Reducing the Total Product Cost at the Product Design Stage
Abstract
:1. Introduction
2. Literature Review
2.1. The Product Design Stage
2.2. The Total Product Cost
2.3. Business Analytics in Product Development
3. A Data-Driven Approach to Reducing the Total Product Cost
3.1. Problem Specification
- What is the total product cost (including product development, production, and after-sales cost)?;
- What values should the variables have to reduce the total product cost?
3.2. A Method of Developing a Decision Support System
4. An Example of Business Analytics for New Product Performance
4.1. Descriptive Analytics
4.2. Predictive Analytics
4.3. Prescriptive Analytics
4.3.1. Identifying Possible Variants of Reducing the Total Product Cost
4.3.2. A Sensitivity Analysis for Evaluating the Net Present Value
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Paczkowski, W.R. Deep Data Analytics for New Product Development; Routledge: London, UK, 2020. [Google Scholar]
- Rayna, T.; Striukova, L. From rapid prototyping to home fabrication: How 3D printing is changing business model innovation. Technol. Forecast. Soc. Change 2016, 102, 214–224. [Google Scholar] [CrossRef] [Green Version]
- Newnes, L.B.; Mileham, A.R.; Cheung, W.M.; Marsh, R.; Lanham, J.D.; Saravi, M.E.; Bradbery, R.W. Predicting the whole-life cost of a product at the conceptual design stage. J. Eng. Des. 2008, 19, 99–112. [Google Scholar] [CrossRef]
- Nielsen, P.; Banaszak, Z.; Bocewicz, G.; Janardhanan, M.N. Intelligent manufacturing/production systems: Modeling, algorithms, and optimization. Adv. Mech. Eng. 2018, 10. [Google Scholar] [CrossRef]
- Rajab, S.; Sharma, V. A review on the applications of neuro-fuzzy systems in business. Artif. Intell. Rev. 2018, 49, 481–510. [Google Scholar] [CrossRef]
- Zarandi, M.H.; Asl, A.A.; Sotudian, S.; Castillo, O. A state of the art review of intelligent scheduling. Artif. Intell. Rev. 2020, 53, 501–593. [Google Scholar] [CrossRef]
- Relich, M.; Nielsen, I. Estimating production and warranty cost at the early stage of a new product development project. IFAC-Pap. 2021, 54, 1092–1097. [Google Scholar] [CrossRef]
- Yannou, B.; Harmel, G. A comparative study of constraint programming techniques over intervals in preliminary design. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Salt Lake City, UT, USA, 28 September–2 October 2004; pp. 189–198. [Google Scholar]
- Yang, D.; Dong, M. A constraint satisfaction approach to resolving product configuration conflicts. Adv. Eng. Inform. 2012, 26, 592–602. [Google Scholar] [CrossRef]
- Relich, M.; Świć, A. Parametric estimation and constraint programming-based planning and simulation of production cost of a new product. Appl. Sci. 2020, 10, 6330. [Google Scholar] [CrossRef]
- Kuster, J.; Huber, E.; Lippmann, R.; Schmid, A.; Schneider, E.; Witschi, U.; Wüst, R. Project Management Handbook; Springer: Heidelberg, Germany, 2015. [Google Scholar]
- Spalek, S. Data Analytics in Project Management; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Ma, H.; Chu, X.; Xue, D.; Chen, D. A systematic decision making approach for product conceptual design based on fuzzy morphological matrix. Expert Syst. Appl. 2017, 81, 444–456. [Google Scholar] [CrossRef]
- Kang, Y.; Tang, D. Matrix-based computational conceptual design with ant colony optimisation. J. Eng. Des. 2013, 24, 429–452. [Google Scholar] [CrossRef]
