Seafood Processing, Preservation, and Analytical Techniques in the Age of Industry 4.0
Abstract
:1. Introduction
2. The Fourth Industrial Revolution
3. Current Trends and Advancements in Seafood Preservation Techniques
3.1. Freezing-Based Technologies
3.2. Edible Films and Coatings
3.3. Natural Preservatives
3.4. Nanotechnology
4. Emerging Trends in Seafood Processing Methods
4.1. Thermal Processing
4.2. Nonthermal Processing
5. Recent Advances in Seafood Analytical Methodology
5.1. Hyperspectral Sensors
5.1.1. Chemical Properties
5.1.2. Color and Other Physical Properties
5.1.3. Microplastic Evaluation
5.1.4. Microbial Spoilage
5.1.5. Authentication
5.1.6. Process Monitoring
5.2. Advanced Mass Spectrometry and Chromatography
5.3. Other Advanced Techniques
6. Perspectives and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
Thermal Processing | Product | Treatment Purpose | Process Condition | Objective | Main Findings | Reference |
---|---|---|---|---|---|---|
Ohmic | Pacific whiting and Alaska pollock surimi gels prepared with carrot | Heating | Heating from 5 to 90 °C under 3 rates: 3.3 V/cm (3 °C/min), 12.0 V/cm (60 °C/min), and 17.3 V/cm (160 °C/min) | Evaluate the textural properties of surimi and vegetables during surimi gelation | Shear force value of carrot heated at 160 °C/min showed the highest value in the both species. Moisture loss (%) of surimi and carrots heated at 160 °C/min was significantly lower than other samples heated slowly. | [71] |
Ohmic and high pressure heating | Shrimp | Thawing | -Ohmic heating: Voltage; 92, 138, and 184 V, 60 Hz, 40 A. T°: 30, 35, 40, 50, and 60 °C -High pressure heating: 100 and 600 MPa for 30 s–3 min at 5–20 °C | Study the peelability and the thermal and structural properties of shrimp parts | Shell loosening was induced by high pressure heating, while severe denaturation of shrimp meat proteins was caused by ohmic heating. Extreme ohmic heating led to shell tightening, caused by cuticular and epidermal collagen gelatinization. | [72] |
Ohmic | Tuna fish cubes | Thawing | 40, 50, and 60 V | Study the physico-chemical changes in tuna fish during thawing under ohmic heating | Ohmic heating at 50 V had the shortest thawing time, and significantly decreased thawing loss and total loss compared to traditional thawing, but the samples could be oxidized faster. | [73] |
Microwave | Surimi gel fortified with fish oil | Heating | (1) 40 °C for 30 min setting + 90 °C for 20 min; (2) 40 °C for 30 min + microwave heating for 96 s (power intensity: 5 W/g) | Investigate the gelation mechanism and physicochemical changes of surimi protein-fish oil composite gels heated by microwave energy | Microwave heating improved the gelling properties, enhanced the chemical forces involved in the gel formation, and changed the secondary structures of surimi protein. | [77] |
Microwave | Surimi paste | Heating | Thickness = 2.0 cm at 2450 MHz | Establish the relationship between T° distribution and gel properties of surimi with different thickness | Surimi heated by microwave had higher gel properties and water holding capacity compared to that heated by the traditional water bath method. Optimum thickness of surimi for microwave heating was found to be 2 cm. | [78] |
Microwave | MytilusChilensis and Dosidicusgigas | Drying | 90, 160, 360, 600, and 750 W | Study the drying kinetics and moisture diffusivity | Compared to the hot air-drying process, the moisture ratio and drying time decreased rapidly with increasing the microwave power. | [158] |
Microwave | Mytilusedulis | Drying | 90, 180, 360, 600 and 800 W | Microwave drying kinetics study | Microwave power levels slightly affected drying kinetics, rehydration characteristics and energy consumptions. 360 W was the best microwave power level, giving the minimum energy consumption. | [159] |
Microwave | Grass carp meat | Cooking | 600 W, 70 °C. | Study the physical/ chemical properties Evaluation of saltiness perception impact | Cooking in microwave reduced the degree of protein tertiary structures, decreased cooking loss, maintained the compact of meat structure, and improved the saltiness perception, compared to traditional cooking in water bath. | [160] |
Microwave | Antarctic krill (Euphausiasuperba) and white shrimp (Penaeusvannamei) | Thawing and heating | Microwave frequency (300–3000 MHz) in T° range (−20 to 20 °C) | Optimize the technology of the microwave process, and analyze the effects of dielectric properties on the heating rate and temperature distribution | Heating rate was improved by the addition of salt. Salt–sucrose mixture addition changed the dielectric properties significantly and quickened both thawing and heating rates. | [161] |
Microwave/infrared drying | Rainbow trout (Oncorhynchus mykiss) fillets | Drying | Microwave: 90, 180, 270 and 360 W; infrared drying: 83, 104, and 125 W | Compare the impact of microwave and infrared drying methods on the drying rate, time, and color | Moisture content and color of dried fish samples were significantly affected by time and power levels. Moisture content was higher, drying time was shorter, and color was less influenced using the microwave method. | [162] |
Microwave /Steam methods | Surimi products | Heating | Microwave power was set at 25, 35, or 45 kW | Compare the changes in the quality and sensory characteristics of surimi heated by two different methods | A thickness of approximately 8 mm was found to be the optimal thickness of surimi to absorb microwaves at 2.45 GHz. Microwave heating can provide energy savings of 11.68% compared to traditional water bath heating. | [163] |
Radio frequency heating | Vacuum-packed Pacific sauries (Cololabissaira) in water | Pasteurization | Radio frequency heating at 9 kW and conventional heating using autoclave, preheated at 80 °C, and then heated up to 120 °C for 15 to 45 min | Inactivate heat-resistant B. subtilisspores inside the food without surface cold spots in minimal heating time | B. subtilisspores were decreased by 5 logarithmic orders using radio frequency heating. | [164] |
Radio frequency heating | Vacuum-packed saury in water | Heating | Radio frequency alternating-current energy (9 kW) until the T° reached 120 or 125 °C | Investigate the impact of radio frequency heating on softening and collagen in fish backbone, and characterize the elasticity, crude protein, collagen, and collagen profile of backbone | Water was heated 2.9 times faster than conventional methods. Radio frequency heating achieved wholly edible fish containing low-molecular collagen peptide in a short heating time. | [165] |
Water bath and ohmic heating | Surimi-canned corn | Cooking | -Water bath at 90 °C for 30 min. -Water bath at 25 °C for 2 h of setting followed by 90 °C for 30 min -Ohmic at 250 V and 10 kHz, for ~30 s at 15 to 90 °C. | Investigate the impact of moisture migration of canned corn mixed with surimi and study texture changes during cooking | Surimi gel texture was influenced by the rate of ohmic heating. Ohmic heating was found to reduce the moisture loss and preserve the texture of surimi gels and corn when compared to the water bath. | [166] |
Material | Treatment Purpose | Process Condition | Main Findings | Reference |
---|---|---|---|---|
Marinated herring | Inactivation of Morganellapsychrotolerans, total psychrophilic count, H2S-producing bacteria | 100, 300, and 500 MPa for 5 and 10 min | No microbial growth in samples with 300 MPa for 10 min and 500 MPa for 5, 10 min. Psychrophilic bacteria growth was not detected in samples treated with 500 MPa. H2S-producing bacteria were not observed during 3 months of storage period. | [167] |
Razor clam (Sinonovaculaconstricta) | Inactivation of total viable counts | 400 MPa/10 min/46 °C | 5 log reduction | [168] |
Cold smoked salmon | Inactivation of Listeria innocua | 450 and 600 MPa for 120 s at 4 °C | 2.63 and 3.99 log10 CFU/g, respectively | [169] |
