White Grape Pomace Valorization for Remediating Purposes
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Reagents
2.3. Polyhydroxy Phenol Compound Extraction
2.4. Total Phenol Content Determination
2.5. Antioxidant and Antiradical Activity
2.5.1. DPPH Method
2.5.2. ABTS Method
2.5.3. NBT Method
2.6. Amperometric Detection of Organophosphorus Compounds
2.7. Wastewater Parameters Analysis
3. Results
3.1. Total Phenol Content
3.2. Antioxidant and Antiradical Activity
3.3. Organophosphorus Compound Content
3.4. Wastewater Application Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amran, M.A.; Palaniveloo, K.; Fauzi, R.; Satar, N.M.; Mohidin, T.B.M.; Mohan, G.; Razak, S.A.; Arunasalam, M.; Nagappan, T.; Seelan, J.S.S. Value-Added Metabolites from Agricultural Waste and Application of Green Extraction Techniques. Sustainability 2021, 13, 11432. [Google Scholar] [CrossRef]
- Donner, M.; Gohier, R.; de Vries, H. A new circular business model typology for creating value from agro-waste. Sci. Total Environ. 2020, 716, 137065. [Google Scholar] [CrossRef] [PubMed]
- Donner, M.; Verniquet, A.; Broeze, J.; Kayser, K.; De Vries, H. Critical success and risk factors for circular business models valorising agricultural waste and by-products. Resour. Conserv. Recycl. 2020, 165, 105236. [Google Scholar] [CrossRef]
- Duque-Acevedo, M.; Belmonte-Ureña, L.J.; Yakovleva, N.; Camacho-Ferre, F. Analysis of the Circular Economic Production Models and Their Approach in Agriculture and Agricultural Waste Biomass Management. Int. J. Environ. Res. Public Health 2020, 17, 9549. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, R.; Ghosh, P.; Kumar, M.; Sengupta, S.; Gupta, A.; Kumar, S.; Vijay, V.; Kumar, V.; Vijay, V.K.; Pant, D. Valorization of agricultural waste for biogas based circular economy in India: A research outlook. Bioresour. Technol. 2020, 304, 123036. [Google Scholar] [CrossRef] [PubMed]
- Puglia, D.; Pezzolla, D.; Gigliotti, G.; Torre, L.; Bartucca, M.; Del Buono, D. The Opportunity of Valorizing Agricultural Waste, Through Its Conversion into Biostimulants, Biofertilizers, and Biopolymers. Sustainability 2021, 13, 2710. [Google Scholar] [CrossRef]
- Toop, T.A.; Ward, S.; Oldfield, T.; Hull, M.; Kirby, M.E.; Theodorou, M.K. AgroCycle—developing a circular economy in agriculture. In Proceedings of the 1st International Conference on Sustainable Energy and Resource Use in Food Chains (ICFES)/Symposium on Heat Recovery and Efficient Conversion and Utilisation of Waste Heat, Windsor, UK, 19–20 April 2017; Elsevier Science BV: Windsor, UK, 2017; pp. 76–80. [Google Scholar]
- Yaashikaa, P.; Kumar, P.S.; Varjani, S. Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: A critical review. Bioresour. Technol. 2021, 343, 126126. [Google Scholar] [CrossRef]
- Chowdhary, P.; Gupta, A.; Gnansounou, E.; Pandey, A.; Chaturvedi, P. Current trends and possibilities for exploitation of Grape pomace as a potential source for value addition. Environ. Pollut. 2021, 278, 116796. [Google Scholar] [CrossRef]
- Kabir, M.M.; Akter, M.M.; Khandaker, S.; Gilroyed, B.H.; Alam, D.U.; Hakim, M.; Awual, R. Highly effective agro-waste based functional green adsorbents for toxic chromium(VI) ion removal from wastewater. J. Mol. Liq. 2021, 347, 118327. [Google Scholar] [CrossRef]