- Zhang, Z.; Chu, X. A new approach for conceptual design of product and maintenance. Int. J. Comput. Integr. Manuf. 2010, 23, 603–618. [Google Scholar] [CrossRef]
- Raharjo, H.; Brombacher, A.C.; Xie, M. Dealing with subjectivity in early product design phase: A systematic approach to exploit Quality Function Deployment potentials. Comput. Ind. Eng. 2008, 55, 253–278. [Google Scholar] [CrossRef]
- Eppinger, S.D.; Browning, T.R. Design Structure Matrix Methods and Applications; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Barbati, M.; Bruno, G.; Genovese, A. Applications of agent-based models for optimization problems: A literature review. Expert Syst. Appl. 2012, 39, 6020–6028. [Google Scholar] [CrossRef]
- Afshari, H.; Peng, Q. Modeling and quantifying uncertainty in the product design phase for effects of user preference changes. Ind. Manag. Data Syst. 2015, 119, 1637–1665. [Google Scholar] [CrossRef]
- Obitko, M.; Jirkovský, V.; Bezdíček, J. Big data challenges in industrial automation. In Industrial Applications of Holonic and Multi-Agent Systems; Springer: Berlin/Heidelberg, Germany, 2013; pp. 305–316. [Google Scholar]
- Raoufi, K.; Haapala, K.R.; Jackson, K.L.; Kim, K.Y.; Kremer, G.E.; Psenka, C.E. Enabling non-expert sustainable manufacturing process and supply chain analysis during the early product design phase. Procedia Manuf. 2017, 10, 1097–1108. [Google Scholar] [CrossRef]
- Jasiulewicz-Kaczmarek, M.; Antosz, K.; Wyczółkowski, R.; Mazurkiewicz, D.; Sun, B.; Qian, C.; Ren, Y. Application of MICMAC, Fuzzy AHP, and Fuzzy TOPSIS for Evaluation of the Maintenance Factors Affecting Sustainable Manufacturing. Energies 2021, 14, 1436. [Google Scholar] [CrossRef]
- Jasiulewicz-Kaczmarek, M.; Żywica, P.; Gola, A. Fuzzy set theory driven maintenance sustainability performance model: A multiple criteria approach. J. Intell. Manuf. 2021, 32, 1497–1515. [Google Scholar] [CrossRef]
- Peralta, M.E.; Alcalá, N.; Soltero, V.M. Weighting with life cycle assessment and cradle to cradle: A methodology for global sustainability design. Appl. Sci. 2021, 11, 9042. [Google Scholar] [CrossRef]
- Niemann, J.; Tichkiewitch, S.; Westkämper, E. Design of Sustainable Product Life Cycles; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Sharma, J. A cross-disciplinary approach to product development and design through quality function deployment, target costing and value engineering. Int. J. Product. Qual. Manag. 2012, 9, 309–331. [Google Scholar] [CrossRef]
- Wiecek, D.; Wiecek, D.; Kuric, I. Cost estimation methods of machine elements at the design stage in unit and small lot production conditions. Manag. Syst. Prod. Eng. 2019, 27, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Cavalieri, S.; Maccarrone, P.; Pinto, R. Parametric vs. neural network models for the estimation of production costs: A case study in the automotive industry. Int. J. Prod. Econ. 2004, 91, 165–177. [Google Scholar] [CrossRef]
- Liu, H.; Gopalkrishnan, V.; Quynh, K.T.; Ng, W.K. Regression models for estimating product life cycle cost. J. Intell. Manuf. 2009, 20, 401–408. [Google Scholar] [CrossRef]
- Kumar, P.S.; Behera, H.S.; Kumari, A.; Nayak, J.; Naik, B. Advancement from neural networks to deep learning in software effort estimation: Perspective of two decades. Comput. Sci. Rev. 2020, 38, 100288. [Google Scholar] [CrossRef]
- Habibi, F.; Birgani, O.; Koppelaar, H.; Radenović, S. Using fuzzy logic to improve the project time and cost estimation based on Project Evaluation and Review Technique (PERT). J. Proj. Manag. 2018, 3, 183–196. [Google Scholar] [CrossRef]
