MATLAB Analysis of SP Test Results—An Unusual Parasympathetic Nervous System Activity in Low Back Leg Pain: A Case Report
Abstract
:1. Introduction
2. Case Presentation
2.1. Diagnostic Assessment
2.2. Procedure in MATLAB
- (1)
- Conversion from a true RGB color image to grayscale using the rgb2gray function. This task was performed by eliminating the hue and saturation information while retaining the luminance. The grayscale values were calculated according to the following formula: 0.299 × R + 0.587 × G + 0.114 × B, where R is the red component, G is the green component, and B is the blue component. As a result, a 320 × 240 matrix of values in the range from 0 to 255 uint8 was created;
- (2)
- Conversion of the uint8 values to the float format using the double function;
- (3)
- Reduction of the shadows by eliminating all values but the 255 value, which corresponds to the ROI;
- (4)
- Division of the matrix by 255, which creates a ‘0’/‘1’ matrix, where ‘1’ corresponds to the number of pixels within the ROI.
- (1)
- Calculation of the area with the AURP temperature response in the ROI:
- a.
- Calculate the values of the minimum Tmin and maximum Tmax temperature in the first thermogram at the moment T0 = 0 s:
- b.
- Calculate the area of the ROI surface for the patient as the sum of non-zero pixels in the thermogram according to the following equation:
- c.
- Calculate the percentage of the area with a temperature equal to Tmin and equal to Tmax, at the moment t 0 according to the following equation:
- d.
- Calculate the percentage of the area with a temperature greater than or equal to Tmax for AURPT0 according to the following equation:
- e.
- Calculate the percentage of the area with a temperature lower than or equal to Tmin for AURPT0 according to the following equation:
- (2)
- Calculation of the change in the mean temperature of the ROI:
- a.
- Calculate the value of the arithmetic mean temperature ₸°_tx in subsequent thermograms at the moment tx, where x = {0, 3, 6, 9, …, 900} sec.
- b.
- Calculate the value of temperature changes Δ₸°_tx at the tx moments as the difference between the average temperature values at successive time instants and the value at t0 according to the following equation: Δ₸°_tx = Δ₸° g_tx − Δ₸°_t0.
2.3. Results of the SP Test
3. Discussion
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IRT | infrared thermography |
ANS | autonomic nervous system |
TrPs | trigger points |
AURP | autonomic referred pain |
ROI | Region of Interest |
Δ₸° | delta of the average temperature |
CS | central sensitization |
Tmin | minimum temperature |
Tmax | maximum temperature |
T0 | temperature of the baseline thermogram (T0) |
References
- Fitzcharles, M.-A.; Cohen, S.P.; Clauw, D.J.; Littlejohn, G.; Usui, C.; Häuser, W. Nociplastic pain: Towards an understanding of prevalent pain conditions. Lancet 2021, 397, 2098–2110. [Google Scholar] [CrossRef]
- Aydede, M.; Shriver, A. Recently introduced definition of “nociplastic pain” by the International Association for the Study of Pain needs better formulation. Pain 2018, 159, 1176–1177. [Google Scholar] [CrossRef] [PubMed]
- Brummett, C.; Clauw, D.; Harris, R.; Harte, S.; Hassett, A.; Williams, D. We agree with the need for a new term but disagree with the proposed terms. Pain 2016, 157, 2876. [Google Scholar] [CrossRef] [PubMed]
- Arendt-Nielsen, L.; Morlion, B.; Perrot, S.; Dahan, A.; Dickenson, A.; Kress, H.G.; Wells, C.; Bouhassira, D.; Drewes, A.M. Assessment and manifestation of central sensitisation across different chronic pain conditions. Eur. J. Pain 2018, 22, 216–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shraim, M.A.; Massé-Alarie, H.; Hodges, P.W. Methods to discriminate between mechanism-based categories of pain experienced in the musculoskeletal system: A systematic review. Pain 2021, 162, 1007–1037. [Google Scholar] [CrossRef] [PubMed]
