Plant-Based Milks: Alternatives to the Manufacture and Characterization of Ice Cream
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Almond Milk Preparation
2.2.2. Hemp Milk Preparation
2.2.3. Ice Cream Preparation
2.2.4. Ice Cream Analysis
Physico-Chemical Analyses of Ice Cream Mix
Rheological Analysis of Ice Cream Mix
Textural Analysis
Sensory Analysis
Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Analyses of Cream Mix
3.2. Rheological Analysis of Ice Cream Mix
3.3. Textural Properties
3.4. Sensory Properties Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soukoulis, C.; Lebesi, D.; Tzia, C. Enrichment of ice cream with dietary fibre: Effects on rheological properties, ice crystallization and glass transition phenomena. Food Chem. 2009, 115, 665–671. [Google Scholar] [CrossRef]
- Rana, J.; Paul, J. Consumer behavior and purchase intention for organic food: A review and research agenda. J. Retail. Consum. Serv. 2017, 38, 157–165. [Google Scholar] [CrossRef]
- Tsai, S.-Y.; Tsay, G.J.; Li, C.-Y.; Hung, Y.-T.; Lin, C.-P. Assessment of Melting Kinetics of Sugar-Reduced Silver Ear Mushroom Ice Cream under Various Additive Models. Appl. Sci. 2020, 10, 2664. [Google Scholar] [CrossRef] [Green Version]
- Eurostat. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20210803-1 (accessed on 18 January 2022).
- Velotto, S.; Parafati, L.; Ariano, A.; Palmeri, R.; Pesce, F.; Planeta, D.; Alfeo, V.; Todaro, A. Use of stevia and chia seeds for the formulation of traditional and vegan artisanal ice cream. Int. J. Gastron. Food Sci. 2021, 26, 100441. [Google Scholar] [CrossRef]
- Aydar, E.F.; Tutuncu, S.; Ozcelik, B. Plant-based milk substitutes: Bioactive compounds, conventional and novel processes, bioavailability studies, and health effects. J. Funct. Foods 2020, 70, 103975. [Google Scholar] [CrossRef]
- Smeriglio, A.; Mandalari, G.; Bisignano, C.; Filocamo, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Polyphenolic content and biological properties of Avola almond (Prunus dulcis Mill. DA Webb) skin and its industrial byproducts. Ind. Crops Prod. 2016, 83, 283–293. [Google Scholar] [CrossRef]
- Nissen, L.; di Carlo, E.; Gianotti, A. Prebiotic potential of hemp blended drinks fermented by probiotics. Food Res. Int. 2020, 131, 109029. [Google Scholar] [CrossRef]
- Sethi, S.; Tyagi, S.K.; Anurag, R.K. Plant-based milk alternatives an emerging segment of functional beverages: A review. J. Food Sci. Technol. 2016, 53, 3408–3423. [Google Scholar] [CrossRef] [PubMed]
- Chalupa-Krebzdak, S.; Long, C.J.; Bohrer, B.M. Nutrient density and nutritional value of milk and plant-based milk alternatives. Int. Dairy J. 2018, 87, 84–92. [Google Scholar] [CrossRef]
- Szparaga, A.; Tabor, S.; Kocira, S.; Czerwińska, E.; Kuboń, M.; Płóciennik, B.; Findura, P. Survivability of probiotic bacteria in model systems of non-fermented and fermented coconut and hemp milks. Sustainability 2019, 11, 6093. [Google Scholar] [CrossRef] [Green Version]