- Ciesla, B.; Mleczko, J. Practical application of fuzzy logic in production control systems of engineer to order SMEs. Appl. Comput. Sci. 2021, 17, 17–25. [Google Scholar]
- Rudnik, K.; Bocewicz, G.; Kucińska-Landwójtowicz, A.; Czabak-Górska, I.D. Ordered fuzzy WASPAS method for selection of improvement projects. Expert Syst. Appl. 2021, 169, 114471. [Google Scholar] [CrossRef]
- Relich, M. Portfolio selection of new product projects: A product reliability perspective. Eksploat. I Niezawodn. Maint. Reliab. 2016, 18, 613–620. [Google Scholar] [CrossRef]
- Yassine, A.A.; Mostafa, O.; Browning, T.R. Scheduling multiple, resource-constrained, iterative, product development projects with genetic algorithms. Comput. Ind. Eng. 2017, 107, 39–56. [Google Scholar] [CrossRef]
- Prasad, K.D.; Subbaiah, K.V.; Rao, K.N. Multi-objective optimization approach for cost management during product design at the conceptual phase. J. Ind. Eng. Int. 2014, 10, 421–424. [Google Scholar]
- Park, J.H.; Seo, K.K.; Wallace, D.; Lee, K.I. Approximate product life cycle costing method for the conceptual product design. CIRP Ann. 2002, 51, 421–424. [Google Scholar] [CrossRef]
- Relich, M. Computational intelligence for estimating cost of new product development. Found. Manag. 2016, 8, 21–34. [Google Scholar] [CrossRef] [Green Version]
- Vidgen, R.; Shaw, S.; Grant, D.B. Management challenges in creating value from business analytics. Eur. J. Oper. Res. 2017, 261, 626–639. [Google Scholar] [CrossRef]
- Mikalef, P.; Pappas, I.O.; Krogstie, J.; Giannakos, M. Big data analytics capabilities: A systematic literature review and research agenda. Inf. Syst. E-Bus. Manag. 2018, 16, 547–578. [Google Scholar] [CrossRef]
- Lepenioti, K.; Bousdekis, A.; Apostolou, D.; Mentzas, G. Prescriptive analytics: Literature review and research challenges. Int. J. Inf. Manag. 2020, 50, 57–70. [Google Scholar] [CrossRef]
- Davenport, T.; Harris, J. Competing on Analytics: Updated, with A New Introduction: The New Science of Winning; Harvard Business Press: Harvard, MA, USA, 2017. [Google Scholar]
- Krumeich, J.; Werth, D.; Loos, P. Prescriptive control of business processes. Bus. Inf. Syst. Eng. 2016, 58, 261–280. [Google Scholar] [CrossRef]
- Sun, K.; Li, Y.; Roy, U. A PLM-based data analytics approach for improving product development lead time in an engineer-to-order manufacturing firm. Math. Model. Eng. Probl. 2017, 4, 69–74. [Google Scholar] [CrossRef]
- Bertsimas, D.; Kallus, N. From predictive to prescriptive analytics. Manag. Sci. 2020, 66, 1025–1044. [Google Scholar] [CrossRef] [Green Version]
- Aljumah, A.I.; Nuseir, M.T.; Alam, M.M. Traditional marketing analytics, big data analytics and big data system quality and the success of new product development. Bus. Process. Manag. J. 2021, 29, 1108–1125. [Google Scholar] [CrossRef]
- Ali, S.; Poulova, P.; Yasmin, F.; Danish, M.; Akhtar, W.; Usama Javed, H.M. How Big Data Analytics Boosts Organizational Performance: The Mediating Role of the Sustainable Product Development. J. Open Innov. Technol. Mark. Complex. 2020, 6, 190. [Google Scholar] [CrossRef]
- Jank, M.H.; Dölle, C.; Schuh, G. Product portfolio design using prescriptive analytics. In Congress of the German Academic Association for Production Technology; Springer: Berlin/Heidelberg, Germany, 2018; pp. 584–593. [Google Scholar]
