Slope Stability Classification under Seismic Conditions Using Several Tree-Based Intelligent Techniques
Abstract
:1. Introduction
2. Effect of Earthquake on Soil Slopes
3. Material and Methods
3.1. Data Preparation
3.2. Overview of Research Methodology
3.3. Decision Tree (DT)
3.4. Random Forest (RF)
3.5. AdaBoost Algorithm
3.6. Performance Indicators
4. Development of Tree-Based Techniques
4.1. DT Model
4.2. RF Model
4.3. AdaBoost Model
5. Results and Discussion
6. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gordan, B.; Raja, M.A.; Armaghani, D.J.; Adnan, A. Review on Dynamic Behaviour of Earth Dam and Embankment During an Earthquake. Geotech. Geol. Eng. 2021, 40, 3–33. [Google Scholar] [CrossRef]
- Hajihassani, M.; Jahed Armaghani, D.; Kalatehjari, R. Applications of Particle Swarm Optimization in Geotechnical Engineering: A Comprehensive Review. Geotech. Geol. Eng. 2018, 36, 705–722. [Google Scholar] [CrossRef]
- Bui, X.N.; Nguyen, H.; Choi, Y.; Nguyen-Thoi, T.; Zhou, J.; Dou, J. Prediction of slope failure in open-pit mines using a novel hybrid artificial intelligence model based on decision tree and evolution algorithm. Sci. Rep. 2020, 10, 9939. [Google Scholar] [CrossRef]
- Koopialipoor, M.; Jahed Armaghani, D.; Hedayat, A.; Marto, A.; Gordan, B. Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions. Soft Comput. 2019, 23, 5913–5929. [Google Scholar] [CrossRef]
- Cai, M.; Koopialipoor, M.; Armaghani, D.J.; Thai Pham, B. Evaluating Slope Deformation of Earth Dams due to Earthquake Shaking using MARS and GMDH Techniques. Appl. Sci. 2020, 10, 1486. [Google Scholar] [CrossRef] [Green Version]
- Gordan, B.; Armaghani, D.J.; Adnan, A.B.; Rashid, A.S.A. A New Model for Determining Slope Stability Based on Seismic Motion Performance. Soil Mech. Found. Eng. 2016, 53, 344–351. [Google Scholar] [CrossRef]
- Das, S.K.; Biswal, R.K.; Sivakugan, N.; Das, B. Classification of slopes and prediction of factor of safety using differential evolution neural networks. Environ. Earth Sci. 2011, 64, 201–210. [Google Scholar] [CrossRef]
- Hoek, E.; Bray, J.D. Rock Slope Engineering; CRC Press: Boca Raton, FL, USA, 1981; ISBN 1482267098. [Google Scholar]
- Hammah, R. A Comparison of Finite Element Slope Stability Analysis With Conventional Limit-Equilibrium Investigation. Proceedings of the 58th Canadian Geotechnical and 6th Joint IAH-CNC and CGS Groundwater Specialty Conferences–GeoSask 2005, 2005. [Google Scholar]
- Ray, A.; Kumar, V.; Kumar, A.; Rai, R.; Khandelwal, M.; Singh, T.N. Stability prediction of Himalayan residual soil slope using artificial neural network. Nat. Hazards 2020, 103, 3523–3540. [Google Scholar] [CrossRef]
- Erzin, Y.; Cetin, T. The use of neural networks for the prediction of the critical factor of safety of an artificial slope subjected to earthquake forces. Sci. Iran. 2012, 19, 188–194. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, A.; Goswami, D. Prediction of critical safety factor of slopes using multiple regression and neural network. J. Geo-Eng. Sci. 2018, 1–10. [Google Scholar] [CrossRef]
- Mahdiyar, A.; Hasanipanah, M.; Armaghani, D.J.; Gordan, B.; Abdullah, A.; Arab, H.; Majid, M.Z.A.; Danial, J.A.; Armaghani, J.; Gordan, B.; et al. A Monte Carlo technique in safety assessment of slope under seismic condition. Eng. Comput. 2017, 33, 807–817. [Google Scholar] [CrossRef]