- Narasaiah, B.P.; Mandal, B.K. Remediation of azo-dyes based toxicity by agro-waste cotton boll peels mediated palladium nanoparticles. J. Saudi Chem. Soc. 2019, 24, 267–281. [Google Scholar] [CrossRef]
- Khan, A.H.; Khan, N.A.; Zubair, M.; Shaida, M.A.; Manzar, M.S.; Abutaleb, A.; Naushad, M.; Iqbal, J. Sustainable green nanoadsorbents for remediation of pharmaceuticals from water and wastewater: A critical review. Environ. Res. 2021, 204, 112243. [Google Scholar] [CrossRef]
- Khalith, S.M.; Ramalingam, R.; Karuppannan, S.K.; Dowlath, M.J.H.; Kumar, R.; Vijayalakshmi, S.; Maheshwari, R.U.; Arunachalam, K.D. Synthesis and characterization of polyphenols functionalized graphitic hematite nanocomposite adsorbent from an agro waste and its application for removal of Cs from aqueous solution. Chemosphere 2021, 286, 131493. [Google Scholar] [CrossRef]
- Othmani, A.; Magdouli, S.; Kumar, P.S.; Kapoor, A.; Chellam, P.V.; Gökkuş, Ö. Agricultural waste materials for adsorptive removal of phenols, chromium (VI) and cadmium (II) from wastewater: A review. Environ. Res. 2021, 204, 111916. [Google Scholar] [CrossRef] [PubMed]
- Giordano, E.D.; Bosio, B.; Camiscia, P.; Picó, G.A.; Valetti, N.W. Cellulose and its cationic derivative obtained from soybean hull as a tool for the remediation of textile dyes in wastewater: Physicochemical characterization and molecular mechanism interaction. Biocatal. Agric. Biotechnol. 2021, 36, 102139. [Google Scholar] [CrossRef]
- Llobera, A.; Cañellas, J. Dietary fibre content and antioxidant activity of Manto Negro red grape (Vitis vinifera): Pomace and stem. Food Chem. 2007, 101, 659–666. [Google Scholar] [CrossRef]
- Beres, C.; Costa, G.N.S.; Cabezudo, I.; da Silva-James, N.K.; Teles, A.S.C.; Cruz, A.P.; Mellinger-Silva, C.; Tonon, R.V.; Cabral, L.M.C.; Freitas, S.P. Towards integral utilization of grape pomace from winemaking process: A review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef]
- Luo, L.; Cui, Y.; Zhang, S.; Li, L.; Suo, H.; Sun, B. Detailed phenolic composition of Vidal grape pomace by ultrahigh-performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. B 2017, 1068–1069, 201–209. [Google Scholar] [CrossRef]
- Zhu, F.; Du, B.; Zheng, L.; Li, J. Advance on the bioactivity and potential applications of dietary fibre from grape pomace. Food Chem. 2015, 186, 207–212. [Google Scholar] [CrossRef]
- Deng, Q.; Penner, M.H.; Zhao, Y. Chemical composition of dietary fiber and polyphenols of five different varieties of wine grape pomace skins. Food Res. Int. 2011, 44, 2712–2720. [Google Scholar] [CrossRef]
- Zhao, J.X.; Li, Q.; Zhang, R.X.; Liu, W.Z.; Ren, Y.S.; Zhang, C.X.; Zhang, J.X. Effect of dietary grape pomace on growth performance, meat quality and antioxidant activity in ram lambs. Anim. Feed Sci. Technol. 2018, 236, 76–85. [Google Scholar] [CrossRef]
- Li, W.; Yao, R.; Xie, L.; Liu, J.; Weng, X.; Yue, X.; Li, F. Dietary supplementation of grape seed tannin extract stimulated testis development, changed fatty acid profiles and increased testis antioxidant capacity in pre-puberty hu lambs. Theriogenology 2021, 172, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Bai, C.; Dallasega, P.; Orzes, G.; Sarkis, J. Industry 4.0 technologies assessment: A sustainability perspective. Int. J. Prod. Econ. 2020, 229, 107776. [Google Scholar] [CrossRef]