Herring fillets | Inactivation of Photobacterium phosphoreum and Morganellapsychrotolerans | 100, 200, 300, and 500 MPa for 5 min | 200 MPa did not significantly affect the microbial growth, 500 MPa pressure treatment significantly delayed the growth of P. phosphoreum and M. psychrotoleransuntil 12th and 7th days of the storage, respectively, 300–500 MPa inhibit the growth of all psychrophilic microorganisms until 19th day of the storage | [170] |
Salmon, cod, and mackerel | Inactivation of aerobic bacteria count, H2S-producing bacteria | 200 and 500 MPa for 120 s at 8–9 °C | Undetectable level of aerobic counts in cod and mackerel and H2S-producing bacteria in all fish when treated at 500 MPa | [171] |
Shucked abalone meat | Inactivation of aerobic plate count | 100 and 300 MPa for 5 or 10 min | Extending the shelf-life of 300 MPa treated samples to 35 days as compared with 14 days for controls and for 100 MPa treated samples | [172] |
Hilsa fillets | Inactivation of total plate count | 250, 350 MPa for 10 min at 27 °C | 2.21 and 2.4 log cycles, respectively; 350 MPa increased the shelf-life to more than 25 days | [173] |
Smoked rainbow trout and fresh catfish fillets | Inactivation of Listeria monocytogenes, Escherichia coli | 200, 400 or 600 MPa for 1 or 5 min at room temperature | >6 log10 CFU/g reductions in both fish products | [174] |
Oyster homogenate | Inactivation of Vibrio parahaemolyticus | 200 or 250 MPa for 5 min at 15, 5 and 1.5 °C | Decreasing the population for treatment at 250 MPa for 5 min and 5 °C to 6.2-7.4 log10 CFU/g; same treatment at 1.5 °C showing non-detectable (<10 CFU/g) levels | [175] |
Chilled mackerel | Inactivation of aerobic mesophilic and psychrophilic count, H2S-producing bacteria | 450 and 550 MPa for 3 and 4 min at 20 °C | Significant extension of microbiological the shelf-life to 29 days and 40 days at 450 MPa/3 min and 550 MPa/4 min, respectively, as compared with 6 days for the control | [176] |
Material | Treatment Purpose | Process Condition | Main Findings | Reference |
---|---|---|---|---|
Labeorohita head | Ultrasound- assisted extraction (UAE) of oil | UAE: 20 kHz, 40% amplitude, for 5, 10 and 15 min. Enzymatic hydrolysis: Protamex ratio of 1:100 (w/w), 2 h, 150 rpm, 55 °C | Pretreatments with UAE improved the extraction yield of oil, showing higher oil recoveries (67.48% vs. 58.74% for SFE and untreated samples, respectively) | [177] |
Bighead carp (Hypophthalmichthysnobilis) scales | Ultrasound- assisted extraction of gelatin | Temperature: 60, 70 and 80 °C Extraction time: 1 h | Improved technological properties: highest storage modulus (5000 Pa), gelation point (22.94 °C), and melting point (29.54 °C) | [178] |
Bighead carp (Hypophthalmichthysnobilis) scales | Ultrasound- assisted extraction of gelatin | Temperature: 60 °C Extraction time: 1, 3 and 5 h | Extraction yield: 46.67% for ultrasound bath versus 36.39% for water bath | [179] |
Mackerel | Ultrasound- assisted extraction of proteins | ISP: Isoelectric solubilization precipitation. UAE: 40 kHz, 60% amplitude, 0.1 M NaOH, 10 min. | Significant increase of protein recovery, recovering more than 95% of total protein from mackerel by-products | [180] |
Raw salmon | Inhibition of Listeria monocytogenes | Ultrasound of bath, 45 kHz, 200 W, 1 min | 0.35/g Decimal reduction (log cfu) and antimicrobial effects | [181] |
Red seabream (Pagrus major) fillets | Ultrasound and thawing at 0 °C under vacuum (UVT) (40 kHz, 200 W, 10 °C) | No free water changes and improved physicochemical properties of proteins, actin | [182] | |
Cod (Gadus morhua) fillets | Ultrasound and hydration medium’s pH (from 8.5 to 10.5) (1) 25 kHz, 29.4 W/kg, 113,7 W, 20 min, 14 °C (2) 25 kHz, 14.7 W/kg, 64.3 W, 20 min, 14 °C (3) 25 kHz, 2.9 W/kg, 15.3 W, 20 min, 14 °C | 2.9 W/kg: produced the highest increments in WG (18.6%), reducing hydration time by 33% US+pH 8.5: 1-day shorter hydration time, US+pH 8.5: improved microbial quality | [183] | |
Brown crab (Cancer pagurus) whole cooked | Ultrasound and freeze drying at −20 °C, 20 kHz, 400 W, 0, 5, 10, 15, 20 min, room temperature | Allergenicity decreased with increasing treatment time (tropomyosin reduced 76% after 20 min of US treatment) Total antioxidant capacity strengthened | [184] |
References
- Ojo, O.O.; Shah, S.; Coutroubis, A.; Jimenez, M.T.; Ocana, Y.M. Potential Impact of Industry 4.0 in Sustainable Food Supply Chain Environment. In Proceedings of the IEEE 2018 IEEE International Conference on Technology Management, Operations and Decisions (ICTMOD), Marrakech, Morocco, 21–23 November 2018; pp. 172–177. [Google Scholar] [CrossRef]
- Jambrak, A.R.; Nutrizio, M.; Djekić, I.; Pleslić, S.; Chemat, F. Internet of nonthermal food processing technologies (Iontp): Food industry 4.0 and sustainability. Appl. Sci. 2021, 11, 686. [Google Scholar] [CrossRef]
- Stearns, P.N. The industrial revolution in world history, 4th ed.; Taylor and Francis: Oxfordshire, UK, 2018; ISBN 9780429963025. [Google Scholar]
- Xu, M.; David, J.M.; Kim, S.H. The Fourth Industrial Revolution: Opportunities and Challenges. Int. J. Financ. Res. 2018, 9, 90. [Google Scholar] [CrossRef] [Green Version]
- Maynard, A.D. Navigating the fourth industrial revolution. Nat. Nanotechnol. 2015, 10, 1005–1006. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.; Arslan, A.; Khan, Z.; Tarba, S.Y. The Role of Industry 4.0 Technologies in Mitigating Supply Chain Disruption: Empirical Evidence From the Australian Food Processing Industry. IEEE Trans. Eng. Manag. 2021. [Google Scholar] [CrossRef]
- Roblek, V.; Meško, M.; Krapež, A. A Complex View of Industry 4.0. SAGE Open 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- Belli, L.; Davoli, L.; Medioli, A.; Marchini, P.L.; Ferrari, G. Toward Industry 4.0 With IoT: Optimizing Business Processes in an Evolving Manufacturing Factory. Front. ICT 2019, 6, 17. [Google Scholar] [CrossRef]
- Belaud, J.P.; Prioux, N.; Vialle, C.; Sablayrolles, C. Big data for agri-food 4.0: Application to sustainability management for by-products supply chain. Comput. Ind. 2019, 111, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Khaled, A.Y.; Parrish, C.A.; Adedeji, A. Emerging nondestructive approaches for meat quality and safety evaluation—A review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3438–3463. [Google Scholar] [CrossRef] [PubMed]
- Petricorena, Z.C. Chemical Composition of Fish and Fishery Products. In Handbook of Food Chemistry; Cheung, P.C.K., Mehta, B.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 403–435. ISBN 9783642366055. [Google Scholar]
- Carlucci, D.; Nocella, G.; De Devitiis, B.; Viscecchia, R.; Bimbo, F.; Nardone, G. Consumer purchasing behaviour towards fish and seafood products. Patterns and insights from a sample of international studies. Appetite 2015, 84, 212–227. [Google Scholar] [CrossRef] [PubMed]
- Nagarajarao, R.C. Recent Advances in Processing and Packaging of Fishery Products: A Review. Aquat. Procedia 2016, 7, 201–213. [Google Scholar] [CrossRef]
- Hassoun, A.; Gudjónsdóttir, M.; Prieto, M.A.; Garcia-Oliveira, P.; Simal-Gandara, J.; Marini, F.; Di Donato, F.; D’Archivio, A.A.; Biancolillo, A. Application of novel techniques for monitoring quality changes in meat and fish products during traditional processing processes: Reconciling novelty and tradition. Processes 2020, 8, 988. [Google Scholar] [CrossRef]
- Hassoun, A.; Shumilina, E.; Di Donato, F.; Foschi, M.; Simal-Gandara, J.; Biancolillo, A. Emerging techniques for differentiation of fresh and frozen-thawed seafoods: Highlighting the potential of spectroscopic techniques. Molecules 2020, 25, 4472. [Google Scholar] [CrossRef]
- Hassoun, A. Exploring the Potential of Fluorescence Spectroscopy for the Discrimination between Fresh and Frozen-Thawed Muscle Foods. Photochem 2021, 1, 15. [Google Scholar] [CrossRef]
