No Association between Jump Parameters and Tissue Stiffness in the Quadriceps and Triceps Surae Muscles in Recreationally Active Young Adult Males
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Participants
2.3. Procedures
2.3.1. Myoton Measurements
2.3.2. Jump Performance Assessment
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Köklü, Y.; Alemdaroğlu, U.; Özkan, A.; Koz, M.; Ersöz, G. The relationship between sprint ability, agility and vertical jump performance in young soccer players. Sci. Sport 2015, 30, e1–e5. [Google Scholar] [CrossRef]
- Kons, R.L.; Ache-Dias, J.; Detanico, D.; Barth, J.; Dal Pupo, J. Is vertical jump height an indicator of athletes’ power output in different sport modalities? J. Strength Cond. Res. 2018, 32, 708–715. [Google Scholar] [CrossRef]
- Pupo, J.D.; Ache-dias, J.; Kons, R.L.; Detanico, D. Are vertical jump height and power output correlated to physical performance in different sports? An allometric approach. Hum. Mov. 2020, 22, 60–67. [Google Scholar] [CrossRef]
- Barr, M.J.; Canada, R.; Nolte, V.; Barr, M.J.; Nolte, V.W. Which Measure of Drop Jump Performance Best Predicts Sprinting Speed? Artic. J. Strength Cond. Res. 2011, 25, 1976–1982. [Google Scholar] [CrossRef] [PubMed]
- Pijnappels, M.; van der Burg, J.C.E.; Reeves, N.D.; van Dieën, J.H. Identification of elderly fallers by muscle strength measures. Eur. J. Appl. Physiol. 2008, 102, 585–592. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.; Biggan, J.R.; Ray, C. Fitness, Balance Efficacy, and Postural Control in Community-Dwelling Older Adults. Sage Open 2016, 6, 2158244016631798. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto, N.; Hirata, K.; Inoue, K.; Hashimoto, T. Muscle Stiffness of the Vastus Lateralis in Sprinters and Long-Distance Runners. Med. Sci. Sports Exerc. 2019, 51, 2080–2087. [Google Scholar] [CrossRef]
- Arampatzis, A.; Karamanidis, K.; Morey-Klapsing, G.; De Monte, G.; Stafilidis, S. Mechanical properties of the triceps surae tendon and aponeurosis in relation to intensity of sport activity. J. Biomech. 2007, 40, 1946–1952. [Google Scholar] [CrossRef] [PubMed]
- Young, W.B.; Pryor, J.F.; Wilson, G.J. Countermovement and drop jump performance. J. Strength Cond. Res. 1995, 9, 232–236. [Google Scholar]
- Training for Power Events schmidtbleicher—Google Scholar. Available online: https://scholar.google.com/scholar?hl=de&as_sdt=0%2C5&q=Training+for+Power+Events+schmidtbleicher&oq=Training+for+power+events+schm (accessed on 30 November 2021).