- Paul, A.A.; Kumar, S.; Kumar, V.; Sharma, R. Milk Analog: Plant based alternatives to conventional milk, production, potential and health concerns. Crit. Rev. Food Sci. Nutr. 2020, 60, 3005–3023. [Google Scholar] [CrossRef]
- Pool-Zobel, B.L. Inulin-type fructans and reduction in colon cancer risk: Review of experimental and human data. Br. J. Nutr. 2005, 93, S73–S90. [Google Scholar] [CrossRef] [PubMed]
- McRorie, J.W., Jr.; McKeown, N.M. Understanding the physics of functional fibers in the gastrointestinal tract: An ev-idence-based approach to resolving enduring misconceptions about insoluble and soluble fiber. J. Acad. Nutr. Diet. 2017, 117, 251–264. [Google Scholar] [CrossRef] [Green Version]
- Manzoor, M.F.; Siddique, R.; Hussain, A.; Ahmad, N.; Rehman, A.; Siddeeg, A.; Yahya, M.A. Thermosonication effect on bioactive compounds, enzymes activity, particle size, microbial load, and sensory properties of almond (Prunus dulcis) milk. Ultrason. Sonochem. 2021, 78, 105705. [Google Scholar] [CrossRef] [PubMed]
- Leahu, A.; Ghinea, C.; Damian, C. The influence of inulin and psyllium addition to ice-cream and its effects on the sensorial properties. Food Environ. Saf. 2019, 17, 363–371. [Google Scholar]
- Yu, B.; Zeng, X.; Wang, L.; Regenstein, J.M. Preparation of nanofibrillated cellulose from grapefruit peel and its application as fat substitute in ice cream. Carbohydr. Polym. 2021, 254, 117415. [Google Scholar] [CrossRef]
- Espinoza, L.A.; Purriños, L.; Centeno, J.A.; Carballo, J. Chemical, microbial and sensory properties of a chestnut and milk ice cream with improved healthy characteristics. Int. J. Food Prop. 2020, 2, 2271–2294. [Google Scholar] [CrossRef]
- Aboulfazli, F.; Salihin, A.; Misran, M. Effect of Vegetable Milks on the Physical and Rheological Properties of Ice Cream. Food Sci. Technol. Res. 2014, 20, 987–996. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000; Volume 9. [Google Scholar]
- AOAC. Hydrogen-Ion Activity (pH). In Official Methods of Analysis; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 1990. [Google Scholar]
- AOAC International. 41.1.28A AOAC Official Method 996.06 Fat (Total, Saturated, and in Foods. Hydrolytic Extraction Gas Chromatographic Method Unsaturated). In Official Methods of Analysis of AOAC International; AOAC International: Arlington, TX, USA, 2001. [Google Scholar]
- Karaca, O.B.; Güven, M.; Yasar, K.; Kaya, S.; Kahayoglu, T. The functional, rheological and sensory characteristics of ice creams with various fat replacers. Int. J. Dairy Technol. 2009, 62, 93–99. [Google Scholar] [CrossRef]
- Herald, T.J.; Aramouni, F.M.; Mahmoud, A.-G. Comparison study of egg yolks and egg alternatives in French vanilla ice cream. J. Texture Stud. 2008, 39, 284–295. [Google Scholar] [CrossRef]
