Experiment Study on Mechanical Evolution Characteristics of Coal and Rock under Three-Dimensional Triaxial Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Engineering Background and Geological Setting
2.2. Experimental Equipment and Experimental Scheme
2.3. Uniaxial Compressive Strength Test of Rock Mass
2.4. Shear Test of Rock with Variable Angle Mode
3. Results
3.1. Analysis of Uniaxial Compressive Strength of Rock Mass
3.2. Analysis of Shear Test Results of Rock with Variable Angle Mode
3.3. Rock Mass Mechanical Response under Conventional Triaxial Loading Test
3.4. Analysis of Rock Mass Fracture Characteristics
3.5. Stress and Strain Evolution of Rock Mass under Triaxial Stress
4. Discussion and Conclusions
- By carrying out physical and mechanical experiments of rock, the elastic modulus, Poisson’s ratio, internal friction angle, and cohesion of coal and rock are obtained. The experimental results show that the compressive strength of the sample is in the order of medium sandstone > fine sandstone > mudstone.
- The mechanical equation of fine sandstone under triaxial stress is established. On the basis of statistical damage mechanics, this chapter fully considers the influence of hydrostatic pressure in the experimental process, takes hydrostatic pressure as a part of the equation, and establishes a stress–strain equation based on confining pressure, which can describe the mechanical failure characteristics of rock under triaxial stress.
- There is little difference in the cohesion and internal friction angle of the three rocks, among which mudstone has the lowest cohesion value under triaxial compression, indicating that the triaxial compression shear strength of the three rocks is similar. The cohesion of coal rock is the lowest, indicating that coal rock is easy to be destroyed by shear.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Katz, H.A.; Daniels, J.M.; Ryan, S. Slope-area thresholds of road-induced gully erosion and consequent hillslope-channel interactions. Earth Surf. Process. Landforms 2013, 39, 285–295. [Google Scholar] [CrossRef]
- Zhang, J.; Li, M.; Taheri, A.; Zhang, W.; Wu, Z.; Song, W. Properties and Application of Backfill Materials in Coal Mines in China. Minerals 2019, 9, 53. [Google Scholar] [CrossRef] [Green Version]
- Ye, Q.; Wang, G.; Jia, Z.; Zheng, C.; Wang, W. Similarity simulation of mining-crack-evolution characteristics of overburden strata in deep coal mining with large dip. J. Pet. Sci. Eng. 2018, 165, 477–487. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Sun, D.; Shu, W.; Li, X. Exploration: Safe and clean mining on Earth and asteroids. J. Clean. Prod. 2020, 257, 120899. [Google Scholar] [CrossRef]
- Duan, B.; Xia, H.; Yang, X. Impacts of bench blasting vibration on the stability of the surrounding rock masses of roadways. Tunn. Undergr. Space Technol. 2018, 71, 605–622. [Google Scholar] [CrossRef]
- He, M.; Feng, J.; Sun, X. Stability evaluation and optimal excavated design of rock slope at Antaibao open pit coal mine, China. Int. J. Rock Mech. Min. Sci. 2007, 45, 289–302. [Google Scholar] [CrossRef]