- Asteris, P.G.; Koopialipoor, M.; Armaghani, D.J.; Kotsonis, E.A.; Lourenço, P.B. Prediction of cement-based mortars compressive strength using machine learning techniques. Neural Comput. Appl. 2021, 33, 13089–13121. [Google Scholar] [CrossRef]
- Harandizadeh, H.; Armaghani, D.; Asteris, P.G.; Gandomi, A. TBM performance prediction developing a hybrid ANFIS-PNN predictive model optimized by imperialism competitive algorithm. Neural Comput. Appl. 2021, 33, 16149–16179. [Google Scholar] [CrossRef]
- Zhao, J.; Nguyen, H.; Nguyen-Thoi, T.; Asteris, P.G.; Zhou, J. Improved Levenberg–Marquardt backpropagation neural network by particle swarm and whale optimization algorithms to predict the deflection of RC beams. Eng. Comput. 2021. [Google Scholar] [CrossRef]
- Zhang, H.; Nguyen, H.; Bui, X.-N.; Pradhan, B.; Asteris, P.G.; Costache, R.; Aryal, J. A generalized artificial intelligence model for estimating the friction angle of clays in evaluating slope stability using a deep neural network and Harris Hawks optimization algorithm. Eng. Comput. 2021, 1–14. [Google Scholar] [CrossRef]
- Asteris, P.G.; Skentou, A.D.; Bardhan, A.; Samui, P.; Pilakoutas, K. Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models. Cem. Concr. Res. 2021, 145, 106449. [Google Scholar] [CrossRef]
- Asteris, P.G.; Cavaleri, L.; Ly, H.-B.; Pham, B.T. Surrogate models for the compressive strength mapping of cement mortar materials. Soft Comput. 2021, 25, 6347–6372. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Mamou, A.; Maraveas, C.; Roussis, P.C.; Siorikis, V.G.; Skentou, A.D.; Asteris, P.G. Predicting the unconfined compressive strength of granite using only two non-destructive test indexes. Geomech. Eng. 2021, 25, 317–330. [Google Scholar]
- Zhou, J.; Shen, X.; Qiu, Y.; Li, E.; Rao, D.; Shi, X. Improving the efficiency of microseismic source locating using a heuristic algorithm-based virtual field optimization method. Geomech. Geophys. Geo-Energy Geo-Resour. 2021, 7, 89. [Google Scholar] [CrossRef]
- Zhou, J.; Qiu, Y.; Khandelwal, M.; Zhu, S.; Zhang, X. Developing a hybrid model of Jaya algorithm-based extreme gradient boosting machine to estimate blast-induced ground vibrations. Int. J. Rock Mech. Min. Sci. 2021, 145, 104856. [Google Scholar] [CrossRef]
- Zhou, J.; Li, X.; Mitri, H.S. Classification of rockburst in underground projects: Comparison of ten supervised learning methods. J. Comput. Civ. Eng. 2016, 30, 4016003. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, C.; Wang, M.; Khandelwal, M. Proposing a novel comprehensive evaluation model for the coal burst liability in underground coal mines considering uncertainty factors. Int. J. Min. Sci. Technol. 2021, 31, 799–812. [Google Scholar] [CrossRef]
- Yang, H.Q.; Li, Z.; Jie, T.Q.; Zhang, Z.Q. Effects of joints on the cutting behavior of disc cutter running on the jointed rock mass. Tunn. Undergr. Sp. Technol. 2018, 81, 112–120. [Google Scholar] [CrossRef]
- Yang, H.; Wang, H.; Zhou, X. Analysis on the damage behavior of mixed ground during TBM cutting process. Tunn. Undergr. Sp. Technol. 2016, 57, 55–65. [Google Scholar] [CrossRef]
- Liu, B.; Yang, H.; Karekal, S. Effect of Water Content on Argillization of Mudstone During the Tunnelling process. Rock Mech. Rock Eng. 2019, 53, 799–813. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Z.; Song, K. A new hybrid grey wolf optimizer-feature weighted-multiple kernel-support vector regression technique to predict TBM performance. Eng. Comput. 2020, 1–17. [Google Scholar] [CrossRef]