- Abdelsattar, M.; Konrad, A.; Tilp, M. Relationship between Achilles Tendon Stiffness and Ground Contact Time during Drop Jumps. J. Sport. Sci. Med. 2018, 17, 223–228. [Google Scholar]
- Ando, R.; Sato, S.; Hirata, N.; Tanimoto, H.; Imaizumi, N.; Suzuki, Y.; Hirata, K.; Akagi, R. Relationship between resting medial gastrocnemius stiffness and drop jump performance. J. Electromyogr. Kinesiol. 2021, 58, 102549. [Google Scholar] [CrossRef] [PubMed]
- Bobbert, M.F.; Mackay, M.; Schinkelshoek, D.; Huijing, P.A.; van Ingen Schenau, G.J. Biomechanical analysis of drop and countermovement jumps. Eur. J. Appl. Physiol. Occup. Physiol. 1986, 54, 566–573. [Google Scholar] [CrossRef]
- Davis, D.S.; Briscoe, D.A.; Markowski, C.T.; Saville, S.E.; Taylor, C.L. Physical characteristics that predict vertical jump performance in recreational male athletes. Phys. Ther. Sport 2003, 4, 167–174. [Google Scholar] [CrossRef]
- Mackala, K.; Stodoka, J.; Siemienski, A.; Coh, M. Biomechanical analysis of squat jump and countermovement jump from varying starting positions. J. Strength Cond. Res. 2013, 27, 2650–2661. [Google Scholar] [CrossRef] [PubMed]
- Bojsen-Møller, J.; Magnusson, S.P.; Rasmussen, L.R.; Kjaer, M.; Aagaard, P. Muscle performance during maximal isometric and dynamic contractions is influenced by the stiffness of the tendinous structures. J. Appl. Physiol. 2005, 99, 986–994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikezoe, T.; Asakawa, Y.; Fukumoto, Y.; Tsukagoshi, R.; Ichihashi, N. Associations of muscle stiffness and thickness with muscle strength and muscle power in elderly women. Geriatr. Gerontol. Int. 2012, 12, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Konrad, A.; Glashüttner, C.; Reiner, M.M.; Bernsteiner, D.; Tilp, M. The acute effects of a percussive massage treatment with a hypervolt device on plantar flexor muscles’ range of motion and performance. J. Sport. Sci. Med. 2020, 19, 690–694. [Google Scholar]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- McKay, A.K.A.; Stellingwerff, T.; Smith, E.S.; Martin, D.T.; Mujika, I.; Goosey-Tolfrey, V.L.; Sheppard, J.; Burke, L.M. Defining Training and Performance Caliber: A Participant Classification Framework. Int. J. Sports Physiol. Perform. 2022, 1, 1–15. [Google Scholar] [CrossRef]
- Chang, T.-T.; Li, Z.; Wang, X.-Q.; Zhang, Z.-J. Stiffness of the Gastrocnemius–Achilles Tendon Complex Between Amateur Basketball Players and the Non-athletic General Population. Front. Physiol. 2020, 11, 606706. [Google Scholar] [CrossRef]
- Klich, S.; Ficek, K.; Krymski, I.; Klimek, A.; Kawczyński, A.; Madeleine, P.; Fernández-de-las-Peñas, C. Quadriceps and Patellar Tendon Thickness and Stiffness in Elite Track Cyclists: An Ultrasonographic and Myotonometric Evaluation. Front. Physiol. 2020, 11, 1659. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Merletti, R.; Stegeman, D.; Blok, J.; Rau, G.; Disselhorst-Klug, C.; Hägg, G. European Recommendations for Surface ElectroMyoGraphy. Roessingh Res. Dev. 1999, 8, 13–54. [Google Scholar]
- Schneebeli, A.; Falla, D.; Clijsen, R.; Barbero, M. Myotonometry for the evaluation of Achilles tendon mechanical properties: A reliability and construct validity study. BMJ Open Sport Exerc. Med. 2020, 6, e000726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ditroilo, M.; Cully, L.; Boreham, C.A.G.; Vito, G. De Assessment of musculo-articular and muscle stiffness in young and older men. Muscle Nerve 2012, 46, 559–565. [Google Scholar] [CrossRef]
- Konrad, A.; Reiner, M.M.; Bernsteiner, D.; Glashüttner, C.; Thaller, S.; Tilp, M. Joint flexibility and isometric strength parameters are not relevant determinants for countermovement jump performance. Int. J. Environ. Res. Public Health 2021, 18, 2510. [Google Scholar] [CrossRef] [PubMed]
- Pereira, G.; Almeida, A.G.; Rodacki, A.L.F.; Ugrinowitsch, C.; Fowler, N.E.; Kokubun, E. The influence of resting period length on jumping performance. J. Strength Cond. Res. 2008, 22, 1259–1264. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, S.; Heitmann, K.A.; Sagelv, E.H.; Johansen, D.; Pettersen, S.A. Improved maximal strength is not associated with improvements in sprint time or jump height in high-level female football players: A cluster-randomized controlled trial. BMC Sports Sci. Med. Rehabil. 2019, 11, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, W.G. A New View of Statistics. Available online: https://www.sportsci.org/resource/stats/effectmag.html (accessed on 19 January 2021).