- Du, S.; Feng, G.; Wang, J.; Feng, S.; Malekian, R.; Li, Z. A New Machine-Learning Prediction Model for Slope Deformation of an Open-Pit Mine: An Evaluation of Field Data. Energies 2019, 12, 1288. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Wang, E.; Zhong, J.; Liu, X.; Li, P.; Shi, M.; Zhang, Z. Stability analysis of abutment slopes based on long-term monitoring and numerical simulation. Eng. Geol. 2014, 183, 159–169. [Google Scholar] [CrossRef]
- Xu, C.; Liu, X.; Wang, E.; Zheng, Y.; Wang, S. Rockburst prediction and classification based on the ideal-point method of information theory. Tunn. Undergr. Space Technol. 2018, 81, 382–390. [Google Scholar] [CrossRef]
- Liu, X.; Wang, S. Mine water inrush forecasting during the mining under waters. Disaster Adv. 2012, 5, 876–881. [Google Scholar]
- Lin, P.; Liu, X.; Hu, Y.; Xu, W.; Li, Q. Engineering. Deformation stability analysis of Xiluodu arch dam under stress-seepage coupling condition. Chin. J. Rock Mech. Eng. 2013, 32, 1145–1156. [Google Scholar]
- Lin, P.; Liu, X.; Hu, S.; Li, P. Large Deformation Analysis of a High Steep Slope Relating to the Laxiwa Reservoir, China. Rock Mech. Rock Eng. 2016, 49, 2253–2276. [Google Scholar] [CrossRef]
- Liu, X.; Han, G.; Wang, E.; Wang, S.; Nawnit, K. Multiscale hierarchical analysis of rock mass and prediction of its mechanical and hydraulic properties. J. Rock Mech. Geotech. Eng. 2018, 10, 694–702. [Google Scholar] [CrossRef]
- Hu, B.; Zhao, H.-B.; Wang, S.-J.; Liu, H.-N.; Peng, Y.-D.; Liu, X.-L.; Zhang, X.-P. Pull-out model test for tunnel anchorage and numerical analysis. Rock Soil Mech. 2009, 30, 1575–1582. [Google Scholar]
- Liu, C.; Liu, X.; Peng, X.; Wang, E.; Wang, S. Application of 3D-DDA integrated with unmanned aerial vehicle–laser scanner (UAV-LS) photogrammetry for stability analysis of a blocky rock mass slope. Landslides 2019, 16, 1645–1661. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Q.; Shi, K.; Pan, Y.; Liu, J. Application and prospect of hard rock TBM for deep roadway construction in coal mines. Tunn. Undergr. Space Technol. 2018, 73, 105–126. [Google Scholar] [CrossRef]
- Salmi, E.; Karakus, M.; Nazem, M. Assessing the effects of rock mass gradual deterioration on the long-term stability of abandoned mine workings and the mechanisms of post-mining subsidence–A case study of Castle Fields mine. Tunn. Undergr. Space Technol. 2019, 88, 169–185. [Google Scholar] [CrossRef]
- Liu, X.; Wang, S.; Wang, S.; Wang, E.J. Fluid-driven fractures in granular materials. Bull. Eng. Geol. Environ. 2015, 74, 621–636. [Google Scholar] [CrossRef]
- Lv, Q.; Wang, E.; Liu, X.; Wang, S. Determining the intrinsic permeability of tight porous media based on bivelocity hydrodynetics. Microfluid. Nanofluid. 2014, 16, 841–848. [Google Scholar] [CrossRef]
- Li, J.; Hu, M.; Ding, E.; Kong, W.; Pan, D.; Chen, S. Multi-parameter numerical simulation of dynamic monitoring of rock deformation in deep mining. Int. J. Min. Sci. Technol. 2016, 26, 851–855. [Google Scholar] [CrossRef]
- Jing, H.; Wu, J.; Yin, Q.; Wang, K. Deformation and failure characteristics of anchorage structure of surrounding rock in deep roadway. Int. J. Min. Sci. Technol. 2020, 30, 593–604. [Google Scholar] [CrossRef]
