Extraction of Bioactive Compounds from Ulva lactuca
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Macroalgal Strain
2.3. Methods
2.3.1. Biochemical Characterization
Lipid Content
Protein Content
Polysaccharide Content
Determination of Mineral Ash
2.3.2. Solvent Extractions
Determination of Total Phenolics Content (TPC)
Determination of Total Carotenoids Content (ΤCC)
Determination of Extraction Yield
Determination of Antioxidant Activity (IC50)
HPLC Analysis
3. Results and Discussion
3.1. Biochemical Composition of U. lactuca
3.2. Extraction of Phenolics and Carotenoids—Selection of Solvent
3.3. Effect of Extraction Parameters on Carotenoid and Phenolic Content, Antioxidant Capacity and Extraction Yield
3.3.1. Effect of Extraction Time
3.3.2. Effect of Biomass to Solvent Ratio
3.3.3. Effect of Temperature
3.3.4. Overall Evaluation of the Extraction Parameters Effect
3.3.5. Study of the Extracts’ Antioxidant Activity over Time
3.4. Carotenoids Profile
3.5. Phenolics Profile
4. Conclusions
5. Highlights
- U. lactuca is a rich source of bioactive compounds and dietary supplements
- High polysaccharides content (49.9 wt%) was found
- Ethanol/water 70:30 v/v was the most efficient solvent. The optimum extraction parameters were 60 °C, biomass to solvent ratio 1:10 and 3 h extraction time
- The best extract maintained its high antioxidant capacity for 5 days
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Ethics Statement
Appendix A
Chemical Reagents | Supplier | Purity/Concentration |
---|---|---|
2,2-Diphenyl-1-picrylhydrazyl | Alfa Aesar | 95% |
Folin-Ciocalteu reagent | Carlo Erba reagents | Special grade |
Methanol | Fisher Scientific | ≥99.8% |
Chloroform | Fisher Scientific | Analytical reagent grade |
Ethanol | Fisher Scientific | ≥99.8% |
Ethyl acetate | Merck | HPLC grade |
MTBE | Fisher Scientific | ≥99.5% |
2-Mercaptoethanol | Sigma-Aldrich | ≥98% |
Water | Fisher Scientific | HPLC grade |
β-carotene | Alfa Aesar | 99% |
all-trans Astaxanthin | Acros Organics | ≥98% |
all-trans Lutein | Extrasynthese | ≥95% |
all-trans Neoxanthin | Supelco | Analytical standard |
all-trans Violaxanthin | Sigma-Aldrich | ≥90.0% |
9-cis Astaxanthin | Alga Technologies | Natural CO2 extract of Haematococcus Pluvialis microalgae |
Gallic acid | Acros Organics | 98% |
Caffeic acid | Acros Organics | 99%+ |
Catechin | Sigma-Aldrich | ≥98% |
References
- Chemodanov, A.; Robin, A.; Jinjikhashvily, G.; Yitzhak, D.; Liberzon, A.; Israel, A.; Golberg, A. Feasibility study of Ulva sp. (Chlorophyta) intensive cultivation in a coastal area of the Eastern Mediterranean Sea. Biofuel. Bioprod. Biorefin. 2019, 13, 864–877. [Google Scholar] [CrossRef]
- White, W.L.; Wilson, P. World seaweed utilization: A summary. J. Aquac. Res. Dev. 2015, 6, 7–25. [Google Scholar] [CrossRef]
- Postma, P.R.; Cerezo-Chinarro, O.; Akkerman, R.J.; Olivieri, G.; Wijffels, R.H.; Brandenburg, W.A.; Eppink, M.H.M. Biorefinery of the macroalgae Ulva lactuca: Extraction of proteins and carbohydrates by mild disintegration. J. Appl. Phycol. 2018, 30, 1281–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dominguez, H.; Loret, E. Ulva lactuca, a source of troubles and potential riches. Mar. Drugs 2019, 17, 357. [Google Scholar] [CrossRef] [Green Version]
- Caf, F.; Yilmaz, Ö.; Durucan, F.; Özdemir, N.Ş. Biochemical components of three marine macroalgae (Padina pavonica, Ulva lactuca and Taonia atomaria) from the Levantine Sea coast of Antalya, Turkey. J. Biodivers. Environ. Sci. 2015, 6, 401–411. [Google Scholar]
- Morais, T.; Cotas, J.; Pacheco, D.; Pereira, L. Seaweeds compounds: An Eco sustainable source of cosmetic ingredients? Cosmetics 2021, 8, 8. [Google Scholar] [CrossRef]