- Solari-Godiño, F.A.; Pérez-Jiménez, J.; Saura-Calixto, F.; Borderías, A.; Moreno, H. Anchovy mince (Engraulis ringens) enriched with polyphenol-rich grape pomace dietary fibre: In vitro polyphenols bioaccessibility, antioxidant and physico-chemical properties. Food Res. Int. 2017, 102, 639–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandylis, P.; Dimitrellou, D.; Moschakis, T. Recent applications of grapes and their derivatives in dairy products. Trends Food Sci. Technol. 2021, 114, 696–711. [Google Scholar] [CrossRef]
- Jara-Palacios, M.J.; Hernanz, D.; Escudero-Gilete, M.L.; Heredia, F.J. The Use of Grape Seed Byproducts Rich in Flavonoids to Improve the Antioxidant Potential of Red Wines. Molecules 2016, 21, 1526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertol, T.M.; Ludke, J.V.; De Campos, R.M.L.; Kawski, V.L.; Junior, A.C.; De Figueiredo, E.A.P. Inclusion of grape pomace in the diet of pigs on pork quality and oxidative stability of omega-3 enriched fat. Ciênc. Rural 2017, 47. [Google Scholar] [CrossRef] [Green Version]
- Mu, C.; Yang, W.; Wang, P.; Zhao, J.; Hao, X.; Zhang, J. Effects of high-concentrate diet supplemented with grape seed proanthocyanidins on growth performance, liver function, meat quality, and antioxidant activity in finishing lambs. Anim. Feed Sci. Technol. 2020, 266, 114518. [Google Scholar] [CrossRef]
- Sagdic, O.; Ozturk, I.; Ozkan, G.; Yetim, H.; Ekici, L.; Yilmaz, M.T. RP-HPLC–DAD analysis of phenolic compounds in pomace extracts from five grape cultivars: Evaluation of their antioxidant, antiradical and antifungal activities in orange and apple juices. Food Chem. 2011, 126, 1749–1758. [Google Scholar] [CrossRef] [PubMed]
- Brenes, A.; Viveros, A.; Chamorro, S.; Arija, I. Use of polyphenol-rich grape by-products in monogastric nutrition. A review. Anim. Feed Sci. Technol. 2015, 211, 1–17. [Google Scholar] [CrossRef]
- Manconi, M.; Marongiu, F.; Castangia, I.; Manca, M.L.; Caddeo, C.; Tuberoso, C.I.G.; Hallewin, G.D.; Bacchetta, G.; Fadda, A.M. Polymer-associated liposomes for the oral delivery of grape pomace extract. Colloids Surf. B Biointerfaces 2016, 146, 910–917. [Google Scholar] [CrossRef]
- Denny, C.; Lazarini, J.; Franchin, M.; Melo, P.; Pereira, G.; Massarioli, A.; Moreno, I.; Paschoal, J.; de Alencar, S.M.; Rosalen, P. Bioprospection of Petit Verdot grape pomace as a source of anti-inflammatory compounds. J. Funct. Foods 2014, 8, 292–300. [Google Scholar] [CrossRef]
- Gonçalves, G.A.; Soares, A.A.; Corrêa, R.C.G.; Barros, L.; Haminiuk, C.; Peralta, R.M.; Ferreira, I.C.; Bracht, A. Merlot grape pomace hydroalcoholic extract improves the oxidative and inflammatory states of rats with adjuvant-induced arthritis. J. Funct. Foods 2017, 33, 408–418. [Google Scholar] [CrossRef]
- Albuquerque, J.G.F.; Assis, V.L.; Almeida, A.J.P.O.; Basílio, I.J.L.D.; Luciano, M.N.; Meireles, B.R.L.A.; Cordeiro, M.T.M.; Araújo, I.G.A.; Veras, R.; Ribeiro, T.P.; et al. Antioxidant and vasorelaxant activities induced by northeastern Brazilian fermented grape skins. BMC Complement. Altern. Med. 2017, 17, 376. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, A.P.; Módenes, A.N.; Bragião, M.E.; Hinterholz, C.L.; Trigueros, D.E.; Bezerra, I.G.D.O. Use of grape pomace as a biosorbent for the removal of the Brown KROM KGT dye. Bioresour. Technol. Rep. 2018, 2, 92–99. [Google Scholar] [CrossRef]