- Kosek, E.; Cohen, M.; Baron, R.; Gebhart, G.F.; Mico, J.-A.; Rice, A.S.C.; Rief, W.; Sluka, A.K. Do we need a third mechanistic descriptor for chronic pain states? Pain 2016, 157, 1382–1386. [Google Scholar] [CrossRef] [PubMed]
- van Griensven, H.; Schmid, A.; Trendafilova, T.; Low, M. Central Sensitization in Musculoskeletal Pain: Lost in Translation? J. Orthop. Sports Phys. Ther. 2020, 50, 592–596. [Google Scholar] [CrossRef]
- Granan, L.-P. We do not need a third mechanistic descriptor for chronic pain states! Not yet. Pain 2017, 158, 179. [Google Scholar] [CrossRef]
- Yu, R.; Gollub, R.L.; Spaeth, R.; Napadow, V.; Wasan, A.; Kong, J. Disrupted functional connectivity of the periaqueductal gray in chronic low back pain. Neuroimage Clin. 2014, 6, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Truini, A.; Tinelli, E.; Gerardi, M.C.; Calistri, V.; Iannuccelli, C.; La Cesa, S.; Tarsitani, L.; Mainero, C.; Sarzi-Puttini, P.; Cruccu, G.; et al. Abnormal resting state functional connectivity of the periaqueductal grey in patients with fibromyalgia. Clin. Exp. Rheumatol. 2016, 34 (Suppl. S96), S129–S133. [Google Scholar]
- Charkoudian, N. Mechanisms and modifiers of reflex induced cutaneous vasodilation and vasoconstriction in humans. J. Appl. Physiol. 2010, 109, 1221–1228. [Google Scholar] [CrossRef]
- Nickel, M.M.; May, E.S.; Tiemann, L.; Postorino, M.; Ta Dinh, S.; Ploner, M. Autonomic responses to tonic pain are more closely related to stimulus intensity than to pain intensity. Pain 2017, 158, 2129–2136. [Google Scholar] [CrossRef]
- Nahman-Averbuch, H.; Coghill, R.C. Pain-autonomic relationships: Implications for experimental design and the search for an “objective marker” for pain. Pain 2017, 158, 2064–2065. [Google Scholar] [CrossRef]
- Nijs, J.; Lahousse, A.; Kapreli, E.; Bilika, P.; Saraçoğlu, İ.; Malfliet, A.; Coppieters, I.; De Baets, L.; Leysen, L.; Roose, E.; et al. Nociplastic Pain Criteria or Recognition of Central Sensitization? Pain Phenotyping in the Past, Present and Future. J. Clin. Med. 2021, 10, 3203. [Google Scholar] [CrossRef]
- Skorupska, E.; Rychlik, M.; Samborski, W. Validation and Test-Retest Reliability of New Thermographic Technique Called Thermovision Technique of Dry Needling for Gluteus Minimus Trigger Points in Sciatica Subjects and TrPs-Negative Healthy Volunteers. Biomed. Res. Int. 2015, 2015, 546497. [Google Scholar] [CrossRef]
- Skorupska, E.; Dybek, T.; Rychlik, M.; Jokiel, M.; Dobrakowski, P. The Automatization of a New Thermography Method Using Invasive Nociceptive Stimulation to Confirm an Autonomic Phenomenon within a Trigger Point Referred Pain Zone. Brain Sci. 2021, 11, 893. [Google Scholar] [CrossRef]
- Mali, B.; Zulj, S.; Magjarevic, R.; Miklavcic, D.; Jarm, T. Matlab-based tool for ECG and HRV analysis. Biomed. Signal Processing Control 2014, 10, 108–116. [Google Scholar] [CrossRef]
- Vardasca, R.; Plassmann, P.; Ring, F.; Jones, C. Thermal symmetry of the upper and lower extremities in healthy subjects. Thermol. Int. 2012, 22, 53–60. [Google Scholar]
- Skorupska, E.; Rychlik, M.; Samborski, W. Intensive vasodilatation in the sciatic pain area after dry needling. BMC Complement. Altern. Med. 2015, 15, 72. [Google Scholar] [CrossRef] [Green Version]
- Skorupska, E.; Dybek, T.; Rychlik, M.; Jokiel, M.; Zawadziński, J.; Dobrakowski, P. Amplified Vasodilatation within the Referred Pain Zone of Trigger Points Is Characteristic of Gluteal Syndrome—A Type of Nociplastic Pain Mimicking Sciatica. J. Clin. Med. 2021, 10, 5146. [Google Scholar] [CrossRef]
- Skorupska, E.; Jokiel, M.; Rychlik, M.; Łochowski, R.; Kotwicka, M. Female Overrepresentation in Low Back-Related Leg Pain: A Retrospective Study of the Autonomic Response to a Minimally Invasive Procedure. J. Pain Res. 2020, 13, 3427–3435. [Google Scholar] [CrossRef]