- Kardani, N.; Bardhan, A.; Samui, P.; Nazem, M.; Zhou, A.; Armaghani, D.J. A novel technique based on the improved firefly algorithm coupled with extreme learning machine (ELM-IFF) for predicting the thermal conductivity of soil. Eng. Comput. 2021, 1–20. [Google Scholar] [CrossRef]
- Parsajoo, M.; Armaghani, D.J.; Mohammed, A.S.; Khari, M.; Jahandari, S. Tensile strength prediction of rock material using non-destructive tests: A comparative intelligent study. Transp. Geotech. 2021, 31, 100652. [Google Scholar] [CrossRef]
- Mahmood, W.; Mohammed, A.S.; Asteris, P.G.; Kurda, R.; Armaghani, D.J. Modeling Flexural and Compressive Strengths Behaviour of Cement-Grouted Sands Modified with Water Reducer Polymer. Appl. Sci. 2022, 12, 1016. [Google Scholar] [CrossRef]
- Asteris, P.G.; Lourenço, P.B.; Roussis, P.C.; Adami, C.E.; Armaghani, D.J.; Cavaleri, L.; Chalioris, C.E.; Hajihassani, M.; Lemonis, M.E.; Mohammed, A.S. Revealing the nature of metakaolin-based concrete materials using artificial intelligence techniques. Constr. Build. Mater. 2022, 322, 126500. [Google Scholar] [CrossRef]
- Abdalla, J.A.; Attom, M.F.; Hawileh, R. Prediction of minimum factor of safety against slope failure in clayey soils using artificial neural network. Environ. Earth Sci. 2015, 73, 5463–5477. [Google Scholar] [CrossRef]
- Verma, A.K.; Singh, T.N.; Chauhan, N.K.; Sarkar, K. A hybrid FEM–ANN approach for slope instability prediction. J. Inst. Eng. Ser. A 2016, 97, 171–180. [Google Scholar] [CrossRef]
- Samui, P. Support vector classifier analysis of slope. Geomat. Nat. Hazards Risk 2013, 4, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Sakellariou, M.G.; Ferentinou, M.D. A study of slope stability prediction using neural networks. Geotech. Geol. Eng. 2005, 23, 419. [Google Scholar] [CrossRef]
- Ferentinou, M.D.; Sakellariou, M.G. Computational intelligence tools for the prediction of slope performance. Comput. Geotech. 2007, 34, 362–384. [Google Scholar] [CrossRef]
- Mohamed, T.; Kasa, A. Application of fuzzy set theory to evaluate the stability of slopes. Appl. Mech. Mater. 2014, 580–583, 566–571. [Google Scholar] [CrossRef]
- Kalatehjari, R.; Rashid, A.S.A.; Ali, N.; Hajihassani, M. The contribution of particle swarm optimization to three-dimensional slope stability analysis. Sci. World J. 2014, 2014, 973093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, P.; Rosenbaum, M.S. Artificial neural networks and grey systems for the prediction of slope stability. Nat. Hazards 2003, 30, 383–398. [Google Scholar] [CrossRef]
- Samui, P. Slope stability analysis: A support vector machine approach. Environ. Geol. 2008, 56, 255. [Google Scholar] [CrossRef]
- Tien Bui, D.; Pradhan, B.; Lofman, O.; Revhaug, I. Landslide susceptibility assessment in vietnam using support vector machines, decision tree, and Naive Bayes Models. Math. Probl. Eng. 2012, 2012, 974638. [Google Scholar] [CrossRef] [Green Version]
- Amit, Y.; Geman, D. Shape Quantization and Recognition with Randomized Trees. Neural Comput. 1997, 9, 1545–1588. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.G.; Guevarra, I.F.; Yu, B.O. Slope failure prediction using a decision tree: A case of engineered slopes in South Korea. Eng. Geol. 2009, 104, 126–134. [Google Scholar] [CrossRef]
- Gelisli, K.; Kaya, T.; Babacan, A.E. Assessing the factor of safety using an artificial neural network: Case studies on landslides in Giresun, Turkey. Environ. Earth Sci. 2015, 73, 8639–8646. [Google Scholar] [CrossRef]
