The Effect of Voltage Pulse Shape on the Discharge Characteristics in the Packed Bed Reactor under Air and Nitrogen
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussion
3.1. The Effects of Pulse Duration on Electrical Characteristics
3.2. The Effects of Pulse Rising and Falling Time on Electrical Characteristics
3.3. The Discharge Modes in the Reactor
3.4. The Effects of Pulse Duration on Reactive Species
3.5. The Effects of Pulse Rising and Falling Time on Reactive Species
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kogelschatz, U. Dielectric-barrier discharges: Their History, Discharge Physics, and Industrial Applications. Plasma Chem. Plasma Process. 2003, 23, 1–46. [Google Scholar] [CrossRef]
- Babaeva, N.Y.; Kushner, M.J. Self-organization of single filaments and diffusive plasmas during a single pulse in dielectric-barrier discharges. Plasma Sources Sci. Technol. 2014, 23, 065047. [Google Scholar] [CrossRef]
- Engeling, K.W.; Kruszelnicki, J.; Kushner, M.J.; Foster, J.E. Time-resolved evolution of micro-discharges, surface ionization waves and plasma propagation in a two-dimensional packed bed reactor. Plasma Sources Sci. Technol. 2018, 27, 085002. [Google Scholar] [CrossRef]
- Shao, T.; Wang, R.; Zhang, C.; Yan, P. Atmospheric-pressure pulsed discharges and plasmas: Mechanism, characteristics and applications. High Volt. 2018, 3, 14–20. [Google Scholar] [CrossRef]
- Chen, H.L.; Lee, H.M.; Chen, S.H.; Chang, M.B. Review of Packed-Bed Plasma Reactor for Ozone Generation and Air Pollution Control. Ind. Eng. Chem. Res. 2008, 47, 2122–2130. [Google Scholar] [CrossRef]
- Michielsen, I.; Uytdenhouwen, Y.; Pype, J.; Michielsen, B.; Mertens, J.; Reniers, F.; Meynen, V.; Bogaerts, A. CO2 dissociation in a packed bed DBD reactor: First steps towards a better understanding of plasma catalysis. Chem. Eng. J. 2017, 326, 477–488. [Google Scholar] [CrossRef]
- Van Durme, J.; Dewulf, J.; Leys, C.; Van Langenhove, H. Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A review. Appl. Catal. B Environ. 2008, 78, 324–333. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Wang, J.; Yi, H.; Zhao, S.; Gao, F.; Chu, C. Nitrogen Fixation and NO Conversion using Dielectric Barrier Discharge Reactor: Identification and Evolution of Products. Plasma Chem. Plasma Process. 2018, 38, 485–501. [Google Scholar] [CrossRef]
- Patil, B.S.; Cherkasov, N.; Lang, J.; Ibhadon, A.O.; Hessel, V.; Wang, Q. Low temperature plasma-catalytic NOx synthesis in a packed DBD reactor: Effect of support materials and supported active metal oxides. Appl. Catal. B Environ. 2016, 194, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.; Zhang, L.-Y.; Li, M.; Yan, Y.; Zhang, X.-M.; Zhu, Y.-M. High-performance of plasma-catalysis hybrid system for toluene removal in air using supported Au nanocatalysts. Chem. Eng. J. 2020, 381, 122599. [Google Scholar] [CrossRef]
- Zeng, X.; Li, B.; Liu, R.; Li, X.; Zhu, T. Investigation of promotion effect of Cu doped MnO2 catalysts on ketone-type VOCs degradation in a one-stage plasma-catalysis system. Chem. Eng. J. 2020, 384, 123362. [Google Scholar] [CrossRef]
- Qu, M.; Cheng, Z.; Sun, Z.; Chen, D.; Yu, J.; Chen, J. Non-thermal plasma coupled with catalysis for VOCs abatement: A review. Process Saf. Environ. Prot. 2021, 153, 139–158. [Google Scholar] [CrossRef]