- Tavares, J.; Martins, A.; Fidalgo, L.G.; Lima, V.; Amaral, R.A.; Pinto, C.A.; Silva, A.M.; Saraiva, J.A. Fresh Fish Degradation and Advances in Preservation Using Physical Emerging Technologies. Foods 2021, 10, 780. [Google Scholar] [CrossRef]
- Hassoun, A.; Heia, K.; Lindberg, S.K.; Nilsen, H. Performance of Fluorescence and Diffuse Reflectance Hyperspectral Imaging for Characterization of Lutefisk: A Traditional Norwegian Fish Dish. Molecules 2020, 25, 1191. [Google Scholar] [CrossRef] [Green Version]
- Hassoun, A.; Ojha, S.; Tiwari, B.; Rustad, T.; Nilsen, H.; Heia, K.; Cozzolino, D.; El-Din Bekhit, A.; Biancolillo, A.; Wold, J.P. Monitoring thermal and non-thermal treatments during processing of muscle foods: A comprehensive review of recent technological advances. Appl. Sci. 2020, 10, 6802. [Google Scholar] [CrossRef]
- Rathod, N.B.; Ranveer, R.C.; Bhagwat, P.K.; Ozogul, F.; Benjakul, S.; Pillai, S.; Annapure, U.S. Cold plasma for the preservation of aquatic food products: An overview. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4407–4425. [Google Scholar] [CrossRef]
- Arshad, R.N.; Abdul-Malek, Z.; Roobab, U.; Munir, M.A.; Naderipour, A.; Qureshi, M.I.; El-Din Bekhit, A.; Liu, Z.W.; Aadil, R.M. Pulsed electric field: A potential alternative towards a sustainable food processing. Trends Food Sci. Technol. 2021, 111, 43–54. [Google Scholar] [CrossRef]
- Nilsen-Nygaard, J.; Fernández, E.N.; Radusin, T.; Rotabakk, B.T.; Sarfraz, J.; Sharmin, N.; Sivertsvik, M.; Sone, I.; Pettersen, M.K. Current status of biobased and biodegradable food packaging materials: Impact on food quality and effect of innovative processing technologies. Compr. Rev. Food Sci. Food Saf. 2021. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, M.; Chen, H.; Bhandari, B. Freshness monitoring technology of fish products in intelligent packaging. Crit. Rev. Food Sci. Nutr. 2021, 61, 1279–1292. [Google Scholar] [CrossRef] [PubMed]
- Hassoun, A.; Sahar, A.; Lakhal, L.; Aït-Kaddour, A. Fluorescence spectroscopy as a rapid and non-destructive method for monitoring quality and authenticity of fish and meat products: Impact of different preservation conditions. LWT 2019, 103, 279–292. [Google Scholar] [CrossRef]
- Ruiz-Capillas, C.; Herrero, A.M. Impact of Biogenic Amines on Food Quality and Safety. Foods 2019, 8, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Sheikha, A.F.; Xu, J. Traceability as a Key of Seafood Safety: Reassessment and Possible Applications. Rev. Fish. Sci. Aquac. 2016, 25, 158–170. [Google Scholar] [CrossRef]
- Hassoun, A.; Karoui, R. Quality evaluation of fish and other seafood by traditional and nondestructive instrumental methods: Advantages and limitations. Crit. Rev. Food Sci. Nutr. 2017, 57. [Google Scholar] [CrossRef]
- Özdoğan, G.; Lin, X.; Sun, D.W. Rapid and noninvasive sensory analyses of food products by hyperspectral imaging: Recent application developments. Trends Food Sci. Technol. 2021, 111, 151–165. [Google Scholar] [CrossRef]
- Chapman, J.; Power, A.; Netzel, M.E.; Sultanbawa, Y.; Smyth, H.E.; Truong, V.K.; Cozzolino, D. Challenges and opportunities of the fourth revolution: A brief insight into the future of food. Crit. Rev. Food Sci. Nutr. 2021, 0, 1–9. [Google Scholar] [CrossRef]
- Jideani, A.I.O.; Mutshinyani, A.P.; Maluleke, N.P.; Mafukata, Z.P.; Sithole, M.V.; Lidovho, M.U.; Ramatsetse, E.K.; Matshisevhe, M.M. Impact of Industrial Revolutions on Food Machinery - An Overview. J. Food Res. 2020, 9, 42. [Google Scholar] [CrossRef]
- Teck, T.S.; Subramaniam, H.; Sorooshian, S. Exploring challenges of the fourth industrial revolution. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 27–30. [Google Scholar] [CrossRef]
- Prisecaru, P. Challenges of the fourth industrial revolution. Knowl. Horizons - Econ. 2016, 8, 57–62. [Google Scholar]
- Daemmrich, A. Invention, Innovation Systems, and the Fourth Industrial Revolution. Technol. Innov. 2017, 18, 257–265. [Google Scholar] [CrossRef]
- World Economic Forum. Harnessing the 4th Industrial Revolution for Sustainable Emerging Cities; World Economic Forum: Cologny/Geneva, Switzerland, 2017. [Google Scholar]
- Karabegović, P.D.S.I. The Role of Industrial and Service Robots in Fourth Industrial Revolution with Focus on China. J. Eng. Archit. 2018, 6, 67–75. [Google Scholar] [CrossRef]
- Zambon, I.; Cecchini, M.; Egidi, G.; Saporito, M.G.; Colantoni, A. Revolution 4.0: Industry vs. agriculture in a future development for SMEs. Processes 2019, 7, 36. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Saona, L.; Aykas, D.P.; Borba, K.R.; Urtubia, A. Miniaturization of optical sensors and their potential for high-throughput screening of foods. Curr. Opin. Food Sci. 2020, 31, 136–150. [Google Scholar] [CrossRef]
- Balaban, M.O.; Misimi, E.; Ayvaz, Z. Quality Evaluation of Seafoods. In Computer Vision Technology for Food Quality Evaluation; Sun, D.-W., Ed.; Elsevier Academic Press: London, UK, 2016; pp. 243–270. ISBN 9780128022320. [Google Scholar]
- Ong, K.J.; Johnston, J.; Datar, I.; Sewalt, V.; Holmes, D.; Shatkin, J.A. Food safety considerations and research priorities for the cultured meat and seafood industry. Compr. Rev. Food Sci. Food Saf. 2021. [Google Scholar] [CrossRef]
- Hassoun, A.; Rustad, T.; Bekhit, A.E.-D.A. Bioconversion of Marine By-Products into Edible Protein. In Alternative Proteins; Bekhit, A.E.-D.A., Riley, W.W., Hussain, M.A., Eds.; CRC Press: Boca Raton, FL, USA, 2021; pp. 297–327. ISBN 9780429299834. [Google Scholar]
- Zhan, X.; Sun, D.W.; Zhu, Z.; Wang, Q.J. Improving the quality and safety of frozen muscle foods by emerging freezing technologies: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 2925–2938. [Google Scholar] [CrossRef]
- Wang, L. The storage and preservation of seafood. Encycl. Food Secur. Sustain. 2018, 619–624. [Google Scholar]
- Năstase, G.; Lyu, C.; Ukpai, G.; Şerban, A.; Rubinsky, B. Isochoric and isobaric freezing of fish muscle. Biochem. Biophys. Res. Commun. 2017, 485, 279–283. [Google Scholar] [CrossRef]
- Tironi, V.; De Lamballerie, M.; Le-Bail, A. Quality changes during the frozen storage of sea bass (Dicentrarchus labrax) muscle after pressure shift freezing and pressure assisted thawing. Innov. Food Sci. Emerg. Technol. 2010, 11, 565–573. [Google Scholar] [CrossRef]
- Ma, X.; Mei, J.; Xie, J. Effects of multi-frequency ultrasound on the freezing rates, quality properties and structural characteristics of cultured large yellow croaker (Larimichthys crocea). Ultrason. Sonochem. 2021, 76, 105657. [Google Scholar] [CrossRef]
- Gómez-Estaca, J.; López-Caballero, M.E.; Martínez-Bartolomé, M.Á.; de Lacey, A.M.L.; Gómez-Guillen, M.C.; Montero, M.P. The effect of the combined use of high pressure treatment and antimicrobial edible film on the quality of salmon carpaccio. Int. J. Food Microbiol. 2018, 283, 28–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balti, R.; Ben Mansour, M.; Zayoud, N.; Le Balc’h, R.; Brodu, N.; Arhaliass, A.; Massé, A. Active exopolysaccharides based edible coatings enriched with red seaweed (Gracilaria gracilis) extract to improve shrimp preservation during refrigerated storage. Food Biosci. 2020, 34. [Google Scholar] [CrossRef]
- Abdel-Naeem, H.H.S.; Sallam, K.I.; Malak, N.M.L. Improvement of the microbial quality, antioxidant activity, phenolic and flavonoid contents, and shelf life of smoked herring (Clupea harengus) during frozen storage by using chitosan edible coating. Food Control 2021, 130, 108317. [Google Scholar] [CrossRef]
- Qian, Y.F.; Cheng, Y.; Ye, J.X.; Zhao, Y.; Xie, J.; Yang, S.P. Targeting shrimp spoiler Shewanella putrefaciens: Application of ε-polylysine and oregano essential oil in Pacific white shrimp preservation. Food Control 2021, 123, 107702. [Google Scholar] [CrossRef]
- Chaijan, S.; Panpipat, W.; Panya, A.; Cheong, L.Z.; Chaijan, M. Preservation of chilled Asian sea bass (Lates calcarifer) steak by whey protein isolate coating containing polyphenol extract from ginger, lemongrass, or green tea. Food Control 2020, 118, 107400. [Google Scholar] [CrossRef]