- Jimenez-Lopez, C.; Pereira, A.G.; Lourenço-Lopes, C.; Garcia-Oliveira, P.; Cassani, L.; Fraga-Corral, M.; Prieto, M.A.; Simal-Gandara, J. Main bioactive phenolic compounds in marine algae and their mechanisms of action supporting potential health benefits. Food Chem. 2021, 341, 128262. [Google Scholar] [CrossRef]
- Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006, 101, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Domínguez, R.; Zhang, L.; Rocchetti, G.; Lucini, L.; Pateiro, M.; Munekata, P.; Lorenzo, J. Elderberry as potential source of antioxidants. Characterization, optimization of extraction parameters and bioactive properties. Food Chem. 2020, 330, 127266. [Google Scholar] [CrossRef]
- Strati, I.F.; Oreopoulou, V. Process optimization for recovery of carotenoids from tomato waste. Food Chem. 2011, 129, 747–752. [Google Scholar] [CrossRef]
- Suchinina, T.; Shestakova, T.; Petrichenko, V.; Novikova, V. Solvent polarity effect on the composition of biologically active substances, UV spectral characteristics, and antibacterial activity of Euphrasia brevipila herb extracts. Pharm. Chem. J. 2011, 44, 683–686. [Google Scholar] [CrossRef]
- Torres-Valenzuela, L.S.; Ballesteros-Gómez, A.; Rubio, S. Green solvents for the extraction of high added-value compounds from agri-food waste. Food Eng. Rev. 2020, 12, 83–100. [Google Scholar] [CrossRef]
- Monteiro, M.; Santos, R.A.; Iglesias, P.; Couto, A.; Serra, C.R.; Gouvinhas, I.; Barros, A.; Oliva-Teles, A.P.; Enes, P.; Díaz-Rosales, P. Effect of extraction method and solvent system on the phenolic content and antioxidant activity of selected macro-and microalgae extracts. J. Appl. Psychol. 2020, 32, 349–362. [Google Scholar] [CrossRef]
- He, J.; Xu, Y.; Chen, H.; Sun, P. Extraction, structural characterization, and potential antioxidant activity of the polysaccharides from four seaweeds. Int. J. Mol. Sci. 2016, 17, 1988. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.; Alves Paula, A.; Pinto, R.; Sousa, R.A.; Borges da Silva, E.A.; Reis, R.L.; Rodrigues, A.E. Characterization of ulvan extracts to assess the effect of different steps in the extraction procedure. Carbohydr. Polym. 2012, 88, 537–546. [Google Scholar] [CrossRef]
- Ortiz, J.; Romero, N.; Robert, P.; Araya, J.; Lopez-Hernandez, J.; Bozzo, C.; Navarrete, E.; Osorio, A.; Rios, A. Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food Chem. 2006, 99, 98–104. [Google Scholar] [CrossRef]
- Yaich, H.; Garna, H.; Besbes, S.; Paquot, M.; Blecker, C.; Attia, H. Effect of extraction conditions on the yield and purity of ulvan extracted from Ulva lactuca. Food Hydrocoll. 2013, 3, 375–382. [Google Scholar] [CrossRef]
- Yaich, H.; Garna, H.; Besbes, S.; Barthélemy, J.-P.; Paquot, M.; Blecker, C.; Attia, H. Impact of extraction procedures on the chemical, rheological and textural properties of ulvan from Ulva lactuca of Tunisia coast. Food Hydrocoll. 2014, 40, 53–63. [Google Scholar] [CrossRef]
- Yaich, H.; Amir, A.B.; Abbes, F.; Bouaziz, M.; Besbes, S.; Richel, A.; Blecker, C.; Attia, H.; Garna, H. Effect of extraction procedures on structural, thermal and antioxidant properties of ulvan from Ulva lactuca collected in Monastir coast. Int. J. Biol. Macromol. 2017, 105, 1430–1439. [Google Scholar] [CrossRef]
- Tian, H.; Yin, X.; Zeng, Q.; Zhu, L.; Chen, J. Isolation, structure, and surfactant properties of polysaccharides from Ulva lactuca L. from South China Sea. Int. J. Biol. Macromol. 2015, 79, 577–582. [Google Scholar] [CrossRef] [PubMed]
- El-Baky, H.H.A.; El-Baz, F.K.; El-Baroty, G.S. Natural preservative ingredient from marine alga. Int. J. Food Sci. Tech. 2009, 44, 1688–1695. [Google Scholar] [CrossRef]
- Abirami, R.G.; Kowsalya, S. Nutrient and Nutraceutical Potentials of Seaweed Biomass Ulva lactuca and Kappaphycus alvarezii. J. Agric. Sci. Technol. 2011, 5, 109–115. [Google Scholar]