- Zhang, N.; Yuan, L.; Han, C.; Xue, J.; Kan, J. Stability and deformation of surrounding rock in pillarless gob-side entry retaining. Saf. Sci. 2012, 50, 593–599. [Google Scholar] [CrossRef]
- Yu, W.; Liu, F.J. Stability of close chambers surrounding rock in deep and comprehensive control technology. Adv. Civ. Eng. 2018, 2018, 40. [Google Scholar] [CrossRef]
- He, H.; Yan, Y.; Qu, C.; Fan, Y. Study and Application on Stability Classification of Tunnel Surrounding Rock Based on Uncertainty Measure Theory. Math. Probl. Eng. 2014, 2014, 1–5. [Google Scholar] [CrossRef]
- Chen, S.; Wu, A.; Wang, Y.; Chen, X.; Yan, R.; Ma, H. Study on repair control technology of soft surrounding rock roadway and its application. Eng. Fail. Anal. 2018, 92, 443–455. [Google Scholar] [CrossRef]
- He, M.; Gong, W.; Wang, J.; Qi, P.; Tao, Z.; Du, S.; Peng, Y. Development of a novel energy-absorbing bolt with extraordinarily large elongation and constant resistance. Int. J. Rock Mech. Min. Sci. 2014, 67, 29–42. [Google Scholar] [CrossRef]
- Sun, X.-M.; He, M.-C. Numerical simulation research on coupling support theory of roadway within soft rock at depth. J. China Univ. Min. Technol. 2005, 34, 166–169. [Google Scholar]
- Kang, Y.; Liu, Q.; Gong, G.; Wang, H. Application of a combined support system to the weak floor reinforcement in deep underground coal mine. Int. J. Rock Mech. Min. Sci. 2014, 71, 143–150. [Google Scholar] [CrossRef]
- Li, S.; Wang, Q.; Wang, H.; Jiang, B.; Wang, D.; Zhang, B.; Li, Y.; Ruan, G. Model test study on surrounding rock deformation and failure mechanisms of deep roadways with thick top coal. Tunn. Undergr. Space Technol. 2015, 47, 52–63. [Google Scholar] [CrossRef]
- Singh, R.; Mallick, M.; Verma, M. Studies on failure behaviour of wire rope used in underground coal mines. Eng. Fail. Anal. 2016, 70, 290–304. [Google Scholar] [CrossRef]
- Sasaoka, T.; Shimada, H.; Lin, N.Z.; Takamoto, H.; Matsui, K.; Kramadibrata, S.; Sulistianto, B. Geotechnical issues in the application of rock bolting technology for the development of underground coal mines in Indonesia. Int. J. Min. Reclam. Environ. 2013, 28, 150–172. [Google Scholar] [CrossRef]
- Du, Q.; Liu, X.; Wang, E.; Wang, S. Strength Reduction of Coal Pillar after CO2 Sequestration in Abandoned Coal Mines. Minerals 2017, 7, 26. [Google Scholar] [CrossRef]
- Liu, X.; Wang, S.; Wang, E. A study on the uplift mechanism of Tongjiezi dam using a coupled hydro-mechanical model. Eng. Geol. 2011, 117, 134–150. [Google Scholar] [CrossRef]
- Dai, S.; Liu, X.; Nawnit, K. Experimental Study on the Fracture Process Zone Characteristics in Concrete Utilizing DIC and AE Methods. Appl. Sci. 2019, 9, 1346. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Liu, X.; Ye, Z.; Wang, E. Experimental investigation of the nonlinear evolution from pipe flow to fissure flow during carbonate rock failures. Bull. Eng. Geol. Environ. 2021, 80, 4459–4470. [Google Scholar] [CrossRef]
- Sun, W.; Hao, J.; Liu, Y. A new proposed method for observing fluid in rock fractures using the enhanced X-ray image of digital radiography. Geomech. Geophys. Geo-Energy Geo-Resour. 2021, 8, 1–16. [Google Scholar] [CrossRef]