- Nagarajan, M.; Rajasekaran, B.; Benjakul, S.; Venkatachalam, K. Influence of chitosan-gelatin edible coating incorporated with longkong pericarp extract on refrigerated black tiger Shrimp (Penaeus monodon). Curr. Res. Food Sci. 2021, 4, 345–353. [Google Scholar] [CrossRef]
- Wu, T.; Ge, Y.; Li, Y.; Xiang, Y.; Jiang, Y.; Hu, Y. Quality enhancement of large yellow croaker treated with edible coatings based on chitosan and lysozyme. Int. J. Biol. Macromol. 2018, 120, 1072–1079. [Google Scholar] [CrossRef]
- Farsanipour, A.; Khodanazary, A.; Hosseini, S.M. Effect of chitosan-whey protein isolated coatings incorporated with tarragon Artemisia dracunculus essential oil on the quality of Scomberoides commersonnianus fillets at refrigerated condition. Int. J. Biol. Macromol. 2020, 155, 766–771. [Google Scholar] [CrossRef]
- Liu, J.; Shao, Y.; Yuan, C.; Takaki, K.; Li, Y.; Ying, Y.; Hu, Y. Eugenol-chitosan nanoemulsion as an edible coating: Its impact on physicochemical, microbiological and sensorial properties of hairtail (Trichiurus haumela) during storage at 4 °C. Int. J. Biol. Macromol. 2021, 183, 2199–2204. [Google Scholar] [CrossRef]
- Gharibzahedi, S.M.T.; Mohammadnabi, S. Effect of novel bioactive edible coatings based on jujube gum and nettle oil-loaded nanoemulsions on the shelf-life of Beluga sturgeon fillets. Int. J. Biol. Macromol. 2017, 95, 769–777. [Google Scholar] [CrossRef]
- Mizielińska, M.; Kowalska, U.; Jarosz, M.; Sumińska, P. A comparison of the effects of packaging containing nano ZnO or polylysine on the microbial purity and texture of cod (Gadus morhua) fillets. Nanomaterials 2018, 8, 153. [Google Scholar] [CrossRef] [Green Version]
- Heydari-Majd, M.; Ghanbarzadeh, B.; Shahidi-Noghabi, M.; Najafi, M.A.; Hosseini, M. A new active nanocomposite film based on PLA/ZnO nanoparticle/essential oils for the preservation of refrigerated Otolithes ruber fillets. Food Packag. Shelf Life 2019, 19, 94–103. [Google Scholar] [CrossRef]
- Cheng, L.; Sun, D.W.; Zhu, Z.; Zhang, Z. Effects of high pressure freezing (HPF) on denaturation of natural actomyosin extracted from prawn (Metapenaeus ensis). Food Chem. 2017, 229, 252–259. [Google Scholar] [CrossRef]
- Maciel, V.B.V.; Contini, L.R.F.; Yoshida, C.M.P.; Venturini, A.C. Application of edible biopolymer coatings on meats, poultry, and seafood. In Biopolymer Membranes and Films; Elsevier: Amsterdam, The Netherlands, 2020; pp. 515–533. ISBN 9780128181348. [Google Scholar]
- Dehghani, S.; Hosseini, S.V.; Regenstein, J.M. Edible films and coatings in seafood preservation: A review. Food Chem. 2018, 240, 505–513. [Google Scholar] [CrossRef]
- Baptista, R.C.; Horita, C.N.; Sant’Ana, A.S. Natural products with preservative properties for enhancing the microbiological safety and extending the shelf-life of seafood: A review. Food Res. Int. 2020, 127, 108762. [Google Scholar] [CrossRef]
- Hassoun, A.; Emir Çoban, Ö. Essential oils for antimicrobial and antioxidant applications in fish and other seafood products. Trends Food Sci. Technol. 2017, 68, 26–36. [Google Scholar] [CrossRef]
- El-Saber Batiha, G.; Hussein, D.E.; Algammal, A.M.; George, T.T.; Jeandet, P.; Al-Snafi, A.E.; Tiwari, A.; Pagnossa, J.P.; Lima, C.M.; Thorat, N.D.; et al. Application of natural antimicrobials in food preservation: Recent views. Food Control 2021, 126, 108066. [Google Scholar] [CrossRef]
- Ranadheera, C.S.; Prasanna, P.H.P.; Vidanarachchi, J.K.; McConchie, R.; Naumovski, N.; Mellor, D. Nanotechnology in Microbial Food Safety. In Nanotechnology Applications in Food: Flavor, Stability, Nutrition and Safety; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 245–265. ISBN 9780128119433. [Google Scholar]
- Qiu, L.; Zhang, M.; Bhandari, B.; Yang, C. Shelf life extension of aquatic products by applying nanotechnology: A review. Crit. Rev. Food Sci. Nutr. 2020, 0, 1–15. [Google Scholar] [CrossRef]
- Hassoun, A.; Aït-Kaddour, A.; Sahar, A.; Cozzolino, D. Monitoring Thermal Treatments Applied to Meat Using Traditional Methods and Spectroscopic Techniques: A Review of Advances over the Last Decade. Food Bioprocess Technol. 2021, 14, 195–208. [Google Scholar] [CrossRef]
- Aït-Kaddour, A.; Hassoun, A.; Bord, C.; Schmidt-Filgueras, R.; Biancolillo, A.; Di Donato, F.; Temiz, H.T.; Cozzolino, D. Application of Spectroscopic Techniques to Evaluate Heat Treatments in Milk and Dairy Products: An Overview of the Last Decade. Food Bioprocess Technol. 2021, 14, 781–803. [Google Scholar] [CrossRef]
- Liu, L.; Llave, Y.; Jin, Y.; Zheng, D.Y.; Fukuoka, M.; Sakai, N. Electrical conductivity and ohmic thawing of frozen tuna at high frequencies. J. Food Eng. 2017, 197, 68–77. [Google Scholar] [CrossRef]
- Niakousari, M.; Hedayati, S.; Gahruie, H.H.; Greiner, R.; Roohinejad, S. Impact of Ohmic Processing on Food Quality and Composition. In Effect of Emerging Processing Methods on the Food Quality; Roohinejad, S., Koubaa, M., Greiner, R., Mallikarjunan, K., Eds.; Springer: Cham, Switzerland, 2019; pp. 1–26. [Google Scholar]
- Alkanan, Z.T.; Altemimi, A.B.; Al-Hilphy, A.R.S.; Watson, D.G.; Pratap-Singh, A.; Alkanan, Z.T.; Altemimi, A.B.; Al-Hilphy, A.R.S.; Watson, D.G. Ohmic Heating in the Food Industry: Developments in Concepts and Applications during 2013–2020. Appl. Sci. 2021, 11, 2507. [Google Scholar] [CrossRef]
- Hoon Moon, J.; Byong Yoon, W.; Park, J.W. Assessing the textural properties of Pacific whiting and Alaska pollock surimi gels prepared with carrot under various heating rates. Food Biosci. 2017, 20, 12–18. [Google Scholar] [CrossRef]
- Dang, T.T.; Feyissa, A.H.; Gringer, N.; Jessen, F.; Olsen, K.; Bøknæs, N.; Orlien, V. Effects of high pressure and ohmic heating on shell loosening, thermal and structural properties of shrimp (Pandalus borealis). Innov. Food Sci. Emerg. Technol. 2020, 59, 102246. [Google Scholar] [CrossRef]
- Fattahi, S.; Zamindar, N. Effect of immersion ohmic heating on thawing rate and properties of frozen tuna fish. Food Sci. Technol. Int. 2020, 26, 453–461. [Google Scholar] [CrossRef]
- Orsat, V.; Raghavan, G.S.V.; Krishnaswamy, K. Microwave technology for food processing: An overview of current and future applications. In The Microwave Processing of Foods, 2nd ed.; Regier, M., Knoerzer, K., Schubert, H., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 100–116. ISBN 9780081005286. [Google Scholar]
- Zielinska, M.; Ropelewska, E.; Xiao, H.W.; Mujumdar, A.S.; Law, C.L. Review of recent applications and research progress in hybrid and combined microwave-assisted drying of food products: Quality properties. Crit. Rev. Food Sci. Nutr. 2019, 60, 2212–2264. [Google Scholar] [CrossRef]
- Guzik, P.; Kulawik, P.; Zając, M.; Migdał, W. Microwave applications in the food industry: An overview of recent developments. Crit. Rev. Food Sci. Nutr. 2021, 1–20. [Google Scholar] [CrossRef]
- Yan, B.; Jiao, X.; Zhu, H.; Wang, Q.; Huang, J.; Zhao, J.; Cao, H.; Zhou, W.; Zhang, W.; Ye, W.; et al. Chemical interactions involved in microwave heat-induced surimi gel fortified with fish oil and its formation mechanism. Food Hydrocoll. 2020, 105, 105779. [Google Scholar] [CrossRef]
- Cao, H.; Fan, D.; Jiao, X.; Huang, J.; Zhao, J.; Yan, B.; Zhou, W.; Zhang, W.; Ye, W.; Zhang, H. Importance of thickness in electromagnetic properties and gel characteristics of surimi during microwave heating. J. Food Eng. 2019, 248, 80–88. [Google Scholar] [CrossRef]
- Soni, A.; Smith, J.; Thompson, A.; Brightwell, G. Microwave-induced thermal sterilization- A review on history, technical progress, advantages and challenges as compared to the conventional methods. Trends Food Sci. Technol. 2020, 97, 433–442. [Google Scholar] [CrossRef]
- Ekonomou, S.I.; Boziaris, I.S. Non-Thermal Methods for Ensuring the Microbiological Quality and Safety of Seafood. Appl. Sci. 2021, 11, 833. [Google Scholar] [CrossRef]