- Laslett, M. Evidence-based diagnosis and treatment of the painful sacroiliac joint. J. Man. Manip. Ther. 2008, 16, 142–152. [Google Scholar] [CrossRef] [Green Version]
- Travell, J.G.; Simons, D.G. Myofascial Pain and Dysfunction: The Trigger Point Manual. Wolters Kluwer Health; Lippincott Williams & Wilki: Philadelphia, PA, USA, 2018. [Google Scholar]
- Fernández-de-Las-Peñas, C.; Dommerholt, J. International Consensus on Diagnostic Criteria and Clinical Considerations of Myofascial Trigger Points: A Delphi Study. Pain Med. 2018, 19, 142–150. [Google Scholar] [CrossRef] [Green Version]
- Travell, J.G.; Simons, D.G. Myofascial Pain and Dysfunction: The Trigger Point Manual; Lippincott Williams & Wilkins: Baltimore, MD, USA, 1999; Volume 1. [Google Scholar]
- Simons, D.G. Review of enigmatic MTrPs as a common cause of enigmatic musculoskeletal pain and dysfunction. J. Electromyogr. Kinesiol. 2004, 14, 95–107. [Google Scholar] [CrossRef]
- Shah, J.P.; Thaker, N.; Heimur, J.; Aredo, J.V.; Sikdar, S.; Gerber, L.H. Myofascial Trigger Points Then and Now: A Historical and Scientific Perspective. PM&R 2015, 7, 746–761. [Google Scholar]
- Skorupska, E.; Zawadziński, J.; Bednarek, A.; Samborski, W. Skin Resistivity Value of Upper Trapezius Latent Trigger Points. BioMed Res. Int. 2015, 2015, e351726. [Google Scholar] [CrossRef] [Green Version]
- Ge, H.-Y.; Nie, H.; Madeleine, P.; Danneskiold-Samsøe, B.; Graven-Nielsen, T.; Arendt-Nielsen, L. Contribution of the local and referred pain from active myofascial trigger points in fibromyalgia syndrome. Pain 2009, 147, 233–240. [Google Scholar] [CrossRef]
- Skorupska, E.; Dybek, T.; Jokiel, M.; Szyszka, J.; Zmarzły, D. MATLAB® Utility for Small Invasive Procedure to Confirm Objectively the New Disease—Chronic Pain. In International Scientific Conference on Brain-Computer Interfaces BCI Opole; Springer Nature: Chan, Germany, 2021. [Google Scholar]
- Amirdelfan, K.; McRoberts, P.; Deer, T.R. The differential diagnosis of low back pain: A primer on the evolving paradigm. Neuromodulation 2014, 17 (Suppl. S2), 11–17. [Google Scholar] [CrossRef]
- Smart, K.M.; Blake, C.; Staines, A.; Thacker, M.; Doody, C. Mechanisms-based classifications of musculoskeletal pain: Part 1 of 3: Symptoms and signs of central sensitisation in patients with low back (± leg) pain. Man. Ther. 2012, 17, 336–344. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skorupska, E.; Dybek, T.; Wotzka, D.; Rychlik, M.; Jokiel, M.; Pakosz, P.; Konieczny, M.; Domaszewski, P.; Dobrakowski, P. MATLAB Analysis of SP Test Results—An Unusual Parasympathetic Nervous System Activity in Low Back Leg Pain: A Case Report. Appl. Sci. 2022, 12, 1970. https://doi.org/10.3390/app12041970
Skorupska E, Dybek T, Wotzka D, Rychlik M, Jokiel M, Pakosz P, Konieczny M, Domaszewski P, Dobrakowski P. MATLAB Analysis of SP Test Results—An Unusual Parasympathetic Nervous System Activity in Low Back Leg Pain: A Case Report. Applied Sciences. 2022; 12(4):1970. https://doi.org/10.3390/app12041970
Chicago/Turabian StyleSkorupska, Elzbieta, Tomasz Dybek, Daria Wotzka, Michał Rychlik, Marta Jokiel, Paweł Pakosz, Mariusz Konieczny, Przemysław Domaszewski, and Paweł Dobrakowski. 2022. "MATLAB Analysis of SP Test Results—An Unusual Parasympathetic Nervous System Activity in Low Back Leg Pain: A Case Report" Applied Sciences 12, no. 4: 1970. https://doi.org/10.3390/app12041970
APA StyleSkorupska, E., Dybek, T., Wotzka, D., Rychlik, M., Jokiel, M., Pakosz, P., Konieczny, M., Domaszewski, P., & Dobrakowski, P. (2022). MATLAB Analysis of SP Test Results—An Unusual Parasympathetic Nervous System Activity in Low Back Leg Pain: A Case Report. Applied Sciences, 12(4), 1970. https://doi.org/10.3390/app12041970