Assessment of Potentially Toxic Elements and Associated Health Risk in Bottled Drinking Water for Babies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Sample Preparation
2.3. Equipment
2.4. Analytical Method
2.5. Estimation of Potentially Toxic Elements Content
2.6. Health Risk Assessment
2.6.1. Non-Carcinogenic Analysis
2.6.2. Carcinogenic Analysis
Element | RfDoral (mg/kg) | CSForal (mg/kg/day) |
---|---|---|
Ba | 7.0 × 10−2 a | - |
Co | 2.0 × 10−2 b | - |
Cu | 3.7 × 10−2 b | - |
Zn | 3.0 × 10−1 b | - |
Mn | 4.7 × 10−2 c | - |
Ni | 2.0 × 10−2 b | 8.4 × 10−1 a |
Li | 2.8 × 10−2 d | - |
Fe | 7.0 × 10−2 e | - |
Pb | 3.6 × 10−3 b | 8.50 a |
Cd | 5.0 × 10−4 b | 6.10 a |
Cr | 3.0 × 10−3 b | 4.1 × 101 a |
Sb | 3.5 × 10−4 f | - |
3. Results
3.1. Estimation of Potentially Toxic Elements Content
3.2. Health Risk Assessment
3.2.1. Non-Carcinogenic Analysis
Element | Heavy Metals Levels (µg/L) | Detection Rate (%) | Law No. 311/2004 (µg/L) [38] | Directive EU 2020/2184 (µg/L) [39] | ||
---|---|---|---|---|---|---|
Min | Max | Mean | ||||
Ba | <0.09 | 1.68 × 101 ± 0.32 | 3.87 ± 0.19 | 68.42 | - | - |
Co | <0.10 | 2.50 × 10−1 ± 0.01 | 7.0 × 10−2 ± 0.01 | 47.37 | - | - |
Cu | <0.09 | 1,73 ± 0.03 | 9.60 × 10−1 ± 0.02 | 100 | 100 | 2000 |
Zn | 9.60 × 10−1 ± 0.07 | 4.47 ± 0.22 | 2.04 ± 0.07 | 100 | 5000 | - |
Mn | <0.09 | 4.17 ± 0.20 | 3.50 × 10−1 ± 0.04 | 42.11 | 50 | 50 |
Ni | 3.10 × 10−1 ± 0.01 | 2.25 ± 0.06 | 1.02 ± 0.04 | 100 | 20 | 20 |
Li | <0.11 | 7.09 ± 0.43 | 1.69 ± 0.08 | 84.21 | - | - |
Fe | 6.24 × 101 ± 6.13 | 1.69 × 103 ± 3.92 × 101 | 4.95 × 102 ± 1.82 × 101 | 100 | 200 | 200 |
Pb | 1.10 × 10−1 ± 0.01 | 1.79 ± 0.02 | 4.30 × 10−1 ± 1.0 × 10−2 | 100 | 10 | 5 |
Cd | <0.09 | < 0.09 | - | 0 | 5 | 5 |
Cr | <0.10 | 1.60 × 10−1 ± 0.01 | 1.0 × 10−2 0.00 | 10.53 | 50 | 25 |
Sb | <0.07 | 1.30 × 10−1 ± 0.00 | 3.0 × 10−2 ± 0.00 | 31.58 | 5 | 10 |
Element | Exposure Dose (µg·kg−1·day−1) | Hazard Quotient | Cancer Risk | ||||||
---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | |
Ba | 0.00 | 1.68 × 10−3 | 3.87 × 10−4 | 0.00 | 2.39 × 10−2 | 5.52 × 10−3 | - | - | - |
Co | 0.00 | 2.50 × 10−5 | 7.95 × 10−6 | 0.00 | 1.25 × 10−3 | 4.19 × 10−4 | - | - | - |
Cu | 3.80 × 10−5 | 1.75 × 10−4 | 9.6 × 10−5 | 4.25 × 10−3 | 4.73 × 10−2 | 2.54 × 10−2 | - | - | - |
Zn | 9.60 × 10−4 | 4.47 × 10−4 | 2.04 × 10−4 | 3.20 × 10−4 | 1.49 × 10−3 | 6.18 × 10−4 | - | - | - |
Mn | 0.00 | 4.17 × 10−4 | 3.51 × 10−5 | 0.00 | 9.07 × 10−3 | 7.62 × 10−4 | - | - | - |
Ni | 3.10 × 10−5 | 2.25 × 10−4 | 1.06 × 10−4 | 1.55 × 10−3 | 1.13 × 10−2 | 5.12 × 10−3 | 2.60 × 10−5 | 1.89 × 10−4 | 8.61 × 10−5 |
Li | 0.00 | 7.28 × 10−4 | 1.72 × 10−4 | 0.00 | 2.60 × 10−2 | 6.13 × 10−3 | - | - | - |
Fe | 6.20 × 10−3 | 1.69 × 10−1 | 4.93 × 10−2 | 8.86 × 10−1 | 2.41 × 101 | 7.05 | - | - | - |
Pb | 1.10 × 10−5 | 1.79 × 10−4 | 4.36 × 10−5 | 3.06 × 10−3 | 4.97 × 10−2 | 1.21 × 10−2 | 9.35 × 10−5 | 1.52 × 10−3 | 3.63 × 10−4 |
Cd | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Cr | 0.00 | 1.6 0× 10−5 | 1.32 × 10−6 | 0.00 | 5.33 × 10−3 | 4.39 × 10−4 | 0.00 | 6.56 × 10−4 | 5.39 × 10−5 |
Sb | 0.00 | 1.30 × 10−5 | 1.63 × 10−6 | 0.00 | 4.33 × 10−3 | 5.44 × 10−4 | - | - | - |
Hazard Quotient | Description | Hazard Index | Description | Cancer Risk | Description | Total Cancer Risk | Description |