- Wang, T.; Jónsdóttir, R.; Ólafsdóttir, G. Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem. 2009, 116, 240–248. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Stanley, G. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Kazir, M.; Abuhassira, Y.; Robin, A.; Nahor, O.; Luo, J.; Israel, A.; Golberg, A.; Livney, Y. Extraction of proteins from two marine macroalgae, Ulva sp. and Gracilaria sp., for food application, and evaluating digestibility, amino acid composition and antioxidant properties of the protein concentrates. Food Hydrocoll. 2019, 87, 194–203. [Google Scholar] [CrossRef]
- Mao, W.; Zang, X.; Li, Y.; Zhang, H. Sulfated polysaccharides from marine green algae Ulva conglobata and their anticoagulant activity. J. Appl. Phycol. 2006, 18, 9–14. [Google Scholar] [CrossRef]
- Singleton, V.; Rossi, J. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–1588. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of the Association of Official Analytical Chemists International, 16th ed.; The Association of Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Fernandes, A.; Petry, F.; Mercadante, A.; Jacob-Lopes, E.; Zepka, L. HPLC-PDA-MS/MS as a strategy to characterize and quantify natural pigments from microalgae. Curr. Res. Nutr. Food Sci. 2020, 3, 100–112. [Google Scholar] [CrossRef]
- Benavente-García, O.; Castillo, J.; Lorente, J.; Ortuño, A.; Del Rio, J. Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chem. 2000, 68, 457–462. [Google Scholar] [CrossRef]
- Bikker, P.; Van Krimpen, M.; Van Wikselaar, P.; Houweling-Tan, B.; Scaccia, N.; Van Hal, J.; Huijgen, W.; Cone, J.; López-Contreras, A. Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels. J. Appl. Phycol. 2016, 28, 3511–3525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef]
- Newsham, D.M.T.; Mendez-Lecanda, E.J. Isobaric enthalpies of vaporization of water, methanol, ethanol, propan-2-ol and their mixtures. J. Chem. Thermodyn. 1982, 14, 291–301. [Google Scholar] [CrossRef]
- Teramukai, K.; Kakui, S.; Beppu, F.; Hosokawa, M.; Miyashita, K. Effective extraction of carotenoids from brown seaweeds and vegetable leaves with edible oils. Innov. Food Sci. Emerg. Technol. 2020, 60, 102302. [Google Scholar] [CrossRef]
- Sachindra, N.; Mahendrakar, N. Process optimization for extraction of carotenoids from shrimp waste with vegetable oils. Bioresour. Technol. 2005, 96, 1195–1200. [Google Scholar] [CrossRef]
- Topuz, O.K.; Gokoglu, N.; Yerlikaya, P.; Ucak, I.; Gumus, B. Optimization of antioxidant activity and phenolic compound extraction conditions from red seaweed (Laurencia obtuse). J. Aquat. Food Prod. Technol. 2016, 25, 414–422. [Google Scholar] [CrossRef]
- Strati, I.; Oreopoulou, V. Effect of extraction parameters on the carotenoid recovery from tomato waste. Int. J. Food Sci. Technol. 2010, 46, 23–29. [Google Scholar] [CrossRef]
- Mäki-Arvela, P.; Hachemi, I.; Murzin, D. Comparative study of the extraction methods for recovery of carotenoids from algae: Extraction kinetics and effect of different extraction parameters. J. Chem. Technol. Biotechnol. 2014, 89, 1607–1626. [Google Scholar] [CrossRef]
- Spigno, G.; Tramelli, L.; De Faveri, D. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J. Food Eng. 2007, 81, 200–208. [Google Scholar] [CrossRef]
- Ummat, V.; Tiwari, B.; Jaiswal, A.; Condon, K.; Garcia-Vaquero, M.; O’Doherty, J.; O’Donnell, C.; Rajauria, G. Optimisation of Ultrasound Frequency, Extraction Time and Solvent for the Recovery of Polyphenols, Phlorotannins and Associated Antioxidant Activity from Brown Seaweeds. Mar. Drugs 2020, 18, 250. [Google Scholar] [CrossRef]