- Varela, P.; Pintor, A.; Fiszman, S. How hydrocolloids affect the temporal oral perception of ice cream. Food Hydrocoll. 2014, 36, 220–228. [Google Scholar] [CrossRef]
- Kozłowicz, K.; Nazarewicz, S.; Różyło, R.; Nastaj, M.; Parafiniuk, S.; Szmigielski, M.; Bieńczak, A.; Kozłowicz, N. The Use of Moldavian Dragonhead Bagasse in Shaping the Thermophysical and Physicochemical Properties of Ice Cream. Appl. Sci. 2021, 11, 8598. [Google Scholar] [CrossRef]
- Hua, Z.; Jianle, C.; Junhui, L.; Chaoyang, W.; Xingqian, Y.; John, S.; Shiguo, C. Pectin from citrus canning wastewater as potential fat replacer in ice cream. Molecules 2018, 23, 925. [Google Scholar]
- Makinen, O.E.; Wanhalinna, V.; Zannini, E.; Arend, T.E.K. Foods for special dietary needs: Non-dairy plantbased milk substitutes and fermented dairy type products. Crit. Rev. Food Sci. Nutr. 2016, 56, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Elsamani, M.O. Probiotics, organoleptic and physicochemical properties of vegetable milkbased bio-ice cream supplemented with skimmed milk powder. Int. J. Nutr. Food Sci. 2016, 5, 361–366. [Google Scholar] [CrossRef] [Green Version]
- Shinyoung, K.; Stephen, L.M.; Juan, L.S.; Wesley, S.M.; Lurdes, S.W. Sensory and nutritional characteristics of concept frozen desserts made from underutilized sweetpotato roots. Hort.Technol. 2021, 31, 259–265. [Google Scholar]
- Adapa, S.; Dingeldein, H.; Schmidt, K.A.; Herald, T.H. Rheological properties of ice cream mixes and frozen ice creams containing fat and fat replacers. J. Dairy Sci. 2000, 83, 2224–2229. [Google Scholar] [CrossRef]
- Dervisoglu, M.; Yazici, F.; Ayedemir, O. The effect of soy protein concentrate addition on the physical, chemical, and sensory properties of strawberry flavored ice cream. Eur. Food Res. Technol. 2005, 221, 466–470. [Google Scholar] [CrossRef]
- Muse, M.R.; Hartel, R.W. Ice cream structural elements that affect melting rate and hardness. J. Dairy Sci. 2004, 87, 1–10. [Google Scholar] [CrossRef]
- Mahdian, E.; Karazhian, R. Effects of Fat Replacers and Stabilizers on Rheological, Physicochemical and Sensory Properties of Reduced-fat Ice Cream. JAST 2013, 15, 1163–1174. [Google Scholar]
- David-Birman, T.; Romano, A.; Aga, A.; Pascoviche, D.; Davidovich-Pinhas, D.; Lesmes, U. Impact of silkworm pupae (Bombyx mori) powder on cream foaming, ice cream properties and palatability. Innov. Food Sci. Emerg. Technol. 2022, 75, 102874. [Google Scholar] [CrossRef]
Samples | % Dietary Fiber | Volume of Milk (mL) | % Almonds/Hemp Flour | % Agave Syrup | Vanilin % |
---|---|---|---|---|---|
A_Psy | 0 | 100 | 3 | 5 | 1 |
A1_Psy | 2 | 100 | 3 | 5 | 1 |
A2_Psy | 4 | 100 | 3 | 5 | 1 |
A3_Psy | 6 | 100 | 3 | 5 | 1 |
A4_Psy | 8 | 100 | 3 | 5 | 1 |
A5_Psy | 10 | 100 | 3 | 5 | 1 |
H_Pec | 0 | 100 | 3 | 5 | 1 |
H1_Pec | 2 | 100 | 3 | 5 | 1 |
H2_Pec | 4 | 100 | 3 | 5 | 1 |
H3_Pec | 6 | 100 | 3 | 5 | 1 |
H4_Pec | 8 | 100 | 3 | 5 | 1 |
H5_Pec | 10 | 100 | 3 | 5 | 1 |
Sample | Physicochemical Parameters | ||||