- Olatunde, O.O.; Benjakul, S. Nonthermal Processes for Shelf-Life Extension of Seafoods: A Revisit. Compr. Rev. Food Sci. Food Saf. 2018, 0, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Arshad, R.N.; Abdul-Malek, Z.; Munir, A.; Buntat, Z.; Ahmad, M.H.; Jusoh, Y.M.M.; Bekhit, A.E.D.; Roobab, U.; Manzoor, M.F.; Aadil, R.M. Electrical systems for pulsed electric field applications in the food industry: An engineering perspective. Trends Food Sci. Technol. 2020, 104, 1–13. [Google Scholar] [CrossRef]
- Cropotova, J.; Tappi, S.; Genovese, J.; Rocculi, P.; Dalla Rosa, M.; Rustad, T. The combined effect of pulsed electric field treatment and brine salting on changes in the oxidative stability of lipids and proteins and color characteristics of sea bass (Dicentrarchus labrax). Heliyon 2021, 7, e05947. [Google Scholar] [CrossRef]
- Zhou, Y.; Sui, S.; Huang, H.; He, G.; Wang, S.; Yin, Y.; Ma, Z. Process optimization for extraction of fishbone calcium assisted by high intensity pulsed electric fields. Trans. Chinese Soc. Agric. Eng. 2012, 28, 265–270. [Google Scholar]
- He, G.; Yin, Y.; Yan, X.; Wang, Y. Semi-Bionic Extraction of Effective Ingredient from Fishbone by High Intensity Pulsed Electric Fields. J. Food Process Eng. 2017, 40, e12392. [Google Scholar] [CrossRef]
- Zhou, Y.; He, Q.; Zhou, D. Optimization Extraction of Protein from Mussel by High-Intensity Pulsed Electric Fields. J. Food Process. Preserv. 2017, 41. [Google Scholar] [CrossRef]
- Li, M.; Lin, J.; Chen, J.; Fang, T. Pulsed Electric Field-Assisted Enzymatic Extraction of Protein from Abalone (Haliotis Discus Hannai Ino) Viscera. J. Food Process Eng. 2016, 39, 702–710. [Google Scholar] [CrossRef]
- Franco, D.; Munekata, P.E.S.; Agregán, R.; Bermúdez, R.; López-Pedrouso, M.; Pateiro, M.; Lorenzo, J.M. Application of Pulsed Electric Fields for Obtaining Antioxidant Extracts from Fish Residues. Antioxidants 2020, 9, 90. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Zhou, J.; Collado, M.C.; Barba, F.J. Accelerated Solvent Extraction and Pulsed Electric Fields for Valorization of Rainbow Trout (Oncorhynchus mykiss) and Sole (Dover sole) By-Products: Protein Content, Molecular Weight Distribution and Antioxidant Potential of the Extracts. Mar. Drugs 2021, 19, 207. [Google Scholar] [CrossRef] [PubMed]
- Gómez, B.; Munekata, P.E.S.; Gavahian, M.; Barba, F.J.; Martí-Quijal, F.J.; Bolumar, T.; Campagnol, P.C.B.; Tomasevic, I.; Lorenzo, J.M. Application of pulsed electric fields in meat and fish processing industries: An overview. Food Res. Int. 2019, 123, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Shiekh, K.A.; Benjakul, S. Melanosis and quality changes during refrigerated storage of Pacific white shrimp treated with Chamuang (Garcinia cowa Roxb.) leaf extract with the aid of pulsed electric field. Food Chem. 2020, 309, 125516. [Google Scholar] [CrossRef] [PubMed]
- Sae-leaw, T.; Benjakul, S.; Vongkamjan, K. Retardation of melanosis and quality loss of pre-cooked Pacific white shrimp using epigallocatechin gallate with the aid of ultrasound. Food Control 2018, 84, 75–82. [Google Scholar] [CrossRef]
- Pérez-Won, M.; Cepero-Betancourt, Y.; Reyes-Parra, J.E.; Palma-Acevedo, A.; Tabilo-Munizaga, G.; Roco, T.; Aubourg, S.P.; Lemus-Mondaca, R. Combined PEF, CO2 and HP application to chilled coho salmon and its effects on quality attributes under different rigor conditions. Innov. Food Sci. Emerg. Technol. 2021, 74, 102832. [Google Scholar] [CrossRef]
- Klonowski, I.; Heinz, V.; Toepfl, S.; Gunnarsson, G.; Þorkelsson, G. Applications of pulsed electric field technology for the food industry. R&D Rep. Summ. 2006, 1–10. [Google Scholar]
- Cropotova, J.; Tappi, S.; Genovese, J.; Rocculi, P.; Laghi, L.; Dalla Rosa, M.; Rustad, T. Study of the influence of pulsed electric field pre-treatment on quality parameters of sea bass during brine salting. Innov. Food Sci. Emerg. Technol. 2021, 70, 102706. [Google Scholar] [CrossRef]
- de Oliveira, F.A.; Neto, O.C.; dos Santos, L.M.R.; Ferreira, E.H.R.; Rosenthal, A. Effect of high pressure on fish meat quality – A review. Trends Food Sci. Technol. 2017, 66, 1–19. [Google Scholar] [CrossRef]
- Aubourg, S.P. Impact of high-pressure processing on chemical constituents and nutritional properties in aquatic foods: A review. Int. J. Food Sci. Technol. 2018, 53, 873–891. [Google Scholar] [CrossRef]
- Tao, Y.; Sun, D.-W. Enhancement of Food Processes by Ultrasound: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 570–594. [Google Scholar] [CrossRef]
- Troy, D.J.; Ojha, K.S.; Kerry, J.P.; Tiwari, B.K. Sustainable and consumer-friendly emerging technologies for application within the meat industry: An overview. Meat Sci. 2016, 120, 2–9. [Google Scholar] [CrossRef]
- Musielak, G.; Mierzwa, D.; Kroehnke, J. Food drying enhancement by ultrasound – A review. Trends Food Sci. Technol. 2016, 56, 126–141. [Google Scholar] [CrossRef]
- Valdramidis, V.P.; Koutsoumanis, K.P. Challenges and perspectives of advanced technologies in processing, distribution and storage for improving food safety. Curr. Opin. Food Sci. 2016, 12, 63–69. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, M.; Xu, B.; Adhikari, B.; Sun, J. The principles of ultrasound and its application in freezing related processes of food materials: A review. Ultrason. Sonochem. 2015, 27, 576–585. [Google Scholar] [CrossRef]
- Liu, D.; Ding, L.; Sun, J.; Boussetta, N.; Vorobiev, E. Yeast cell disruption strategies for recovery of intracellular bio-active compounds — A review. Innov. Food Sci. Emerg. Technol. 2016, 36, 181–192. [Google Scholar] [CrossRef]
- Charoux, C.M.G.; Inguglia, E.S.; O’Donnell, C.P.; Tiwari, B.K. Ultrasonic Waves: Inactivation of Foodborne Microorganisms Using Power Ultrasound. Ref. Modul. Food Sci. 2019, 1–7. [Google Scholar]
- Zhao, Y.M.; de Alba, M.; Sun, D.W.; Tiwari, B. Principles and recent applications of novel non-thermal processing technologies for the fish industry—a review. Crit. Rev. Food Sci. Nutr. 2018, 59, 728–742. [Google Scholar] [CrossRef]
- Arvanitoyannis, I.S.; Kotsanopoulos, K.V.; Savva, A.G. Use of ultrasounds in the food industry–Methods and effects on quality, safety, and organoleptic characteristics of foods: A review. Crit. Rev. Food Sci. Nutr. 2016, 57, 109–128. [Google Scholar] [CrossRef]
- Cheng, J.-H.; Sun, D.-W.; Pu, H.; Zhu, Z. Development of hyperspectral imaging coupled with chemometric analysis to monitor K value for evaluation of chemical spoilage in fish fillets. Food Chem. 2015, 185, 245–253. [Google Scholar] [CrossRef]
- Cheng, J.H.; Sun, D.W.; Wei, Q. Enhancing Visible and Near-Infrared Hyperspectral Imaging Prediction of TVB-N Level for Fish Fillet Freshness Evaluation by Filtering Optimal Variables. Food Anal. Methods 2017, 10, 1888–1898. [Google Scholar] [CrossRef]
- Wang, X.; Shan, J.; Han, S.; Zhao, J.; Zhang, Y. Optimization of fish quality by evaluation of total volatile basic nitrogen (TVB-N) and texture profile analysis (TPA) by near-infrared (NIR) hyperspectral imaging. Anal. Lett. 2019, 52, 1845–1859. [Google Scholar] [CrossRef]
- Skjelvareid, M.H.; Heia, K.; Olsen, S.H.; Stormo, S.K. Detection of blood in fish muscle by constrained spectral unmixing of hyperspectral images. J. Food Eng. 2017, 212, 252–261. [Google Scholar] [CrossRef]
- Ma, J.; Sun, D.-W.; Qu, J.-H.; Pu, H. Prediction of textural changes in grass carp fillets as affected by vacuum freeze drying using hyperspectral imaging based on integrated group wavelengths. LWT - Food Sci. Technol. 2017, 82, 377–385. [Google Scholar] [CrossRef]
- Chatterjee, S.; Sharma, S. Microplastics in our oceans and marine health. F. Actions Sci. Rep. 2019, 2019, 54–61. [Google Scholar]
- Van Raamsdonk, L.W.D.; Van Der Zande, M.; Koelmans, A.A. Current Insights into Monitoring, Bioaccumulation, and Potential Health Effects of Microplastics Present in the Food Chain. Foods 2020, 9, 72. [Google Scholar] [CrossRef] [Green Version]