- Papadaki, E.; Mantzouridou, F. Citric acid production from the integration of Spanish-style green olive processing wastewaters with white grape pomace by Aspergillus niger. Bioresour. Technol. 2019, 280, 59–69. [Google Scholar] [CrossRef]
- Meini, M.-R.; Cabezudo, I.; Galetto, C.S.; Romanini, D. Production of grape pomace extracts with enhanced antioxidant and prebiotic activities through solid-state fermentation by Aspergillus niger and Aspergillus oryzae. Food Biosci. 2021, 42, 101168. [Google Scholar] [CrossRef]
- Panić, M.; Gunjević, V.; Radošević, K.; Bubalo, M.C.; Ganić, K.; Redovniković, I. COSMOtherm as an Effective Tool for Selection of Deep Eutectic Solvents Based Ready-To-Use Extracts from Graševina Grape Pomace. Molecules 2021, 26, 4722. [Google Scholar] [CrossRef] [PubMed]
- Erinle, T.J.; Oladokun, S.; MacIsaac, J.; Rathgeber, B.; Adewole, D. Dietary grape pomace—Effects on growth performance, intestinal health, blood parameters, and breast muscle myopathies of broiler chickens. Poult. Sci. 2021, 101, 101519. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Ramirez, J.; Urbina, L.; Eceiza, A.; Retegi, A.; Gabilondo, N. Superabsorbent bacterial cellulose spheres biosynthesized from winery by-products as natural carriers for fertilizers. Int. J. Biol. Macromol. 2021, 191, 1212–1220. [Google Scholar] [CrossRef]
- Díaz, A.B.; Bolívar, J.; de Ory, I.; Caro, I.; Blandino, A. Applicability of enzymatic extracts obtained by solid state fermentation on grape pomace and orange peels mixtures in must clarification. LWT 2011, 44, 840–846. [Google Scholar] [CrossRef]
- El Achkar, J.H.; Lendormi, T.; Hobaika, Z.; Salameh, D.; Louka, N.; Maroun, R.G.; Lanoisellé, J.-L. Anaerobic digestion of nine varieties of grape pomace: Correlation between biochemical composition and methane production. Biomass-Bioenergy 2017, 107, 335–344. [Google Scholar] [CrossRef]
- Nayak, A.; Bhushan, B.; Gupta, V.; Rodriguez-Turienzo, L. Development of a green and sustainable clean up system from grape pomace for heavy metal remediation. J. Environ. Chem. Eng. 2016, 4, 4342–4353. [Google Scholar] [CrossRef]
- Zietsman, A.J.; Moore, J.P.; Fangel, J.U.; Willats, W.G.; Vivier, M.A. Combining hydrothermal pretreatment with enzymes de-pectinates and exposes the innermost xyloglucan-rich hemicellulose layers of wine grape pomace. Food Chem. 2017, 232, 340–350. [Google Scholar] [CrossRef]
- Pintać, D.; Majkić, T.; Torovic, L.; Orčić, D.; Beara, I.; Simin, N.; Mimica–Dukić, N.; Lesjak, M. Solvent selection for efficient extraction of bioactive compounds from grape pomace. Ind. Crop. Prod. 2018, 111, 379–390. [Google Scholar] [CrossRef]
- El Achkar, J.H.; Lendormi, T.; Salameh, D.; Louka, N.; Maroun, R.G.; Lanoisellé, J.-L.; Hobaika, Z. Influence of pretreatment conditions on lignocellulosic fractions and methane production from grape pomace. Bioresour. Technol. 2018, 247, 881–889. [Google Scholar] [CrossRef]
- Raota, C.S.; Cerbaro, A.F.; Salvador, M.; Delamare, A.P.L.; Echeverrigaray, S.; Crespo, J.D.S.; da Silva, T.B.; Giovanela, M. Green synthesis of silver nanoparticles using an extract of Ives cultivar (Vitis labrusca) pomace: Characterization and application in wastewater disinfection. J. Environ. Chem. Eng. 2019, 7, 103383. [Google Scholar] [CrossRef]
- Becker, M.; Nunes, G.; Ribeiro, D.; Silva, F.; Catanante, G.; Marty, J. Determination of the Antioxidant Capacity of Red Fruits by Miniaturized Spectrophotometry Assays. J. Braz. Chem. Soc. 2019. [Google Scholar] [CrossRef]