- Hirata, K.; Kanehisa, H.; Miyamoto-Mikami, E.; Miyamoto, N. Evidence for intermuscle difference in slack angle in human triceps surae. J. Biomech. 2015, 48, 1210–1213. [Google Scholar] [CrossRef]
- Maffiuletti, N.A.; Aagaard, P.; Blazevich, A.J.; Folland, J.; Tillin, N.; Duchateau, J. Rate of force development: Physiological and methodological considerations. Eur. J. Appl. Physiol. 2016, 116, 1091–1116. [Google Scholar] [CrossRef] [Green Version]
- Portney, L.; Watkins, M. Foundations of Clinical Research. Application to Practice; Pearson/Prentice Hall: Upper Saddle River, NJ, USA, 2009. [Google Scholar]
- Chen, G.; Wu, J.; Chen, G.; Lu, Y.; Ren, W.; Xu, W.; Xu, X.; Wu, Z.; Guan, Y.; Zheng, Y.; et al. Reliability of a portable device for quantifying tone and stiffness of quadriceps femoris and patellar tendon at different knee flexion angles. PLoS ONE 2019, 14, e0220521. [Google Scholar]
- Lee, Y.; Kim, M.; Lee, H. The Measurement of Stiffness for Major Muscles with Shear Wave Elastography and Myoton: A Quantitative Analysis Study. Diagnostics 2021, 11, 524. [Google Scholar] [CrossRef] [PubMed]
- Vanezis, A.; Lees, A. A biomechanical analysis of good and poor performers of the vertical jump. Ergonomics 2005, 48, 1594–1603. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, J.R.; Morrissey, M.C. Relationship between open and closed kinetic chain strength of the lower limb and jumping performance. J. Orthop. Sports Phys. Ther. 1998, 27, 430–435. [Google Scholar] [CrossRef] [Green Version]
- Young, W.B.; Wilson, G.J.; Byrne, C. A comparison of drop jump training methods: Effects on leg extensor strength qualities and jumping performance. Int. J. Sports Med. 1999, 20, 295–303. [Google Scholar] [CrossRef]
- Young, W.B.; Bilby, G.E. undefined The effect of voluntary effort to influence speed of contraction on strength, muscular power, and hypertrophy development. J. Strength Cond. Res. 1993, 7, 172–178. [Google Scholar]
- Gheller, R.G.; Dal Pupo, J.; Ache-Dias, J.; Detanico, D.; Padulo, J.; dos Santos, S.G. Effect of different knee starting angles on intersegmental coordination and performance in vertical jumps. Hum. Mov. Sci. 2015, 42, 71–80. [Google Scholar] [CrossRef]
- Konrad, A.; Tilp, M. Muscle and tendon tissue properties of competitive soccer goalkeepers and midfielders A pilot study. Ger. J. Exerc. Sport Res. 2018, 48, 245–251. [Google Scholar] [CrossRef] [Green Version]
Parameter | Mean ± SD |
---|---|
Patellar tendon stiffness (N/m) | 838.7 ± 109.9 |
Vastus lateralis stiffness (N/m) | 296.4 ± 25.2 |
Vastus medialis stiffness (N/m) | 251.4 ± 27.1 |
Rectus femoris Stiffness (N/m) | 250.3 ± 33.4 |