- Liu, H.; Long, Q.; Liu, X.; Ye, Z.; Wang, E.; Du, W. Opencast Mining Technology j. Analysis of hydrogeological characteristics and water control measures of Pingshuo East open-pit mine. Opencast Min. Technol. 2021, 31, 78–91. [Google Scholar]
- Jia, S.; Liu, T.; Yan, Y. Technology Innovation and Application j. Analysis of geological environment of pingshuo Group East open-pit Mine. J. Clean. Prod. 2014, 15, 126–127. [Google Scholar]
Serial Number | Lithology | Specimen Size (Width × Length) | Natural Quality | Feed Water Quality | Drying Quality | Soil Natural Density | Full Water Density | Dry Density | Bibulous Rate | |
---|---|---|---|---|---|---|---|---|---|---|
mm × mm | g | g | g | g/cm3 | g/cm3 | g/cm3 | % | |||
1-A-1-1 | Coal | 50.2 | 49.96 | 214.1 | 216.8 | 209.2 | 2.14 | 2.18 | 2.06 | 4.20% |
1-A-1-2 | 50.4 | 50.51 | 218 | 217.9 | 208.4 | 2.05 | 2.04 | 2.1 | 4.87% | |
mean value | 2.1 | 2.11 | 2.08 | 4.54% | ||||||
2-B-1-1 | Mudstone | 100.03 | 50.44 | 474.5 | 481.8 | 466.7 | 2.38 | 2.41 | 2.34 | 3.24% |
2-B-1-2 | 99.6 | 50.5 | 495.9 | 501.9 | 490.3 | 2.49 | 2.52 | 2.46 | 2.37% | |
2-B-1-3 | 99.63 | 50.2 | 459.7 | 470.1 | 448.4 | 2.33 | 2.39 | 2.28 | 4.84% | |
2-B-1-4 | 99.31 | 50.46 | 480.3 | 490.7 | 468.7 | 2.42 | 2.47 | 2.36 | 4.69% | |
mean value | 2.4 | 2.45 | 2.36 | 3.78% | ||||||
1-C-1-1 | Fine sandstone | 99.39 | 50.42 | 493.7 | 505.6 | 491.6 | 2.49 | 2.55 | 2.48 | 2.85% |
1-C-1-2 | 100.17 | 50.5 | 487.9 | 502.3 | 486.6 | 2.43 | 2.5 | 2.43 | 3.23% | |
1-C-1-3 | 101.25 | 50.61 | 467.5 | 480.3 | 465 | 2.3 | 2.36 | 2.28 | 3.29% | |
1-C-2-4 | 98.1 | 48.84 | 454.66 | 473.58 | 452.68 | 2.36 | 2.55 | 2.37 | 3.14% | |
mean value | 2.39 | 2.49 | 2.39 | 3.22% | ||||||
1-D-1-1 | Medium sandstone | 99.36 | 48.7 | 455.32 | 467.1 | 447.9 | 2.71 | 2.74 | 2.65 | 4.61% |
1-D-1-2 | 98.92 | 48.74 | 457.86 | 469.6 | 450.7 | 2.55 | 2.56 | 2.44 | 4.19% | |
1-D-1-3 | 98.9 | 48.9 | 444.78 | 456.2 | 436.5 | 2.39 | 2.46 | 2.35 | 4.50% | |
1-D-1-4 | 100.1 | 48.72 | 451.48 | 463.56 | 442.68 | 2.42 | 2.43 | 2.37 | 4.70% | |
mean value | 2.42 | 2.43 | 2.37 | 4.70% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, Y.; Du, H.; Zhang, R.; Feng, J.; Deng, Z. Experiment Study on Mechanical Evolution Characteristics of Coal and Rock under Three-Dimensional Triaxial Stress. Appl. Sci. 2022, 12, 2445. https://doi.org/10.3390/app12052445
Tao Y, Du H, Zhang R, Feng J, Deng Z. Experiment Study on Mechanical Evolution Characteristics of Coal and Rock under Three-Dimensional Triaxial Stress. Applied Sciences. 2022; 12(5):2445. https://doi.org/10.3390/app12052445
Chicago/Turabian StyleTao, Yabin, Han Du, Ruixin Zhang, Jianzhao Feng, and Zhiyun Deng. 2022. "Experiment Study on Mechanical Evolution Characteristics of Coal and Rock under Three-Dimensional Triaxial Stress" Applied Sciences 12, no. 5: 2445. https://doi.org/10.3390/app12052445
APA StyleTao, Y., Du, H., Zhang, R., Feng, J., & Deng, Z. (2022). Experiment Study on Mechanical Evolution Characteristics of Coal and Rock under Three-Dimensional Triaxial Stress. Applied Sciences, 12(5), 2445. https://doi.org/10.3390/app12052445