- Kaushal, A.; Shukla, M. Comparative analysis to highlight pros and cons of data mining techniques-clustering, neural network and decision tree. Int. J. Comput. Sci. Inf. Technol. 2014, 5, 651–656. [Google Scholar]
- Klein, P.; van der Vegte, W.F.; Hribernik, K.; Klaus-Dieter, T. Towards an approach integrating various levels of data analytics to exploit product-usage information in product development. In Proceedings of the Design Society: International Conference on Engineering Design, Delft, The Netherlands, 5–8 August 2019; Cambridge University Press: Cambridge, UK, 2019; Volume 1, pp. 2627–2636. [Google Scholar]
- Banaszak, Z. CP-based decision support for project driven manufacturing. In Perspectives in Modern Project Scheduling; Springer: Boston, MA, USA, 2006; pp. 409–437. [Google Scholar]
- Ilhami, M.A.; Masruroh, N.A. A mathematical model at the detailed design phase in the 3DCE new product development. Comput. Ind. Eng. 2020, 146, 106617. [Google Scholar] [CrossRef]
- Ren, S.; Gui, F.; Zhao, Y.; Zhan, M.; Wang, W. An effective similarity determination model for case-based reasoning in support of low-carbon product design. Adv. Mech. Eng. 2020, 12. [Google Scholar] [CrossRef]
- Antosz, K.; Pasko, L.; Gola, A. The use of intelligent systems to support the decision-making process in lean maintenance management. IFAC Pap. 2019, 52, 148–153. [Google Scholar] [CrossRef]
- Sitek, P.; Wikarek, J. A multi-level approach to ubiquitous modeling and solving constraints in combinatorial optimization problems in production and distribution. Appl. Intell. 2017, 48, 1344–1367. [Google Scholar] [CrossRef] [Green Version]
Feature | fP | fR | SF |
---|---|---|---|
Number of components | 0.75 | 0.82 | 93% |
Product size | 0.66 | 0.74 | 92% |
Product weight | 0.54 | 0.66 | 88% |
Material consumption | 0.82 | 0.75 | 93% |
Product | SV (%) | NPD Cost (Thousands) | Material Cost | Production Cost | Energy Cost | Overhead Cost |
---|---|---|---|---|---|---|
P2001730 | 91.5 | 183 | 11.83 | 43.59 | 2.25 | 17.52 |
P2200081 | 89.8 | 210 | 9.77 | 37.90 | 2.21 | 17.52 |
P2001175 | 89.1 | 156 | 10.63 | 47.18 | 2.32 | 17.52 |
… | … | … | … | … | … | … |
Values of Variables | TC |
---|---|
V6 = 7, V7 = 98, V9 = 290 | 1099.54 |
… | … |
V6 = 7, V7 = 98, V9 = 284 | 1098.83 |
V6 = 7, V7 = 99, V9 = 288 | 1099.77 |
… | … |
V6 = 7, V7 = 99, V9 = 281 | 1099.05 |
V6 = 7, V7 = 100, V9 = 285 … | 1100.00 … |
V6 = 7, V7 = 100, V9 = 278 | 1099.28 |
Scenario | Unit Production Cost | Change in Cost | Total NPV (Thousand) | Change in Total NPV | Change in Total NPV (%) |
---|---|---|---|---|---|
Optimistic | 38.4 | −4.27 | 439.8 | 19.8 | 4.71% |
Basic | 42.7 | 0 | 420.0 | 0 | 0% |
Pessimistic | 47.0 | 4.27 | 400.2 | −19.8 | −4.71% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Relich, M.; Nielsen, I.; Gola, A. Reducing the Total Product Cost at the Product Design Stage. Appl. Sci. 2022, 12, 1921. https://doi.org/10.3390/app12041921
Relich M, Nielsen I, Gola A. Reducing the Total Product Cost at the Product Design Stage. Applied Sciences. 2022; 12(4):1921. https://doi.org/10.3390/app12041921
Chicago/Turabian StyleRelich, Marcin, Izabela Nielsen, and Arkadiusz Gola. 2022. "Reducing the Total Product Cost at the Product Design Stage" Applied Sciences 12, no. 4: 1921. https://doi.org/10.3390/app12041921
APA StyleRelich, M., Nielsen, I., & Gola, A. (2022). Reducing the Total Product Cost at the Product Design Stage. Applied Sciences, 12(4), 1921. https://doi.org/10.3390/app12041921