---|---|---|---|---|---|---|---|
≤1 | repeated exposure not cause side effects | ≤1 | repeated exposure not cause side effects | <1 × 10−6 | tolerable | <1 × 10−6 | insignificant |
>1 | repeated exposure causes a potential risk | >1 | repeated exposure can produce side effects | 1 × 10−6–1 × 10−4 | tolerable range | 1 × 10−5 | acceptable level |
- | - | - | - | >1 × 10−4 | intolerable | >1 × 10−4 | harmful |
3.2.2. Carcinogenic Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, J.; Lu, J.; Zhang, C.; Zhang, Y.; Lin, Y.; Xu, J. Pollution, sources and risks of heavy metals in coastal waters of China. Hum. Ecol. Risk Assess. 2019, 26, 2011–2026. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metals toxicity and the environment. Exp. Suppl. 2012, 101, 133–164. [Google Scholar] [PubMed] [Green Version]
- Alidadi, H.; Sany, S.B.T.; Oftadeh, B.Z.G.; Mohamad, T.; Shamszade, H.; Fakhri, M. Health risk assessments of arsenic and toxic heavy metal exposure in drinking water in northeast Iran. Environ. Health Prev. Med. 2019, 24, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Likuku, A.S.; Mmolawa, K.B.; Gaboutloeloe, G.K. Assessment of heavy metal enrichment and degree of contamination around the copper-nickel mine in the Selebi Phikwe Region, Eastern Botswana. Environ. Ecol. Res. 2013, 1, 32–40. [Google Scholar] [CrossRef]
- Masindi, V.; Muedi, K.L. Environmental Contamination by Heavy Metals. In Heavy Metals, 1st ed.; Aglan, R.F., Ed.; IntechOpen: London, UK, 2018; pp. 115–133. [Google Scholar]
- Shen, F.; Mao, L.; Sun, R.; Du, J.; Tan, Z.; Ding, M. Contamination evaluation and source identification of heavy metals in the sediments from the Lishui River Watershed, Southern China. Int. J. Environ. Res. 2019, 16, 336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Xion, Y.; Chao, Y.; Fan, R.; Ren, R.; Xu, B.; Liu, Z. Hydrogeochemistry and quality assessment of groundwater in Jinghui canal irrigation district of China. Hum. Ecol. Risk Assess. 2020, 26, 2349–2366. [Google Scholar] [CrossRef]
- Shirani, M.; Afzali, K.N.; Jahan, S.; Strezov, V.; Soleimani-Sardo, M. Pollution and contamination assessment of heavy metals in the sediments of Jazmurian playa in southeast Iran. Nat. Sci. Rep. 2020, 10, 4775. [Google Scholar] [CrossRef]
- Rehman, A.U.; Nazir, S.; Irshad, R.; Tahir, K.; Rehman, K.; Ul Islam, R.; Wahab, Z. Toxicity of heavy metals in plants and animals and their uptake by magnetic iron oxide nanoparticles. J. Mol. Liq. 2021, 321, 114455. [Google Scholar] [CrossRef]
- Yin, Z.; Duan, R.; Li, P.; Li, W. Water quality characteristics and health risk assessment of main water supply reservoirs in Taizhou City, East China. Hum. Ecol. Risk Assess. 2021, 27, 2142–2160. [Google Scholar] [CrossRef]
- Rishi, M.S.; Kaur, L.; Sharma, S. Groundwater quality appraisal for non-carcinogenic human health risks and irrigation purposes in a part of Yamuna sub-basin, India. Hum. Ecol. Risk Assess. 2019, 26, 2716–2736. [Google Scholar] [CrossRef]
- Alsafran, M.; Usman, K.; Rizwan, M.; Ahmed, T.; Al Jabri, H. The Carcinogenic and Non-Carcinogenic Health Risks of Metal(oid)s Bioaccumulation in Leafy Vegetables: A Consumption Advisory. Front. Environ. Sci. 2021, 9, 742269. [Google Scholar] [CrossRef]