- Tao, G.L.; Yao, Z.S.; Tan, B.Z.; Gao, C.C.; Yao, Y.W. Application of Support Vector Machine for Prediction of Slope Stability Coefficient Considering the Influence of Rainfall and Water Level. Appl. Mech. Mater. 2016, 851, 840–845. [Google Scholar] [CrossRef]
- Fattahi, H. Prediction of slope stability using adaptive neuro-fuzzy inference system based on clustering methods. J. Min. Environ. 2017, 8, 163–177. [Google Scholar]
- Qi, C.; Tang, X. Slope stability prediction using integrated metaheuristic and machine learning approaches: A comparative study. Comput. Ind. Eng. 2018, 118, 112–122. [Google Scholar] [CrossRef]
- Hidayat, S.; Alpiana; Rahmawati, D. Application of adaptive neuro-fuzzy inference system (ANFIS) for slope and pillar stability assessment. IOP Conf. Ser. Earth Environ. Sci. 2020, 413, 012003. [Google Scholar] [CrossRef]
- Sari, P.A.; Suhatril, M.; Osman, N.; Mu’azu, M.A.; Katebi, J.; Abavisani, A.; Ghaffari, N.; Sadeghi Chahnasir, E.; Wakil, K.; Khorami, M.; et al. Developing a hybrid adoptive neuro-fuzzy inference system in predicting safety of factors of slopes subjected to surface eco-protection techniques. Eng. Comput. 2020, 36, 1347–1354. [Google Scholar] [CrossRef]
- Han, H.; Armaghani, D.J.; Tarinejad, R.; Zhou, J.; Tahir, M.M. Random Forest and Bayesian Network Techniques for Probabilistic Prediction of Flyrock Induced by Blasting in Quarry Sites. Nat. Resour. Res. 2020, 29, 655–667. [Google Scholar] [CrossRef]
- Zhou, J.; Asteris, P.G.; Armaghani, D.J.; Pham, B.T. Prediction of ground vibration induced by blasting operations through the use of the Bayesian Network and random forest models. Soil Dyn. Earthq. Eng. 2020, 139, 106390. [Google Scholar] [CrossRef]
- Li, D.; Moghaddam, M.R.; Monjezi, M.; Jahed Armaghani, D.; Mehrdanesh, A. Development of a Group Method of Data Handling Technique to Forecast Iron Ore Price. Appl. Sci. 2020, 10, 2364. [Google Scholar] [CrossRef] [Green Version]
- Liang, M.; Mohamad, E.T.; Faradonbeh, R.S.; Jahed Armaghani, D.; Ghoraba, S. Rock strength assessment based on regression tree technique. Eng. Comput. 2016, 32, 343–354. [Google Scholar] [CrossRef]
- Newmark, N.M. Effects of earthquakes on dams and embankments. Geotechnique 1965, 15, 139–160. [Google Scholar] [CrossRef] [Green Version]
- Ambraseys, N.N.; Menu, J.M. Earthquake-induced ground displacements. Earthq. Eng. Struct. Dyn. 1988, 16, 985–1006. [Google Scholar] [CrossRef]
- Sarma, S.K.; Bhave, M.V. Critical acceleration versus static factor of safety in stability analysis of earth dams and embankments. Geotechnique 1974, 24, 661–665. [Google Scholar] [CrossRef]
- Abramson, L.W.; Lee, T.S.; Sharma, S.; Boyce, G.M. Slope Stability and Stabilization Methods; John Wiley & Sons: Hoboken, NJ, USA, 2001; ISBN 0471384933. [Google Scholar]
- Zhu, D.Y.; Lee, C.F.; Jiang, H.D. Generalised framework of limit equilibrium methods for slope stability analysis. Geotechnique 2003, 53, 377–395. [Google Scholar] [CrossRef]
- Samui, P.; Kothari, D.P. Utilization of a least square support vector machine (LSSVM) for slope stability analysis. Sci. Iran. 2011, 18, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Erzin, Y.; Cetin, T. The prediction of the critical factor of safety of homogeneous finite slopes using neural networks and multiple regressions. Comput. Geosci. 2013, 51, 305–313. [Google Scholar] [CrossRef]