- Becker, M.M.; Gaëlle Catanantea, G.; Mármol, I.; Rodríguez Yoldi, M.J.; Mishrad, R.K.; Barbosa, S.; Núñez Burcio, O.; Silva Nunes, G.; Marty, J.-L. Phenolic Composition, Antioxidant Capacity and Antiproliferative Activity of Ten Exotic Amazonian fruit. SDRP J. Food Sci. Tehnol. 2020, 5, 49–65. [Google Scholar]
- Andreescu, S.; Barthelmebs, L.; Marty, J.-L. Immobilization of acetylcholinesterase on screen-printed electrodes: Comparative study between three immobilization methods and applications to the detection of organophosphorus insecticides. Anal. Chim. Acta 2002, 464, 171–180. [Google Scholar] [CrossRef]
- López-Miranda, S.; Serrano-Martínez, A.; Hernández-Sánchez, P.; Guardiola, L.; Pérez-Sánchez, H.; Fortea, I.; Gabaldón, J.A.; Núñez-Delicado, E. Use of cyclodextrins to recover catechin and epicatechin from red grape pomace. Food Chem. 2016, 203, 379–385. [Google Scholar] [CrossRef]
- De Torres, C.; Schumacher, R.; Alañón, M.; Pérez-Coello, M.; Díaz-Maroto, M. Freeze-dried grape skins by-products to enhance the quality of white wines from neutral grape varieties. Food Res. Int. 2015, 69, 97–105. [Google Scholar] [CrossRef]
- De Azevedo, P.O.D.S.; Aliakbarian, B.; Casazza, A.A.; LeBlanc, J.G.; Perego, P.; Souza Oliveira, R.P.D. Production of fermented skim milk supplemented with different grape pomace extracts: Effect on viability and acidification performance of probiotic cultures. PharmaNutrition 2018, 6, 64–68. [Google Scholar] [CrossRef]
- Samsidar, A.; Siddiquee, S.; Shaarani, S.M. A review of extraction, analytical and advanced methods for determination of pesticides in environment and foodstuffs. Trends Food Sci. Technol. 2018, 71, 188–201. [Google Scholar] [CrossRef]
- El-Moghazy, A.; Soliman, E.; Ibrahim, H.; Noguer, T.; Marty, J.-L.; Istamboulie, G. Ultra-sensitive biosensor based on genetically engineered acetylcholinesterase immobilized in poly (vinyl alcohol)/Fe–Ni alloy nanocomposite for phosmet detection in olive oil. Food Chem. 2016, 203, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Aftim, N.; Istamboulié, G.; Piletska, E.; Piletsky, S.; Calas-Blanchard, C.; Noguer, T. Biosensor-assisted selection of optimal parameters for designing molecularly imprinted polymers selective to phosmet insecticide. Talanta 2017, 174, 414–419. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, T.; Meng, H.; Yu, S. Ethanol precipitation of sugar beet pectins as affected by electrostatic interactions between counter ions and pectin chains. Food Hydrocoll. 2017, 65, 187–197. [Google Scholar] [CrossRef] [Green Version]
- Rockenbach, I.I.; Rodrigues, E.; Gonzaga, L.V.; Caliari, V.; Genovese, M.I.; de Souza Schmidt Gonçalves, A.E.; Fett, R. Phenolic compounds content and antioxidant activity in pomace from selected red grapes (Vitis vinifera L. and Vitis labrusca L.) widely produced in Brazil. Food Chem. 2011, 127, 174–179. [Google Scholar] [CrossRef]
- Marinelli, V.; Padalino, L.; Nardiello, D.; Del Nobile, M.A.; Conte, A. New Approach to Enrich Pasta with Polyphenols from Grape Marc. J. Chem. 2015, 2015, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Negro, C.; Aprile, A.; Luvisi, A.; De Bellis, L.; Miceli, A. Antioxidant Activity and Polyphenols Characterization of Four Monovarietal Grape Pomaces from Salento (Apulia, Italy). Antioxidants 2021, 10, 1406. [Google Scholar] [CrossRef]