- Dawson, A.L.; Santana, M.F.M.; Miller, M.E.; Kroon, F.J. Relevance and reliability of evidence for microplastic contamination in seafood: A critical review using Australian consumption patterns as a case study. Environ. Pollut. 2021, 276, 116684. [Google Scholar] [CrossRef] [PubMed]
- López-Martínez, S.; Morales-Caselles, C.; Kadar, J.; Rivas, M.L. Overview of global status of plastic presence in marine vertebrates. Glob. Chang. Biol. 2021, 27, 728–737. [Google Scholar] [CrossRef]
- Lv, L.; Yan, X.; Feng, L.; Jiang, S.; Lu, Z.; Xie, H.; Sun, S.; Chen, J.; Li, C. Challenge for the detection of microplastics in the environment. Water Environ. Res. 2021, 93, 5–15. [Google Scholar] [CrossRef]
- Razeghi, N.; Hamidian, A.H.; Wu, C.; Zhang, Y.; Yang, M. Scientific studies on microplastics pollution in Iran: An in-depth review of the published articles. Mar. Pollut. Bull. 2021, 162, 111901. [Google Scholar] [CrossRef]
- Silva, A.B.; Bastos, A.S.; Justino, C.I.L.; da Costa, J.P.; Duarte, A.C.; Rocha-Santos, T.A.P. Microplastics in the environment: Challenges in analytical chemistry-A review. Anal. Chim. Acta 2018, 1017, 1–19. [Google Scholar] [CrossRef]
- Wang, W.; Wang, J. Investigation of microplastics in aquatic environments: An overview of the methods used, from field sampling to laboratory analysis. TrAC-Trends Anal. Chem. 2018, 108, 195–202. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Shan, J.; Zhao, J.; Zhang, W.; Liu, L.; Wu, F. Hyperspectral Imaging Based Method for Rapid Detection of Microplastics in the Intestinal Tracts of Fish. Environ. Sci. Technol. 2019, 53, 5151–5158. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.H.; Sun, D.W. Recent Applications of Spectroscopic and Hyperspectral Imaging Techniques with Chemometric Analysis for Rapid Inspection of Microbial Spoilage in Muscle Foods. Compr. Rev. Food Sci. Food Saf. 2015, 14, 478–490. [Google Scholar] [CrossRef]
- Cheng, J.H.; Sun, D.W. Rapid Quantification Analysis and Visualization of Escherichia coli Loads in Grass Carp Fish Flesh by Hyperspectral Imaging Method. Food Bioprocess Technol. 2015, 8, 951–959. [Google Scholar] [CrossRef]
- He, H.-J.; Sun, D.-W. Inspection of harmful microbial contamination occurred in edible salmon flesh using imaging technology. J. Food Eng. 2015, 150, 82–89. [Google Scholar] [CrossRef]
- Khoshnoudi-nia, S.; Moosavi-nasab, M.; Khoshnoudi-nia, S. Determination of Total Viable Count in Rainbow-Trout Fish Fillets Based on Hyperspectral Imaging System and Different Variable Selection and Extraction of Reference Data Methods. Food Anal. Methods 2018, 3481–3494. [Google Scholar] [CrossRef]
- Khoshnoudi-Nia, S.; Moosavi-Nasab, M. Prediction of various freshness indicators in fish fillets by one multispectral imaging system. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.-H.; Sun, D.-W.; Pu, H.-B.; Chen, X.; Liu, Y.; Zhang, H.; Li, J.-L. Integration of classifiers analysis and hyperspectral imaging for rapid discrimination of fresh from cold-stored and frozen-thawed fish fillets. J. Food Eng. 2015, 161, 33–39. [Google Scholar] [CrossRef]
- Qu, J.-H.; Cheng, J.-H.; Sun, D.-W.; Pu, H.; Wang, Q.-J.; Ma, J. Discrimination of shelled shrimp (Metapenaeus ensis) among fresh, frozen-thawed and cold-stored by hyperspectral imaging technique. LWT-Food Sci. Technol. 2015, 62, 202–209. [Google Scholar] [CrossRef]
- Xu, J.-L.; Riccioli, C.; Sun, D.-W. Comparison of hyperspectral imaging and computer vision for automatic differentiation of organically and conventionally farmed salmon. J. Food Eng. 2017, 196, 170–182. [Google Scholar] [CrossRef]
- Qin, J.; Vasefi, F.; Hellberg, R.S.; Akhbardeh, A.; Isaacs, R.B.; Yilmaz, A.G.; Hwang, C.; Baek, I.; Schmidt, W.F.; Kim, M.S. Detection of fish fillet substitution and mislabeling using multimode hyperspectral imaging techniques. Food Control 2020, 114. [Google Scholar] [CrossRef]
- Elmasry, G.; Nakauchi, S. Noninvasive sensing of thermal treatments of Japanese seafood products using imaging spectroscopy. Int. J. Food Sci. Technol. 2015, 50, 1960–1971. [Google Scholar] [CrossRef]
- Wold, J.P. On-line and non-destructive measurement of core temperature in heat treated fish cakes by NIR hyperspectral imaging. Innov. Food Sci. Emerg. Technol. 2016, 33, 431–437. [Google Scholar] [CrossRef] [Green Version]
- Hassoun, A.; Cropotova, J.; Rustad, T.; Heia, K.; Lindberg, S.-K.; Nilsen, H. Use of Spectroscopic Techniques for a Rapid and Non-Destructive Monitoring of Thermal Treatments and Storage Time of Sous-Vide Cooked Cod Fillets. Sensors 2020, 20, 2410. [Google Scholar] [CrossRef]
- Yun, J.; Shin, K.J.; Choi, J.; Kwon, K.; Jo, C.H. Identification and structural elucidation of a new sildenafil analogue, dithiopropylcarbodenafil, from a premixed powder intended as a dietary supplement. J. Chromatogr. B 2018, 1072, 273–281. [Google Scholar] [CrossRef]
- Roseboom, I.C.; Thijssen, B.; Rosing, H.; Alves, F.; Mondal, D.; Teunissen, M.B.M.; Beijnen, J.H.; Dorlo, T.P.C. Development and validation of an HPLC-MS/MS method for the quantification of the anti-leishmanial drug miltefosine in human skin tissue. J. Pharm. Biomed. Anal. 2022, 207, 114402. [Google Scholar] [CrossRef]
- Pringsheim, T.; Day, G.S.; Smith, D.B.; Rae-Grant, A.; Licking, N.; Armstrong, M.J.; de Bie, R.M.A.; Roze, E.; Miyasaki, J.M.; Hauser, R.A.; et al. Dopaminergic Therapy for Motor Symptoms in Early Parkinson Disease Practice Guideline Summary. Neurology 2021, 97, 942–957. [Google Scholar] [CrossRef]
- Zhang, R.; Lai, W.; Wang, H. Quantification of Epigenetic DNA Modifications in the Subchromatin Structure Matrix Attachment Regions by Stable Isotope Dilution UHPLC-MS/MS Analysis. Anal. Chem. 2021, 93, 15567–15572. [Google Scholar] [CrossRef]
- Tang, M.; Zhang, C.; Ta, L.; Tan, L.; Zhang, M.; Xu, D. Fully Automatic Multi-Class Multi-Residue Analysis of Veterinary Drugs Simultaneously in an Integrated Chip-MS Platform. J. Agric. Food Chem. 2021, 69, 14320–14329. [Google Scholar] [CrossRef]
- Matey, J.M.; Montalvo, G.; García-Ruiz, C.; Zapata, F.; López-Fernández, A.; Martínez, M.A. Prevalence study of drugs and new psychoactive substances in hair of ketamine consumers using a methanolic direct extraction prior to high-resolution mass spectrometry. Forensic Sci. Int. 2021, 329, 111080. [Google Scholar] [CrossRef]
- Bastias, J.; Spikings, R.; Riley, T.; Ulianov, A.; Grunow, A.; Chiaradia, M.; Hervé, F. Data on the arc magmatism developed in the Antarctic Peninsula and Patagonia during the Late Triassic–Jurassic: A compilation of new and previous geochronology, geochemistry and isotopic tracing results. Data Br. 2021, 36, 107042. [Google Scholar] [CrossRef]
- Cheng, M.; Yan, R.; Yang, Z.; Tao, X.; Ma, T.; Cao, S.; Ran, F.; Li, S.; Yang, W.; Cheng, C. Polysulfide Catalytic Materials for Fast-Kinetic Metal–Sulfur Batteries: Principles and Active Centers. Adv. Sci. 2021, 2102217. [Google Scholar] [CrossRef]
- Hong, H.; Habib, A.; Bi, L.; Wen, L. Gas phase ion-molecule reactions of nitroaromatic explosive compounds studied by hollow cathode discharge ionization-mass spectrometry. Talanta 2022, 236, 122834. [Google Scholar] [CrossRef]
- Freitas, J.; Silva, P.; Perestrelo, R.; Vaz-Pires, P.; Câmara, J.S. Improved approach based on MALDI-TOF MS for establishment of the fish mucus protein pattern for geographic discrimination of Sparus aurata. Food Chem. 2022, 372, 131237. [Google Scholar] [CrossRef]
- Freitas, J.; Silva, P.; Vaz-Pires, P.; Câmara, J.S. A systematic AQbD approach for optimization of the most influential experimental parameters on analysis of fish spoilage-related volatile amines. Foods 2020, 9, 1321. [Google Scholar] [CrossRef]
- Reyzer, M.L.; Caprioli, R.M. MALDI IMS for Proteins and Biomarkers. In Mass Spectrometry Imaging in Food Analysis; Nollet, L.M.L., Ed.; CRC Press: Boca Raton, FL, USA, 2020; pp. 51–71. ISBN 9780124046306. [Google Scholar]
