Suk, H. Multi-Scale Neural network for EEG Representation Learning in BCI. arXiv 2020, arXiv:2003.02657. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Z.; Du, M.; Yang, F.; Zhang, Z.; Ding, S.; Mardziel, P.; Hu, X. Score-CAM: Score-weighted visual explanations for convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 24–25. [Google Scholar]
- Naidu, R.; Ghosh, A.; Maurya, Y.; Nayak K, S.; Kundu, S. IS-CAM: Integrated Score-CAM for axiomatic-based explanations. arXiv 2020, arXiv:2010.03023. [Google Scholar]
- Li, R.; Zhang, Y.; Zhu, S.; Liu, S. Person search via class activation map transferring. Multimed. Tools Appl. 2021, 80, 24271–24286. [Google Scholar] [CrossRef]
- Belaout, A.; Krim, F.; Mellit, A.; Talbi, B.; Arabi, A. Multiclass adaptive neuro-fuzzy classifier and feature selection techniques for photovoltaic array fault detection and classification. Renew. Energy 2018, 127, 548–558. [Google Scholar] [CrossRef]
- Versaci, M.; Angiulli, G.; di Barba, P.; Morabito, F. Joint use of eddy current imaging and fuzzy similarities to assess the integrity of steel plates. Open Phys. 2020, 18, 230–240. [Google Scholar] [CrossRef]
Layer | Assignment | Output Dimension | Activation | Mode |
---|---|---|---|---|
IN1 | Input | |||
CN2 | Convolution | ReLu | Padding = SAME | |
Size = | ||||
Stride = | ||||
BN3 | Batch-normalization | |||
MP4 | Max-pooling | Size = | ||
Stride = | ||||
CT5 | Concatenation | |||
FL6 | Flatten | |||
BN7 | Batch-normalization | |||
FC8 | Fully-connected | ReLu | Elastic-Net | |
max_norm(1.) | ||||
BN9 | Batch-normalization | |||
OU10 | Output | Softmax | max_norm(1.) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collazos-Huertas, D.F.; Álvarez-Meza, A.M.; Castellanos-Dominguez, G. Image-Based Learning Using Gradient Class Activation Maps for Enhanced Physiological Interpretability of Motor Imagery Skills. Appl. Sci. 2022, 12, 1695. https://doi.org/10.3390/app12031695
Collazos-Huertas DF, Álvarez-Meza AM, Castellanos-Dominguez G. Image-Based Learning Using Gradient Class Activation Maps for Enhanced Physiological Interpretability of Motor Imagery Skills. Applied Sciences. 2022; 12(3):1695. https://doi.org/10.3390/app12031695
Chicago/Turabian StyleCollazos-Huertas, Diego F., Andrés M. Álvarez-Meza, and German Castellanos-Dominguez. 2022. "Image-Based Learning Using Gradient Class Activation Maps for Enhanced Physiological Interpretability of Motor Imagery Skills" Applied Sciences 12, no. 3: 1695. https://doi.org/10.3390/app12031695
APA StyleCollazos-Huertas, D. F., Álvarez-Meza, A. M., & Castellanos-Dominguez, G. (2022). Image-Based Learning Using Gradient Class Activation Maps for Enhanced Physiological Interpretability of Motor Imagery Skills. Applied Sciences, 12(3), 1695. https://doi.org/10.3390/app12031695