- Nayak, A.; Bhushan, B.; Rosales, A.; Turienzo, L.R.; Cortina, J.L. Valorisation potential of Cabernet grape pomace for the recovery of polyphenols: Process intensification, optimisation and study of kinetics. Food Bioprod. Process. 2018, 109, 74–85. [Google Scholar] [CrossRef]
- Chikwanha, O.C.; Raffrenato, E.; Opara, U.L.; Fawole, O.A.; Setati, M.E.; Muchenje, V.; Mapiye, C. Impact of dehydration on retention of bioactive profile and biological activities of different grape (Vitis vinifera L.) pomace varieties. Anim. Feed Sci. Technol. 2018, 244, 116–127. [Google Scholar] [CrossRef]
- Goula, A.; Thymiatis, K.; Kaderides, K. Valorization of grape pomace: Drying behavior and ultrasound extraction of phenolics. Food Bioprod. Process. 2016, 100, 132–144. [Google Scholar] [CrossRef]
- Gouvinhas, I.; Santos, R.A.; Queiroz, M.; Leal, C.; Saavedra, M.J.; Domínguez-Perles, R.; Rodrigues, M.; Barros, A. Monitoring the antioxidant and antimicrobial power of grape (Vitis vinifera L.) stems phenolics over long-term storage. Ind. Crop. Prod. 2018, 126, 83–91. [Google Scholar] [CrossRef]
Abbreviation | Extractive Media | Pomace Treatment |
---|---|---|
Extraction | ||
PRE 1 | hydroalcohol | refrigeration |
PRE 2 | water | refrigeration |
PDE 1 | hydroalcohol | drying |
PDE 2 | water | drying |
PLE 1 | hydroalcohol | lyophilization |
PLE 2 | water | lyophilization |
Ultrasound Macerates | ||
PLU 1 | hydroalcohol | lyophilization |
PLU 2 | water | lyophilization |
Stirred Macerates | ||
PLS 1 | hydroalcohol | lyophilized |
PLS 2 | water | lyophilized |
Sample, [mg/mL] | Ethanol-Water | Water |
---|---|---|
PRE | 0.055 | 0.192 |
PDE | 0.045 | 1.545 |
PLE | 0.166 | 0.388 |
PLS | 0.785 | 4.395 |
PLU | 0.709 | 7.238 |
Sample, [mg/mL] | Ethanol-Water |
---|---|
PRE | 0.23 |
PDE | 1.76 |
PLE | 0.29 |
PLS | 1.06 |
Sample, [mg/mL] | Ethanol-Water | Water |
---|---|---|
PRE | 0.004 | 0.005 |
PDE | 0.023 | 0.040 |
Sample | Inhibition Percentage | Pesticide Concentration (Expressed in nmol Chlorpyrifos-oxone Equivalent) |
---|---|---|
PLS 2 | 16.70 ± 0.71 | 0.262 ± 0.015 |
PLU 2 | 20.00 ± 0.62 | 0.583 ± 0.032 |
PRS 2 | 21.43 ± 0.92 | 0.723 ± 0.034 |
PRU 2 | 30.00 ± 0.44 | 1.564 ± 0.043 |
PDU 2 | 7.40 ± 0.43 | 0.112 ± 0.002 |
PDS 2 | 4.76 ± 0.25 | 0.074 ± 0.001 |
PLS 1 | n.d. * | n.d. |
PLU 1 | n.d. | n.d. |
PLE 1 | n.d. | n.d. |
PLE 2 | n.d. | n.d. |
PRE 2 | n.d. | n.d. |
PDE 2 | n.d. | n.d. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavrilaș, S.; Calinovici, I.; Chiș, S.; Ursachi, C.-Ș.; Raț, M.; Munteanu, F.-D. White Grape Pomace Valorization for Remediating Purposes. Appl. Sci. 2022, 12, 1997. https://doi.org/10.3390/app12041997
Gavrilaș S, Calinovici I, Chiș S, Ursachi C-Ș, Raț M, Munteanu F-D. White Grape Pomace Valorization for Remediating Purposes. Applied Sciences. 2022; 12(4):1997. https://doi.org/10.3390/app12041997
Chicago/Turabian StyleGavrilaș, Simona, Ioan Calinovici, Sabin Chiș, Claudiu-Ștefan Ursachi, Mirabela Raț, and Florentina-Daniela Munteanu. 2022. "White Grape Pomace Valorization for Remediating Purposes" Applied Sciences 12, no. 4: 1997. https://doi.org/10.3390/app12041997
APA StyleGavrilaș, S., Calinovici, I., Chiș, S., Ursachi, C. -Ș., Raț, M., & Munteanu, F. -D. (2022). White Grape Pomace Valorization for Remediating Purposes. Applied Sciences, 12(4), 1997. https://doi.org/10.3390/app12041997