- Savatovic, S.; Cetkovic, G.; Canadanovic-Brunet, J.; Djilas, S. Kinetic behavior of DPPH radical scavenging activity of tomato waste extracts. J. Serbian Chem. Soc. 2012, 77, 1381–1389. [Google Scholar] [CrossRef]
- Yalçın, S.; Karakaş, Ö.; Okudan, E.; Başkan, K.; Çekiç, S.; Apak, R. HPLC detection and antioxidant capacity determination of brown, red and green algal pigments in seaweed extracts. J. Chromatogr. Sci. 2020, 59, 325–337. [Google Scholar] [CrossRef]
- Torregrosa-Crespo, J.; Montero, Z.; Fuentes, J.L.; García-Galbis, M.R.; Garbayo, I.; Vílchez, C.; Martínez-Espinosa, R.M. Exploring the Valuable Carotenoids for the Large-Scale Production by Marine Microorganisms. Mar. Drugs 2018, 16, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aslan, E.; Aksu, A.; Korkmaz, N.E.; Taskin, O.S.; Caglar, N.B. Monitoring the antioxidant activities by extracting the polyphenolic contents of algae collected from the Bosphorus. Mar. Pollut. Bull. 2019, 141, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Farvin, K.H.S.; Jacobsen, C. Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chem. 2013, 138, 1670–1681. [Google Scholar] [CrossRef]
- Mekinić, I.G.; Skroza, D.; Šimat, V.; Hamed, I.; Čagalj, M.; Perković, Z.P. Phenolic content of brown algae (Pheophyceae) species: Extraction, identification, and quantification. Biomolecules 2019, 9, 44–69. [Google Scholar]
- Ibrahim, R.; Saber, A.; Hammad, H. The possible role of the seaweed Ulva fasciata on ameliorating hyperthyroidism-associated heart inflammations in a rat model. Environ. Sci. Pollut. Res. 2020, 28, 6830–6842. [Google Scholar] [CrossRef]
Extract Abbreviation | Extraction Duration (Hours) | Temperature (°C) | Biomass to Solvent Ratio (w/v) |
---|---|---|---|
E1 | 6 | 25 | 1:10 |
E2 | 10 | 25 | 1:10 |
E3 | 12 | 25 | 1:10 |
E4 | 12 | 25 | 1:20 |
E5 | 12 | 25 | 1:40 |
E6 | 16 | 25 | 1:10 |
E7 | 16 | 25 | 1:20 |
E8 | 16 | 25 | 1:40 |
E9 | 24 | 25 | 1:10 |
E10 | 12 | 40 | 1:10 |
E11 | 12 | 40 | 1:40 |
E12 | 3 | 60 | 1:10 |
E13 | 6 | 60 | 1:10 |
E14 | 12 | 60 | 1:10 |
Chemical Component | Content g g−1 Biomass |
---|---|
Total lipids | 0.035 |
Polysaccharides | 0.499 |
Mineral ash | 0.277 |
Total proteins | 0.084 |
Other * | 0.105 |
Extract Abbreviation | TCC a (mg g biomass−1) | TPC b (mg GAE g biomass−1) | Extraction Yield c (%) | IC50 d (g biomass mL solvent−1) |
---|---|---|---|---|
E1 | 0.047 | 0.979 | 11.8 | 0.720 |
E2 | 0.044 | 0.954 | 12.9 | 0.390 |
E3 | 0.074 | 1.079 | 11.5 | 0.164 |
E4 | 0.058 | 0.979 | 12.8 | 0.350 |
E5 | 0.062 | 1.205 | 15.6 | 0.480 |
E6 | 0.061 | 1.004 | 11.7 | 0.500 |
E7 | 0.072 | 1.104 | 15.4 | 0.900 |
E8 | 0.082 | 1.330 | 15.0 | 1.200 |
E9 | 0.063 | 0.979 | 10.9 | 0.840 |
E10 | 0.122 | 1.230 | 10.8 | 0.308 |
E11 | 0.137 | 1.807 | 15.1 | 0.227 |
E12 | 0.086 | 1.506 | 9.8 | 0.128 |
E13 | 0.105 | 1.757 | 10.4 | 0.263 |
E14 | 0.118 | 1.857 | 12.0 | 0.291 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pappou, S.; Dardavila, M.M.; Savvidou, M.G.; Louli, V.; Magoulas, K.; Voutsas, E. Extraction of Bioactive Compounds from Ulva lactuca. Appl. Sci. 2022, 12, 2117. https://doi.org/10.3390/app12042117
Pappou S, Dardavila MM, Savvidou MG, Louli V, Magoulas K, Voutsas E. Extraction of Bioactive Compounds from Ulva lactuca. Applied Sciences. 2022; 12(4):2117. https://doi.org/10.3390/app12042117
Chicago/Turabian StylePappou, Sofia, Maria Myrto Dardavila, Maria G. Savvidou, Vasiliki Louli, Kostis Magoulas, and Epaminondas Voutsas. 2022. "Extraction of Bioactive Compounds from Ulva lactuca" Applied Sciences 12, no. 4: 2117. https://doi.org/10.3390/app12042117
APA StylePappou, S., Dardavila, M. M., Savvidou, M. G., Louli, V., Magoulas, K., & Voutsas, E. (2022). Extraction of Bioactive Compounds from Ulva lactuca. Applied Sciences, 12(4), 2117. https://doi.org/10.3390/app12042117