---|---|---|---|---|---|
Titratable Acidity, g Lactic Acid/100 g of Total Solids | pH | Soluble Solids, °Brix | Fat, % | Protein, % | |
A0_Psy | h | a | 0.01 b | 0.03 c | 0.03 f |
A1_Psy | 0.01 g | 0.01 a | a | 0.03 d | 0.03 f |
A2_Psy | 0.01 g | 0.02 a | a | 0.04 e | 0.02 e |
A3_Psy | 0.01 g | 0.01 a | 0.01 b | 0.04 d | 0.03 e |
A4_Psy | 0.01 g | 0.03 a | 0.03 b | 0.02 c | 0.03 d |
A5_Psy | 0.02 g | 0.02 a | 0.04 b | 0.01 e | 0.02 d |
H0_Pec | f | 0.02 b | 0.03 d | 0.01 b | 0.02 c |
H1_Pec | 0.02 e | 0.03 b | 0.04 d | b | 0.02 c |
H2_Pec | d | 0.02 c | 0.04 c | 0.04 a | 0.01 b |
H3_Pec | 0.02 c | 0.01 c | 0.03 c | 0.04 a | 0.02 b |
H4_Pec | 0.04 b | 0.01 d | 0.03 d | 0.04 a | 0.01 a |
H5_Pec | a | 0.01 e | 0.03 c | 0.03 b | 0.03 b |
Variables | G″ Pa | G′ Pa | Viscosity | Titratable Acidity | pH | Soluble Solids | Fat | Protein |
---|---|---|---|---|---|---|---|---|
G″ Pa | 1 | 0.990 | 0.001 | 0.346 | −0.365 | −0.409 | 0.446 | 0.238 |
G′ Pa | 0.990 | 1 | 0.079 | 0.455 | −0.460 | −0.487 | 0.517 | 0.341 |
viscosity | 0.001 | 0.079 | 1 | 0.453 | −0.697 | −0.748 | 0.710 | 0.792 |
Titratable acidity | 0.346 | 0.455 | 0.453 | 1 | −0.871 | −0.722 | 0.753 | 0.845 |
pH | −0.365 | −0.460 | −0.697 | −0.871 | 1 | 0.942 | −0.970 | −0.964 |
Soluble solids | −0.409 | −0.487 | −0.748 | −0.722 | 0.942 | 1 | −0.960 | −0.904 |
Fat | 0.446 | 0.517 | 0.710 | 0.753 | −0.970 | −0.960 | 1 | 0.924 |
Protein | 0.238 | 0.341 | 0.792 | 0.845 | −0.964 | −0.904 | 0.924 | 1 |
Formulation | Attributes of Sensory Acceptance | ||||
---|---|---|---|---|---|
Flavor | Taste | Appearance | Consistency | Overall Acceptability | |
A0_Psy | 0.17 d | d | b | f | d |
A1_Psy | b | c | b | e | 0.03 c |
A2_Psy | c | c | b | d | 0.03 c |
A3_Psy | c | c | b | c | b |
A4_Psy | b | c | b | 0.22 b | 0.02 b |
A5_Psy | b | b | a | a | b |
H0_Pec | e | d | 0.07 e | 0.20 e | e |
H1_Pec | 0.31 d | e | e | 0.16 d | 0.01 d |
H2_Pec | 0.09 e | d | d | d | c |
H3_Pec | d | c | 0.00 d | 0.21 c | 0.01 c |
H4_Pec | c | b | c | 0.17 b | c |
H5_Pec | 0.14 a | a | a | a | a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leahu, A.; Ropciuc, S.; Ghinea, C. Plant-Based Milks: Alternatives to the Manufacture and Characterization of Ice Cream. Appl. Sci. 2022, 12, 1754. https://doi.org/10.3390/app12031754
Leahu A, Ropciuc S, Ghinea C. Plant-Based Milks: Alternatives to the Manufacture and Characterization of Ice Cream. Applied Sciences. 2022; 12(3):1754. https://doi.org/10.3390/app12031754
Chicago/Turabian StyleLeahu, Ana, Sorina Ropciuc, and Cristina Ghinea. 2022. "Plant-Based Milks: Alternatives to the Manufacture and Characterization of Ice Cream" Applied Sciences 12, no. 3: 1754. https://doi.org/10.3390/app12031754
APA StyleLeahu, A., Ropciuc, S., & Ghinea, C. (2022). Plant-Based Milks: Alternatives to the Manufacture and Characterization of Ice Cream. Applied Sciences, 12(3), 1754. https://doi.org/10.3390/app12031754