- Myles, A.J.; Feudale, R.N.; Liu, Y.; Woody, N.A.; Brown, S.D. An introduction to decision tree modeling. J. Chemom. A J. Chemom. Soc. 2004, 18, 275–285. [Google Scholar] [CrossRef]
- Jopp, F.; Reuter, H.; Breckling, B. Modelling Complex Ecological Dynamics: An Introduction into Ecological Modelling for Students, Teachers & Scientists; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–387. [Google Scholar]
- Murthy, S.K. Automatic construction of decision trees from data: A multi-disciplinary survey. Data Min. Knowl. Discov. 1998, 2, 345–389. [Google Scholar] [CrossRef]
- Kheir, R.B.; Greve, M.H.; Abdallah, C.; Dalgaard, T. Spatial soil zinc content distribution from terrain parameters: A GIS-based decision-tree model in Lebanon. Environ. Pollut. 2010, 158, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Tso, G.K.F.; Yau, K.K.W. Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural networks. Energy 2007, 32, 1761–1768. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y. Comparison of decision tree methods for finding active objects. Adv. Sp. Res. 2008, 41, 1955–1959. [Google Scholar] [CrossRef] [Green Version]
- Ho, T.K. Random decision forests. Proc. Int. Conf. Doc. Anal. Recognit. ICDAR 1995, 1, 278–282. [Google Scholar]
- Kainthura, P.; Sharma, N. Machine Learning Techniques to Predict Slope Failures in Uttarkashi, Uttarakhand (India). J. Sci. Ind. Res. 2021, 80, 66–74. [Google Scholar]
- Piryonesi, S.M.; El-Diraby, T.E. Role of data analytics in infrastructure asset management: Overcoming data size and quality problems. J. Transp. Eng. Part B Pavements 2020, 146, 4020022. [Google Scholar] [CrossRef]
- Boulesteix, A.L.; Janitza, S.; Kruppa, J.; König, I.R. Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2012, 2, 493–507. [Google Scholar] [CrossRef] [Green Version]
- Kégl, B. The return of ADABOOST.MH: Multi-class Hamming trees. arXiv 2014, arXiv:1312.6086. [Google Scholar]
- Saadaari, F.; Olaleye, B.M. Development of a Stope Stability Prediction Model Using Ensemble Learning Techniques—A Case Study. Ghana Min. J. 2020, 20, 18–26. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Yin, K.; Luo, H.; Li, J. Landslide identification using machine learning. Geosci. Front. 2020, 12, 351–364. [Google Scholar] [CrossRef]
- Pham, B.T.; Nguyen, M.D.; Nguyen-Thoi, T.; Ho, L.S.; Koopialipoor, M.; Quoc, N.K.; Armaghani, D.J.; Van Le, H. A novel approach for classification of soils based on laboratory tests using Adaboost, Tree and ANN modeling. Transp. Geotech. 2020, 27, 100508. [Google Scholar] [CrossRef]
- Rojas, R. AdaBoost and the Super Bowl of Classifiers a Tutorial Introduction to Adaptive Boosting. Writing, Computer Science Department, Freie Universitat, Berlin, Germany. 2009. Available online: http://www.inf.fu-berlin.de/inst/ag-ki/adaboost4.pdf (accessed on 11 April 2016).
- Zorlu, K.; Gokceoglu, C.; Ocakoglu, F.; Nefeslioglu, H.A.; Acikalin, S. Prediction of uniaxial compressive strength of sandstones using petrography-based models. Eng. Geol. 2008, 96, 141–158. [Google Scholar] [CrossRef]
Reference | Model | Input | Data Size | R2 | Accuracy (%) |
---|---|---|---|---|---|
Amit and Geman [43] | DT | H, C, ϕ, β, rainfall and water level data | 118 | - | 80 |
Sakellariou and Ferentinou [36] | ANN, SOM | H, c, φ, β, ru and γ, kmax | 45 | 0.94 | |
Ferentinou and Sakellariou [37] | ANN | H, c, φ, β, ru and γ | 46 | 0.95 | |
Lu and Rosenbaum [40] | ANN | H, c, ϕ,ru and γ | 30 datasets | - | 99 |