- Fiorino, G.M.; Losito, I.; De Angelis, E.; Arlorio, M.; Logrieco, A.F.; Monaci, L. Assessing fish authenticity by direct analysis in real time-high resolution mass spectrometry and multivariate analysis: Discrimination between wild-type and farmed salmon. Food Res. Int. 2019, 116, 1258–1265. [Google Scholar] [CrossRef]
- Massaro, A.; Stella, R.; Negro, A.; Bragolusi, M.; Miano, B.; Arcangeli, G.; Biancotto, G.; Piro, R.; Tata, A. New strategies for the differentiation of fresh and frozen/thawed fish: A rapid and accurate non-targeted method by ambient mass spectrometry and data fusion (part A). Food Control 2021, 130, 108364. [Google Scholar] [CrossRef]
- Stella, R.; Mastrorilli, E.; Pretto, T.; Tata, A.; Piro, R.; Arcangeli, G.; Biancotto, G. New strategies for the differentiation of fresh and frozen/thawed fish: Non-targeted metabolomics by LC-HRMS (part B). Food Control 2022, 132, 108461. [Google Scholar] [CrossRef]
- Morisasa, M.; Kimura, K.; Sumida, M.; Fukumoto, S.; Tamura, T.; Takeuchi, R.; Mori, T.; Goto-Inoue, N. Application of matrix-assisted laser desorption/ionization mass spectrometry imaging for evaluating the quality of fish fillets. Foods 2020, 9, 402. [Google Scholar] [CrossRef] [Green Version]
- Shen, Q.; Li, L.; Song, G.; Feng, J.; Li, S.; Wang, Y.; Ma, J.; Wang, H. Development of an intelligent surgical knife rapid evaporative ionization mass spectrometry based method for real-time differentiation of cod from oilfish. J. Food Compos. Anal. 2020, 86, 103355. [Google Scholar] [CrossRef]
- He, H.J.; Wu, D.; Sun, D.W. Nondestructive Spectroscopic and Imaging Techniques for Quality Evaluation and Assessment of Fish and Fish Products. Crit. Rev. Food Sci. Nutr. 2015, 55, 864–886. [Google Scholar] [CrossRef] [PubMed]
- Nimbkar, S.; Auddy, M.; Manoj, I.; Shanmugasundaram, S. Novel Techniques for Quality Evaluation of Fish: A Review. Food Rev. Int. 2021, 00, 1–24. [Google Scholar] [CrossRef]
- Wu, L.; Pu, H.; Sun, D.W. Novel techniques for evaluating freshness quality attributes of fish: A review of recent developments. Trends Food Sci. Technol. 2019, 83, 259–273. [Google Scholar] [CrossRef]
- Li, Z.; Askim, J.R.; Suslick, K.S. The Optoelectronic Nose: Colorimetric and Fluorometric Sensor Arrays. Chem. Rev. 2019, 119, 231–292. [Google Scholar] [CrossRef] [PubMed]
- Hassoun, A.; Måge, I.; Schmidt, W.F.; Temiz, H.T.; Li, L.; Kim, H.-Y.; Nilsen, H.; Biancolillo, A.; Aït-Kaddour, A.; Sikorski, M.; et al. Fraud in Animal Origin Food Products: Advances in Emerging Spectroscopic Detection Methods over the Past Five Years. Foods 2020, 9, 1069. [Google Scholar] [CrossRef]
- Fernandes, T.J.R.; Amaral, J.S.; Mafra, I. DNA barcode markers applied to seafood authentication: An updated review. Crit. Rev. Food Sci. Nutr. 2020. [Google Scholar] [CrossRef]
- El Sheikha, A.F.; Montet, D. How to Determine the Geographical Origin of Seafood? Crit. Rev. Food Sci. Nutr. 2016, 56, 306–317. [Google Scholar] [CrossRef] [Green Version]
- Bai, C.; Dallasega, P.; Orzes, G.; Sarkis, J. Industry 4.0 technologies assessment: A sustainability perspective. Int. J. Prod. Econ. 2020, 229, 107776. [Google Scholar] [CrossRef]
- Kouhila, M.; Moussaoui, H.; Bahammou, Y.; Tagnamas, Z.; Lamsyehe, H.; Lamharrar, A.; Idlimam, A. Exploring drying kinetics and energy exergy performance of Mytilus chilensis and Dosidicus gigas undergoing microwave treatment. Heat Mass Transf. 2020, 56, 2985–2999. [Google Scholar] [CrossRef]
- Kipcak, A.S. Microwave drying kinetics of mussels (Mytilus edulis). Res. Chem. Intermed. 2017, 43, 1429–1445. [Google Scholar] [CrossRef]
- Wang, X.; Muhoza, B.; Wang, X.; Feng, T.; Xia, S.; Zhang, X. Comparison between microwave and traditional water bath cooking on saltiness perception, water distribution and microstructure of grass crap meat. Food Res. Int. 2019, 125, 108521. [Google Scholar] [CrossRef]
- Yang, L.; Qiu, W.; Yin, Y.; Row, K.H.; Cheng, Y.; Jin, Y. Dielectric properties of Antarctic krill (Euphausia superba) and white shrimp (Penaeus vannamei) during microwave thawing and heating. J. Microw. Power Electromagn. Energy 2017, 51, 3–30. [Google Scholar] [CrossRef]
- Ismail, O.; Kocabay, O.G. Infrared and Microwave Drying of Rainbow Trout: Drying Kinetics and Modelling. Turkish J. Fish. Aquat. Sci. 2018, 18, 81–90. [Google Scholar] [CrossRef]
- Cao, H.; Fan, D.; Jiao, X.; Huang, J.; Zhao, J.; Yan, B.; Zhou, W.; Zhang, W.; Zhang, H. Heating surimi products using microwave combined with steam methods: Study on energy saving and quality. Innov. Food Sci. Emerg. Technol. 2018, 47, 231–240. [Google Scholar] [CrossRef]
- Uemura, K.; Kanafusa, S.; Takahashi, C.; Kobayashi, I. Development of a radio frequency heating system for sterilization of vacuum-packed fish in water. Biosci. Biotechnol. Biochem. 2017, 81, 762–767. [Google Scholar] [CrossRef] [Green Version]
- Kanafusa, S.; Takahashi, C.; Uemura, K. The effect of radio-frequency heating on vacuum-packed saury (Cololabis saira) in water. Biosci. Biotechnol. Biochem. 2018, 82, 1576–1583. [Google Scholar] [CrossRef]
- Jung, H.; Moon, J.H.; Park, J.W.; Yoon, W.B. Texture of surimi-canned corn mixed gels with conventional water bath cooking and ohmic heating. Food Biosci. 2020, 35, 100580. [Google Scholar] [CrossRef]
- Ucak, I.; Gokoglu, N.; Kiessling, M.; Toepfl, S.; Galanakis, C.M. Inhibitory effects of high pressure treatment on microbial growth and biogenic amine formation in marinated herring (Clupea harengus) inoculated with Morganella psychrotolerans. LWT 2019, 99, 50–56. [Google Scholar] [CrossRef]
- Xuan, X.T.; Cui, Y.; Lin, X.D.; Yu, J.F.; Liao, X.J.; Ling, J.G.; Shang, H.T. Impact of High Hydrostatic Pressure on the Shelling Efficacy, Physicochemical Properties, and Microstructure of Fresh Razor Clam (Sinonovacula constricta). J. Food Sci. 2018, 83, 284–293. [Google Scholar] [CrossRef]
- Lebow, N.K.; DesRocher, L.D.; Younce, F.L.; Zhu, M.J.; Ross, C.F.; Smith, D.M. Influence of High-Pressure Processing at Low Temperature and Nisin on Listeria innocua Survival and Sensory Preference of Dry-Cured Cold-Smoked Salmon. J. Food Sci. 2017, 82, 2977–2986. [Google Scholar] [CrossRef]
- Ucak, I.; Gokoglu, N.; Toepfl, S.; Galanakis, C.M. Inhibitory effects of high pressure processing on Photobacterium phosphoreum and Morganella psychrotolerans in vacuum packed herring (Clupea harengus). J. Food Saf. 2018, 38, e12519. [Google Scholar] [CrossRef]
- Rode, T.M.; Hovda, M.B. High pressure processing extend the shelf life of fresh salmon, cod and mackerel. Food Control 2016, 70, 242–248. [Google Scholar] [CrossRef]
- Hughes, B.H.; Perkins, L.B.; Yang, T.C.; Skonberg, D.I. Impact of post-rigor high pressure processing on the physicochemical and microbial shelf-life of cultured red abalone (Haliotis rufescens). Food Chem. 2016, 194, 487–494. [Google Scholar] [CrossRef]
- Chouhan, A.; Kaur, B.P.; Rao, P.S. Effect of high pressure processing and thermal treatment on quality of hilsa (Tenualosa ilisha) fillets during refrigerated storage. Innov. Food Sci. Emerg. Technol. 2015, 29, 151–160. [Google Scholar] [CrossRef]
- Mengden, R.; Röhner, A.; Sudhaus, N.; Klein, G. High-pressure processing of mild smoked rainbow trout fillets (Oncorhynchus mykiss) and fresh European catfish fillets (Silurus glanis). Innov. Food Sci. Emerg. Technol. 2015, 32, 9–15. [Google Scholar] [CrossRef]
- Phuvasate, S.; Su, Y.C. Efficacy of low-temperature high hydrostatic pressure processing in inactivating Vibrio parahaemolyticus in culture suspension and oyster homogenate. Int. J. Food Microbiol. 2015, 196, 11–15. [Google Scholar] [CrossRef]
- Reyes, J.E.; Tabilo-Munizaga, G.; Pérez-Won, M.; Maluenda, D.; Roco, T. Effect of high hydrostatic pressure (HHP) treatments on microbiological shelf-life of chilled Chilean jack mackerel (Trachurus murphyi). Innov. Food Sci. Emerg. Technol. 2015, 29, 107–112. [Google Scholar] [CrossRef]