- Son, C.T.; Giang, N.T.H.; Thao, T.P.; Nui, N.H.; Lam, N.T.; Cong, V.H. Assessment of Cau River water quality assessment using a combination of water quality and pollution indices. J. Water Supply Res. Technol.-Aqua 2020, 69, 160–172. [Google Scholar] [CrossRef]
- Beal, J.A. Heavy metals in baby food: What providers and parents need to know. MCN 2020, 45, 125. [Google Scholar] [CrossRef] [PubMed]
- Decharat, D.; Pan-in, P. Risk assessment of lead and cadmium in drinking water for school use in Nakhon Si Thammarat Province, Thailand. Environ. Anal. Health Toxicol. 2020, 35, e2020002. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Peleka, J.C.M.; Diop, C.; Foko, R.F.; Saffe, M.L.; Fall, M. Health risk assessment of trace metals in drinking water consumed in Dakar, Senegal. J. Water Resour. Prot. 2021, 13, 915–930. [Google Scholar] [CrossRef]
- Turner, A.; Filella, M. Hazardous metal additives in plastics and their environmental impacts. Environ. Int. 2021, 156, 106622. [Google Scholar] [CrossRef]
- Allafi, A.R. The effect of temperature and storage time on the migration of antimony from polyethylene terephthalate (PET) into commercial bottled water in Kuwait. Acta Biomed. 2020, 91, e2020105. [Google Scholar]
- Chapa-Martínez, C.A.; Hinojosa-Reyes, L.; Hernández-Ramírez, A.; Ruiz-Ruiz, E.; Maya-Treviño, L.; Guzmán-Mar, J.L. An evaluation of the migration of antimony from polyethylene terephthalate (PET) plastic used for bottled drinking water. Sci. Total Environ. 2016, 565, 511–518. [Google Scholar] [CrossRef]
- Qiao, F.; Lei, K.; Li, Z.; Liu, Q.; Wei, Z.; An, L.; Cui, S. Effects of storage temperature and time of antimony release from PET bottles into drinking water in China. Environ. Sci. Pollut. Res. 2018, 25, 1388–1393. [Google Scholar] [CrossRef]
- Filella, M. Antimony and PET: Checking facts. Chemosphere 2020, 261, 127732. [Google Scholar] [CrossRef]
- Fan, Y.Y.; Zheng, J.L.; Ren, J.H.; Luo, J.; Cui, X.Y.; Ma, L.Q. Effects of storage temperature and duration on release of antimony and bisphenol A from polyethylene terephthalate drinking water bottles of China. Environ. Pollut. 2014, 192, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Faraji, M.; Taherkhani, A.; Nemati, S.; Mohammadi, A. Challenges in the use of polyethylene terephthalate bottles for packaging drinking water. J. Biomed. Health 2017, 2, 224–229. [Google Scholar]
- Payan, L.; Poyatos, M.T.; Munoz, L.; La Rubia, M.D.; Pacheco, R.; Ramos, N. Study of the influence of storage conditions on the quality and migration levels of antimony in polyethylene terephthalate-bottled water. Food Sci. Technol. Int. 2017, 23, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Environmental Protection Agency. SW-846 Test Method 3010A: Acid Digestion of Aqueous Samples and Extracts for Total Metals for Analysis by Flame Atomic Absorption Spectroscopy (FLAA) or Inductively Coupled Plasma Spectroscopy (ICP); United States Environmental Protection Agency: Washington, DC, USA, 1992.
- Magnusson, B.; Örnemark, U. (Eds.) Eurachem Guide: The Fitness for Purpose of Analytical Methods—A Laboratory Guide to Method Validation and Related Topics, 2nd ed.; Eurachem: Teddington, UK, 2014. [Google Scholar]
- EN ISO/IEC 17025; General Requirements for the Competence of Testing and Calibration Laboratories. International Organization for Standardization: Geneva, Switzerland, 2018.