Samui [41] | SVM | H, c, ϕ, ru and γ | 46 datasets | 0.875 | - |
Hwang et al. [44] | DT | H, c, ϕ, β and γ | 6828 datasets | - | 72 |
Das et al. [7] | ANN | H, c, ϕ and γ | 46 datasets | 0.982 | - |
Samui [35] | SVM | H, c, ϕ, ru and γ | 32 datasets | 1.0 | - |
Mohamed and Kasa [38] | ANFIS | H, c, ϕ and γ | 300 datasets | 0.980 | - |
Gelisli et al. [45] | ANN | H, c, ϕ and γ | 100 datasets | 0.99 | - |
Tao et al. [46] | SVM | H, c, ϕ, γ, rainfall data | 20 datasets | - | 88 |
Fattahi [47] | ANFIS | H, c, ϕ, β and γ | 67 datasets | 0.952 | - |
Qi and Tang [48] | ANN | H, β, γ,c | 168 datasets | - | 96 |
Hidayat et al. [49] | ANFIS | H, c, ϕ, γ, and γ | 53 datasets | 0.96 | - |
Ray et al. [10] | ANN | H, c, ϕ and γ | - | 0.958 | - |
Sari et al. [50] | ANFIS | H, c, ϕ and γ | 30 datasets | 0.954 | - |
Property | Variable | |||||
---|---|---|---|---|---|---|
Slope Height (m) | Angle of Inclination (°) | Cohesion (kPa) | Friction Angle (°) | Peak Ground Acceleration | Factor of Safety | |
Symbol | H | β | c | ϕ | PGA (m/s2) | FOS |
Category | Input | Input | Input | Input | Input | Output |
Min | 15 | 20 | 20 | 20 | 0 | 0.78 |
Max | 30 | 35 | 50 | 40 | 3.92 | 2.46 |
Average | 22.33 | 25.18 | 35.3 | 34.07 | 1.18 | 1.20 |
Std. Deviation | 5.6 | 5 | 11.18 | 5.88 | 1.07 | 0.35 |
Variance | 31.37 | 26 | 124.96 | 34.59 | 1.15 | 0.12 |
Input Parameter | H | β | C | ϕ | PGA |
---|---|---|---|---|---|
rij | 0.930 | 0.924 | 0.915 | 0.962 | 0.616 |
DT Parameter | Value |
---|---|
Minimum number of instances in leaves | 7 |
Minimum limit of the split subset | 5 |
Maximal tree depth | 7 |
RF Parameter | Value |
---|---|
Number of trees | 7 |
Minimum limit of the split subset | 5 |
AdaBoost Parameter | Value |
---|---|
Base Parameter | DT |
Number of estimators | 6 |
Model | Performance Indicators | Rank | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AUC | Accuracy | F1 | Precision | Recall | AUC | Accuracy | F1 | Precision | Recall | Total | |
DT | 0.968 | 0.891 | 0.895 | 0.908 | 0.891 | 3 | 1 | 1 | 1 | 1 | 7 |
RF | 0.961 | 0.914 | 0.915 | 0.916 | 0.914 | 2 | 2 | 2 | 2 | 2 | 10 |
AdaBoost | 0.910 | 0.931 | 0.931 | 0.931 | 0.931 | 1 | 3 | 3 | 3 | 3 | 13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asteris, P.G.; Rizal, F.I.M.; Koopialipoor, M.; Roussis, P.C.; Ferentinou, M.; Armaghani, D.J.; Gordan, B. Slope Stability Classification under Seismic Conditions Using Several Tree-Based Intelligent Techniques. Appl. Sci. 2022, 12, 1753. https://doi.org/10.3390/app12031753
Asteris PG, Rizal FIM, Koopialipoor M, Roussis PC, Ferentinou M, Armaghani DJ, Gordan B. Slope Stability Classification under Seismic Conditions Using Several Tree-Based Intelligent Techniques. Applied Sciences. 2022; 12(3):1753. https://doi.org/10.3390/app12031753
Chicago/Turabian StyleAsteris, Panagiotis G., Fariz Iskandar Mohd Rizal, Mohammadreza Koopialipoor, Panayiotis C. Roussis, Maria Ferentinou, Danial Jahed Armaghani, and Behrouz Gordan. 2022. "Slope Stability Classification under Seismic Conditions Using Several Tree-Based Intelligent Techniques" Applied Sciences 12, no. 3: 1753. https://doi.org/10.3390/app12031753
APA StyleAsteris, P. G., Rizal, F. I. M., Koopialipoor, M., Roussis, P. C., Ferentinou, M., Armaghani, D. J., & Gordan, B. (2022). Slope Stability Classification under Seismic Conditions Using Several Tree-Based Intelligent Techniques. Applied Sciences, 12(3), 1753. https://doi.org/10.3390/app12031753