- Capp, S.C.; Sawtell, D.A.G.; Banks, C.E.; Kelly, P.J.; Abd-Allah, Z. The effect of TiO2 coatings on the formation of ozone and nitrogen oxides in non-thermal atmospheric pressure plasma. J. Environ. Chem. Eng. 2021, 9, 106046. [Google Scholar] [CrossRef]
- Zeng, X.; Zhang, Y.; Guo, L.; Gu, W.; Yuan, P.; Wei, L. Ozone generation enhanced by silica catalyst in packed-bed DBD reactor. Plasma Sci. Technol. 2021, 23, 085501. [Google Scholar] [CrossRef]
- Uytdenhouwen, Y.; Meynen, V.; Cool, P.; Bogaerts, A. The Potential Use of Core-Shell Structured Spheres in a Packed-Bed DBD Plasma Reactor for CO2 Conversion. Catalysts 2020, 10, 530. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, W.-C.; Yang, D.-Z.; Yuan, H.; Zhao, Z.-L.; Sun, H.; Shao, T. Nanosecond pulsed uniform dielectric barrier discharge in atmospheric air: A brief spectroscopic analysis. Spectrochim. Acta Part A Mol. Biomol. 2019, 207, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, W.C.; Jiang, P.C.; Yang, D.Z.; Jia, L.; Wang, S. Comparison of atmospheric air plasmas excited by high-voltage nanosecond pulsed discharge and sinusoidal alternating current discharge. J. Appl. Phys. 2013, 114, 163301. [Google Scholar] [CrossRef]
- Yang, D.; Wang, W.; Jia, L.; Nie, D.; Shi, H. Production of atmospheric pressure diffuse nanosecond pulsed dielectric barrier discharge using the array needles-plate electrode in air. J. Appl. Phys. 2011, 109, 073308. [Google Scholar] [CrossRef]
- Maqueo, P.D.G.; Coulombe, S.; Bergthorson, J.M. Energy efficiency of a nanosecond repetitively pulsed discharge for methane reforming. J. Phys. D Appl. Phys. 2019, 52, 274002. [Google Scholar] [CrossRef]
- Shao, T.; Long, K.H.; Zhang, C.; Yan, P.; Zhang, S.C.; Pan, R.Z. Experimental study on repetitive unipolar nanosecond-pulse dielectric barrier discharge in air at atmospheric pressure. J. Phys. D Appl. Phys. 2008, 41, 215203. [Google Scholar] [CrossRef]
- Yang, D.Z.; Wang, W.C.; Li, S.Z.; Song, Y.; Nie, D.X. A diffusive air plasma in bi-directional nanosecond pulsed dielectric barrier discharge. J. Phys. D Appl. Phys. 2010, 43, 455202. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, D.Z.; Wang, W.C.; Liu, Z.J.; Wang, S.; Jiang, P.C.; Zhang, S. Atmospheric air diffuse array-needles dielectric barrier discharge excited by positive, negative, and bipolar nanosecond pulses in large electrode gap. J. Appl. Phys. 2014, 116, 113301. [Google Scholar] [CrossRef]
- Li, Z.; Jin, S.; Xian, Y.; Nie, L.; Liu, D.; Lu, X. A non-equal gap distance dielectric barrier discharge: Between a wedge-shaped and a plane-shaped electrode. Plasma Sources Sci. Technol. 2021, 30, 065026. [Google Scholar] [CrossRef]
- Ono, R.; Nakagawa, Y.; Oda, T. Effect of pulse width on the production of radicals and excited species in a pulsed positive corona discharge. J. Phys. D Appl. Phys. 2011, 44, 485201. [Google Scholar] [CrossRef]
- Li, Y.; Yang, D.Z.; Qiao, J.J.; Zhang, L.; Wang, W.Z.; Zhao, Z.L.; Zhou, X.F.; Yuan, H.; Wang, W.C. The dynamic evolution and interaction with dielectric material of the discharge in packed bed reactor. Plasma Sources Sci. Technol. 2020, 29, 055004. [Google Scholar] [CrossRef]
- Golubovskii, Y.B.; Maiorov, V.A.; Behnke, J.F.; Tepper, J.; Lindmayer, M. Study of the homogeneous glow-like discharge in nitrogen at atmospheric pressure. J. Phys. D Appl. Phys. 2004, 37, 1346–1356. [Google Scholar] [CrossRef]
- Pan, J.; Tan, Z.Y.; Wang, X.L.; Sha, C.; Nie, L.L.; Chen, X.X. Effects of pulse parameters on the atmospheric-pressure dielectric barrier discharges driven by the high-voltage pulses in Ar and N2. Plasma Sources Sci. Technol. 2014, 23, 065019. [Google Scholar] [CrossRef]