- Bruno, S.F.; Kudre, T.G.; Bhaskar, N. Impact of pretreatment-assisted enzymatic extraction on recovery, physicochemical and rheological properties of oil from Labeo rohita head. J. Food Process Eng. 2019, 42. [Google Scholar] [CrossRef]
- Huang, T.; Tu, Z. cai; Xinchen-Shangguan; Wang, H.; Zhang, L.; Sha, X. mei Rheological and structural properties of fish scales gelatin: Effects of conventional and ultrasound-assisted extraction. Int. J. Food Prop. 2017, 20, 1210–1220. [Google Scholar] [CrossRef]
- Tu, Z.C.; Huang, T.; Wang, H.; Sha, X.M.; Shi, Y.; Huang, X.Q.; Man, Z.Z.; Li, D. Physico-chemical properties of gelatin from bighead carp (Hypophthalmichthys nobilis) scales by ultrasound-assisted extraction. J. Food Sci. Technol. 2015, 52, 2166. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, C.; Lélu, P.; Lynch, S.A.; Tiwari, B.K. Optimised protein recovery from mackerel whole fish by using sequential acid/alkaline isoelectric solubilization precipitation (ISP) extraction assisted by ultrasound. LWT 2018, 88, 210–216. [Google Scholar] [CrossRef] [Green Version]
- Mikš-Krajnik, M.; James Feng, L.X.; Bang, W.S.; Yuk, H.G. Inactivation of Listeria monocytogenes and natural microbiota on raw salmon fillets using acidic electrolyzed water, ultraviolet light or/and ultrasounds. Food Control 2017, 74, 54–60. [Google Scholar] [CrossRef]
- Cai, L.; Cao, M.; Cao, A.; Regenstein, J.; Li, J.; Guan, R. Ultrasound or microwave vacuum thawing of red seabream (Pagrus major) fillets. Ultrason. Sonochem. 2018, 47, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Antunes-Rohling, A.; Astráin-Redín, L.; Calanche-Morales, J.B.; Marquina, P.; Beltrán, J.A.; Raso, J.; Cebrián, G.; Álvarez, I. Eco-innovative possibilities for improving the quality of thawed cod fillets using high-power ultrasound. Food Control 2021, 121, 107606. [Google Scholar] [CrossRef]
- Dong, X.; Wang, J.; Raghavan, V. Effects of high-intensity ultrasound processing on the physiochemical and allergenic properties of shrimp. Innov. Food Sci. Emerg. Technol. 2020, 65, 102441. [Google Scholar] [CrossRef]
Industrial Revolution | Time Frame | Energy Source | Characteristic Technology | Impact on the Food Industry |
---|---|---|---|---|
1IR | End of 18th century | Coal | Steam engine | First ever mechanized processes, sterilization using steam and liquids, preservation practices. |
2IR | End of 19th century | Oil and electricity | Mechanical assembly lines | Scaled up mass production, demands met quality, quantity enhanced. |
3IR | 1960s to 2000s | Nuclear energies | Computers, robotics | More scaled up production, computerized and automated processes, high energy consumption—surfacing limits. |
4IR | 2015 to Present | Renewable (green) energies | IoT, ML, AI, 3D printing, nanotechnology, biotechnology, smart sensors | Sustainable practices, improved systems, skilled labor, time, space and money saving techniques, real time monitoring. |
Seafood | Preservation Technique | Results | Reference |
---|---|---|---|
Tilapia fish (Oreochromis aureus) | ICF −5 °C, 0.9% saline solution | Maintains integrity of the product. No protein structural damage. | [43] |
Sea bass (Dicentrarchuslabrax) | PSF −15 and −25 °C, 200 MPa | Reduction of ice crystals, lower protein denaturation and higher water holding capacity, compared to traditional freezing techniques. | [44] |
Large yellow croaker (Larimichthyscrocea) | UAF 20, 28 and 40 kHz, 175 W, 30s | Increased freezing rate, preserved quality parameters and reduced lipid oxidation. | [45] |
Salmon carpaccio | Gelatin-Ch films | Moderate antimicrobial activity. | [46] |
White shrimp (Penaeus vannamei) | Microalgal exopolysaccharide coating | Inhibition of microbial growth and deterioration. Preservation of sensory properties. | [47] |
Smoked herring (Clupea harengus) | Ch coating | Inhibition of microbial growth and lipid oxidation. Antioxidant effects. Improvement of sensory parameters. | [48] |
Pacific white shrimp (Litopenaeusvannamei) | Oregano essential oil and ε-polylysine applied in the surface | Inhibition of microbial growth and proteolysis. Improvement of sensory properties. | [49] |
Asian sea bass (Lates calcarifer) | WPI coating with ginger, green tea, and lemongrass polyphenol extracts | Inhibition of microbial growth, proteolysis, lipid oxidation and other deterioration markers. Reduction of muscle softening and color and drip loss. | [50] |
Black tiger shrimp (Penaeus monodon) | Ch-gelatin edible coating incorporated with longkong extract | Inhibition of microbial growth, proteolysis, and lipid oxidation, melanosis, and other deterioration markers. | [51] |
Yellow croaker (Larimichthyscrocea) | Ch -lysozyme edible coating | Inhibition of microbial growth, proteolysis, and lipid oxidation. Color and odor characteristics were preserved. | [52] |
Scomberoidescommersonnianus | Ch-WPI-Artemisia dracunculus essential oil coating | Inhibition of microbial growth, proteolysis, and lipid oxidation. Preservation of sensory properties (color, odor, texture, and appearance) during storage. | [53] |
Hairtail (Trichiurushaumela) | Eugenol- Ch nanoemulsion | Inhibition of microbial growth, proteolysis, and lipid oxidation. Improvement of sensory scores. | [54] |
Beluga sturgeon (Huso huso) | Jujube gum nanoemulsions containing nettle essential oil edible coating | Inhibition of microbial growth, lipid oxidation and loss of sensory properties. | [55] |
Cod (Gadus morhua) | Nano-ZnO into packaging material | Inhibition of microbial growth, reduction of water loss, gumminess, and adhesiveness. | [56] |
Tiger tooth croaker (Otolithesruber) | Poly lactic acid film containing ZnO nanoparticles and essential oils | Inhibition of microbial growth, antioxidant properties. Increase of shelf life during storage. | [57] |
Sample Food | PEF Protocol | Extracts | Findings | Reference |
---|---|---|---|---|
Fishbone | 20 kV/cm; 8 pulses, 120 min | Calcium | 77.1% extraction efficiency | [84] |
Fishbone | 22.79 kV/cm, 9 pulses, 2 s | Calcium and chondroitin sulfate | Extraction is much quicker and contains significantly more CS than standard approaches | [85] |
Mussel | 20 kV/cm, 8 pulses, 2 h | Protein | Extraction is much quicker and increased extraction (77.08%) | [86] |
Haliotis discus hannaiInoviscera | 20 kV/cm, 600 s | Protein hydrolysate | an improved yield of abalone viscera protein | [87] |
Fish residues | 1.4 kV/cm, 20 s, 10 Hz, 100 pulses | Antioxidant extraction | Enhanced the antioxidant capacity | [88] |
Residues of rainbow trout and sole | 1–3 kV/cm, 123–300 kJ/kg, 15–24 h | Protein | 80% enhanced | [89] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassoun, A.; Siddiqui, S.A.; Smaoui, S.; Ucak, İ.; Arshad, R.N.; Garcia-Oliveira, P.; Prieto, M.A.; Aït-Kaddour, A.; Perestrelo, R.; Câmara, J.S.; et al. Seafood Processing, Preservation, and Analytical Techniques in the Age of Industry 4.0. Appl. Sci. 2022, 12, 1703. https://doi.org/10.3390/app12031703
Hassoun A, Siddiqui SA, Smaoui S, Ucak İ, Arshad RN, Garcia-Oliveira P, Prieto MA, Aït-Kaddour A, Perestrelo R, Câmara JS, et al. Seafood Processing, Preservation, and Analytical Techniques in the Age of Industry 4.0. Applied Sciences. 2022; 12(3):1703. https://doi.org/10.3390/app12031703
Chicago/Turabian StyleHassoun, Abdo, Shahida Anusha Siddiqui, Slim Smaoui, İlknur Ucak, Rai Naveed Arshad, Paula Garcia-Oliveira, Miguel A. Prieto, Abderrahmane Aït-Kaddour, Rosa Perestrelo, José S. Câmara, and et al. 2022. "Seafood Processing, Preservation, and Analytical Techniques in the Age of Industry 4.0" Applied Sciences 12, no. 3: 1703. https://doi.org/10.3390/app12031703
APA StyleHassoun, A., Siddiqui, S. A., Smaoui, S., Ucak, İ., Arshad, R. N., Garcia-Oliveira, P., Prieto, M. A., Aït-Kaddour, A., Perestrelo, R., Câmara, J. S., & Bono, G. (2022). Seafood Processing, Preservation, and Analytical Techniques in the Age of Industry 4.0. Applied Sciences, 12(3), 1703. https://doi.org/10.3390/app12031703