- Mohammad, A.A.; Zarei, A.; Majidi, S.; Ghaderpoury, A.; Hashempour, Y.; Saghi, M.Y.; Hosseingholizadeh, N.; Ghaderpoori, M. Carcinogenic and non-carcinogenic health risk assessment of heavy metals in drinking water of Khorramabad, Iran. MethodsX 2019, 6, 1642–1651. [Google Scholar] [CrossRef] [PubMed]
- Public Health Assessment Guidance Manual; Agency for Toxic Substances and Disease Registry (ATSDR): Atlanta, GA, USA, 2005.
- Goumenou, M.; Tsatsakis, A. Proposing new approaches for the risk characterisation of single chemicals and chemical mixtures: The source related Hazard Quotient (HQS) and Hazard Index (HIS) and the adversity specific Hazard Index (HIA). Toxicol. Rep. 2019, 6, 632–636. [Google Scholar] [CrossRef]
- Sultana, M.; Rana, S.; Yamazaki, S.; Aono, T.; Yoshida, S. Health risk assessment for carcinogenic and non-carcinogenic heavy metal exposures from vegetables and fruits of Bangladesh. Cogent. Environ. Sci. 2017, 3, 1291107. [Google Scholar] [CrossRef]
- Kamunda, C.; Mathuthu, M.; Madhuku, M. Health risk assessment of heavy metals in soils from Witwatersrand Gold Mining Basin, South Africa. Int. J. Environ. Res. 2016, 13, 663. [Google Scholar] [CrossRef]
- Manganese Chemical Update Worksheet. Available online: https://www.michigan.gov/documents/deq/deq-rrd-chem-ManganeseDatasheet_527860_7.pdf (accessed on 3 January 2022).
- Lithium Chemical Update Worksheet. Available online: https://www.michigan.gov/documents/deq/deq-rrd-chem-LithiumDatasheet_527862_7.pdf (accessed on 3 January 2022).
- Anyawu, A.D.; Onyele, O.G. Human health risk assessment of some heavy metals in a rural spring, Southeastern Nigeria. Afr. J. Environ. Nat. Sci. Res. 2018, 1, 15–23. [Google Scholar]
- Antimony Chemical Update Worksheet. Available online: https://www.michigan.gov/documents/deq/deq-rrd-chem-AntimonyDatasheet_527730_7.pdf (accessed on 3 January 2022).
- LAW No. 311 of June 28, 2004 for the Amendment and Completion of Law No. 458/2002 on Water Quality, Issuer: Parliament, Published in: Official Monitor NO. 582 of June 30, 2004. Available online: http://www.namr.ro/wp-content/uploads/2013/02/legea311.pdf (accessed on 4 January 2022).
- Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption. Available online: http://data.europa.eu/eli/dir/2020/2184/oj (accessed on 4 January 2022).
Parameter Description | Current Value |
---|---|
Sample introduction | Spray chamber |
Radio Frequency Generator | Free running type, 40 MHz |
Radio Frequency power | 1000 W |
Nebulizer Gas Flow | 0.89 L/min |
Auxiliary Gas Flow | 1.20 L/min |
Plasma Gas Flow | 16 L/min |
Sample Uptake Flow | 1.0 mL/min |
Dual Detector Mode | Pulse |
Torch Z position | 0.00 mm |
Analytical masses Ba, Co, Cu, Zn, Mn, Ni, Li, Fe, Pb, Cd, Cr, Sb mass | Standard mode 138, 59, 63, 66, 55, 27, 60, 7, 57, 208, 111, 52, 121 |
Scanning mode | Peak hopping |
Number of replicates | 3 |
Wash | Time (45), speed (±rpm)–24 |
Sample flush | Time (35), speed (±rpm)–24 |
Read delay | Time (15), speed (±rpm)–20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ungureanu, E.L.; Mustatea, G.; Popa, M.E. Assessment of Potentially Toxic Elements and Associated Health Risk in Bottled Drinking Water for Babies. Appl. Sci. 2022, 12, 1914. https://doi.org/10.3390/app12041914
Ungureanu EL, Mustatea G, Popa ME. Assessment of Potentially Toxic Elements and Associated Health Risk in Bottled Drinking Water for Babies. Applied Sciences. 2022; 12(4):1914. https://doi.org/10.3390/app12041914
Chicago/Turabian StyleUngureanu, Elena L., Gabriel Mustatea, and Mona Elena Popa. 2022. "Assessment of Potentially Toxic Elements and Associated Health Risk in Bottled Drinking Water for Babies" Applied Sciences 12, no. 4: 1914. https://doi.org/10.3390/app12041914
APA StyleUngureanu, E. L., Mustatea, G., & Popa, M. E. (2022). Assessment of Potentially Toxic Elements and Associated Health Risk in Bottled Drinking Water for Babies. Applied Sciences, 12(4), 1914. https://doi.org/10.3390/app12041914