- Namihira, T.; Tsukamoto, S.; Wang, D.; Katsuki, S.; Hackam, R.; Akiyama, H.; Uchida, Y.; Koike, M. Improvement of NOX removal efficiency using short-width pulsed power. IEEE Trans. Plasma Sci. 2000, 28, 434–442. [Google Scholar] [CrossRef]
- Marode, E. The mechanism of spark breakdown in air at atmospheric pressure between a positive point and a plane. I. Experimental: Nature of the streamer track. J. Appl. Phys. 1975, 46, 2005–2015. [Google Scholar] [CrossRef]
- Sigmond, R.S. The residual streamer channel: Return strokes and secondary streamers. J. Appl. Phys. 1984, 56, 1355–1370. [Google Scholar] [CrossRef]
- Zhang, Y.-T.; Wang, Y.-H. Modeling study on the effects of pulse rise rate in atmospheric pulsed discharges. Phys. Plasmas 2018, 25, 023509. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Han, X.; Feng, Y.; Zhang, J.; Wang, D. On the Discharge Mode of Pulsed DBD in Nitrogen at Atmospheric Pressure. IEEE Trans. Plasma Sci. 2016, 44, 2796–2802. [Google Scholar] [CrossRef]
- Van Laer, K.; Bogaerts, A. Fluid modelling of a packed bed dielectric barrier discharge plasma reactor. Plasma Sources Sci. Technol. 2016, 25, 015002. [Google Scholar] [CrossRef]
- Kim, H.; Teramoto, Y.; Ogata, A. Time-resolved imaging of positive pulsed corona-induced surface streamers on TiO2 and γ-Al2O3-supported Ag catalysts. J. Phys. D Appl. Phys. 2016, 49, 415204. [Google Scholar] [CrossRef]
- Li, Y.; Yang, D.-Z.; Qiao, J.-J.; Zhang, L.; Zhou, X.-F.; Zhao, Z.-L.; Yuan, H.; Yan, E.-Y.; Wang, W.-C. Discharge modes and characteristics optimization of nanosecond pulsed discharge in packed bed reactor. J. Phys. D Appl. Phys. 2021, 54, 245206. [Google Scholar] [CrossRef]
- Hoder, T.; Höft, H.; Kettlitz, M.; Weltmann, K.-D.; Brandenburg, R. Barrier discharges driven by sub-microsecond pulses at atmospheric pressure: Breakdown manipulation by pulse width. Phys. Plasmas 2012, 19, 070701. [Google Scholar] [CrossRef]
- Iza, F.; Walsh, J.L.; Kong, M.G. From Submicrosecond- to Nanosecond-Pulsed Atmospheric-Pressure Plasmas. IEEE Trans. Plasma Sci. 2009, 37, 1289–1296. [Google Scholar] [CrossRef] [Green Version]
- Ono, R.; Oda, T. Formation and structure of primary and secondary streamers in positive pulsed corona discharge—Effect of oxygen concentration and applied voltage. J. Phys. D Appl. Phys. 2003, 36, 1952–1958. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Qin, L.; Yang, D.; Zhang, L.; Wang, W. The Effect of Voltage Pulse Shape on the Discharge Characteristics in the Packed Bed Reactor under Air and Nitrogen. Appl. Sci. 2022, 12, 2215. https://doi.org/10.3390/app12042215
Li Y, Qin L, Yang D, Zhang L, Wang W. The Effect of Voltage Pulse Shape on the Discharge Characteristics in the Packed Bed Reactor under Air and Nitrogen. Applied Sciences. 2022; 12(4):2215. https://doi.org/10.3390/app12042215
Chicago/Turabian StyleLi, Yao, Liang Qin, Dezheng Yang, Li Zhang, and Wenchun Wang. 2022. "The Effect of Voltage Pulse Shape on the Discharge Characteristics in the Packed Bed Reactor under Air and Nitrogen" Applied Sciences 12, no. 4: 2215. https://doi.org/10.3390/app12042215
APA StyleLi, Y., Qin, L., Yang, D., Zhang, L., & Wang, W. (2022). The Effect of Voltage Pulse Shape on the Discharge Characteristics in the Packed Bed Reactor under Air and Nitrogen. Applied Sciences, 12(4), 2215. https://doi.org/10.3390/app12042215