Achilles tendon stiffness (N/m) | 808.2 ± 67.4 |
Gastrocnemius medialis stiffness (N/m) | 312.7 ± 43.2 |
Gastrocnemius lateralis stiffness (N/m) | 334.9 ± 44.5 |
CMJ jump height (m) | 0.36 ± 0.06 |
CMJ squat depth (m) | −0.35 ± 0.06 |
CMJ reactive strength index | 0.46 ± 0.11 |
DJ jump height (m) | 0.21 ± 0.06 |
DJ contact time (s) | 0.20 ± 0.03 |
DJ reactive strength index | 1.09 ± 0.36 |
rP | CI 95 % | p | ES | |
---|---|---|---|---|
GM—DJ_CT | 0.24 | (−0.29–0.66) | 0.38 | 0.24 |
GM—DJ_RSI | 0.02 | (−0.48–0.51) | 0.94 | 0.02 |
GM—DJ_JH | 0.13 | (−0.39–0.59) | 0.62 | 0.13 |
GL—DJ_CT | 0.16 | (−0.37–0.61) | 0.56 | 0.16 |
GL—DJ_RSI | 0.02 | (−0.48–0.51) | 0.93 | 0.02 |
GL—DJ_JH | 0.08 | (−0.43–0.56) | 0.76 | 0.08 |
AT—DJ_CT | −0.07 | (−0.54–0.44) | 0.81 | −0.07 |
AT—DJ_RSI | 0.11 | (−0.41–0.57) | 0.70 | 0.11 |
AT—DJ_JH | 0.09 | (−0.42–0.56) | 0.73 | 0.09 |
rP | CI 95% | p | ES | ||
---|---|---|---|---|---|
PT—CMJ_JH | −0.03 | (−0.52–0.48) | 0.92 | −0.03 | |
PT—CMJ_SD | 0.36 | (−0.17–0.72) | 0.18 | 0.36 | |
PT—CMJ_RSImod | −0.04 | (−0.52–0.47) | 0.90 | −0.04 | |
VL—CMJ_JH | −0.02 | (−0.51–0.48) | 0.95 | −0.02 | |
VL—CMJ_SD | −0.19 | (−0.63–0.34) | 0.48 | −0.19 | |
VL—CMJ_RSImod | −0.13 | (−0.59–0.39) | 0.64 | −0.13 | |
VM—CMJ_JH | 0.15 | (−0.37–0.60) | 0.57 | 0.15 | |
VM—CMJ_SD | 0.05 | (−0.46–0.53) | 0.85 | 0.05 | |
VM—CMJ_RSImod | 0.15 | (−0.37–0.60) | 0.58 | 0.15 | |
RF—CMJ_JH | 0.22 | (−0.31–0.65) | 0.41 | 0.22 | |
RF—CMJ_SD | −0.01 | (−0.50–0.49) | 0.98 | −0.01 | |
RF—CMJ_RSImod | −0.02 | (−0.51–0.48) | 0.94 | −0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konrad, A.; Paternoster, F.K. No Association between Jump Parameters and Tissue Stiffness in the Quadriceps and Triceps Surae Muscles in Recreationally Active Young Adult Males. Appl. Sci. 2022, 12, 1596. https://doi.org/10.3390/app12031596
Konrad A, Paternoster FK. No Association between Jump Parameters and Tissue Stiffness in the Quadriceps and Triceps Surae Muscles in Recreationally Active Young Adult Males. Applied Sciences. 2022; 12(3):1596. https://doi.org/10.3390/app12031596
Chicago/Turabian StyleKonrad, Andreas, and Florian Kurt Paternoster. 2022. "No Association between Jump Parameters and Tissue Stiffness in the Quadriceps and Triceps Surae Muscles in Recreationally Active Young Adult Males" Applied Sciences 12, no. 3: 1596. https://doi.org/10.3390/app12031596
APA StyleKonrad, A., & Paternoster, F. K. (2022). No Association between Jump Parameters and Tissue Stiffness in the Quadriceps and Triceps Surae Muscles in Recreationally Active Young Adult Males. Applied Sciences, 12(3), 1596. https://doi.org/10.3390/app12031596