Synchrotron Radiation Circular Dichroism, a New Tool to Probe Interactions between Nucleic Acids Involved in the Control of ColE1-Type Plasmid Replication
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Hfq-CTR Peptide and Protein
2.3. Designing Oligonucleotides for Analyses
- RNAI_Astem (RNAI\II interaction): ACAGUAUUUGGUAUCUGCGCUCUGCUGAAGCCAGUUACC; RNAII_Astem (RNAI\II interaction): GGUAACUGGCUUCAGCAGAGCGCAGAUACCAAAUACUGU; RNAII_C-rich_stretch (RNAII\DNA interaction): AUGCUCGUCAGGGGGGCGGAGCCUAUGGAAAA; DNA_C-stretch_ssColE1for (RNAII\DNA interaction): GGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCAT; DNA_C-strech_ssColE1rev (RNAII\DNA interaction): ATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAACGCGGCC; DNA_ColE1orifor (DNA\DNA interaction): TGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATC; DNA_ColE1orirev (DNA\DNA interaction): GATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCA
2.4. Synchrotron Radiation Circular Dichroism (SRCD)
2.5. Synchrotron Radiation Linear Dichroism (SRLD)
3. Results
3.1. Effect of the Amyloid Region of Hfq on ColE1 Origin Structure
3.1.1. Hfq-CTR Does Not Melt ColE1 Origin
3.1.2. Hfq-CTR Stabilizes ColE1 Origin dsDNA
3.1.3. Hfq-CTR Aligns ColE1 Origin dsDNA
3.2. Effect of Hfq-CTR on RNA I-RNA II Annealing
3.2.1. Hfq-CTR Accelerates RNA I-RNA II Annealing
3.2.2. Hfq-CTR Strongly Aligns RNA I-RNA II Duplex
3.2.3. Hfq-CTR Strongly Stabilizes the RNA I-RNA II Duplex, in Particular at High Temperature
3.3. Hfq-CTR Stabilizes RNA II Secondary Structure, but Not That of RNA I
3.4. Hfq-CTR Stabilizes the C-Stretch Region of ColE1 Plasmid DNA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mancuso, G.; Midiri, A.; Gerace, E.; Biondo, C. Bacterial Antibiotic Resistance: The most critical pathogens. Pathogens 2021, 10, 1310. [Google Scholar] [CrossRef] [PubMed]
- Uddin, T.M.; Chakraborty, A.J.; Khusro, A.; Zidan, B.R.M.; Mitra, S.; Bin Emran, T.; Dhama, K.; Ripon, K.H.; Gajdács, M.; Sahibzada, M.U.K.; et al. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J. Infect. Public Health 2021, 14, 1750–1766. [Google Scholar] [CrossRef] [PubMed]
- Apreja, M.; Sharma, A.; Balda, S.; Kataria, K.; Capalash, N.; Sharma, P. Antibiotic residues in environment: Antimicrobial resistance development, ecological risks, and bioremediation. Environ. Sci. Pollut. Res. Int. 2021, 29, 3355–3371. [Google Scholar] [CrossRef] [PubMed]
- Jian, Z.; Zeng, L.; Xu, T.; Sun, S.; Yan, S.; Yang, L.; Huang, Y.; Jia, J.; Dou, T. Antibiotic resistance genes in bacteria: Occurrence, spread, and control. J. Basic Microbiol. 2021, 61, 1049–1070. [Google Scholar] [CrossRef]
- Mikiewicz, D.; Wrobel, B.; Wegrzyn, G.; Plucienniczak, A. Isolation and characterization of a ColE1-like plasmid from Enterobacter agglomerans with a novel variant of rom gene. Plasmid 1997, 38, 210–219. [Google Scholar] [CrossRef]
- Rijavec, M.; Budič, M.; Mrak, P.; Müller-Premru, M.; Podlesek, Z.; Žgur-Bertok, D. Prevalence of cole1-like plasmids and colicin K production among uropathogenic Escherichia coli strains and quantification of inhibitory activity of colicin, K. Appl. Environ. Microbiol. 2007, 73, 1029–1032. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.-Y.; Lindsey, R.L.; Strobaugh, T.P.; Frye, J.; Meinersmann, R.J. Prevalence of cole1-like plasmids and kanamycin resistance genes in salmonella enterica serovars. Appl. Environ. Microbiol. 2010, 76, 6707–6714. [Google Scholar] [CrossRef] [Green Version]
- Ares-Arroyo, M.; Bernabe-Balas, C.; Santos-Lopez, A.; Baquero, M.R.; Prasad, K.N.; Cid, D.; Martin-Espada, C.; Millan, A.S.; Gonzalez-Zorn, B. PCR-based analysis of cole1 plasmids in clinical isolates and metagenomic samples reveals their importance as gene capture platforms. Front. Microbiol. 2018, 9, 469. [Google Scholar] [CrossRef]
- Oladeinde, A.; Cook, K.; Orlek, A.; Zock, G.; Herrington, K.; Cox, N.; Lawrence, J.P.; Hall, C. Hotspot mutations and ColE1 plasmids contribute to the fitness of Salmonella Heidelberg in poultry litter. PLoS ONE 2018, 13, e0202286. [Google Scholar] [CrossRef] [Green Version]
- Simon, S.C.F.; DE Toro, M.; Mora, A.; García, V.; Meniño, I.G.; Díaz-Jiménez, D.; Herrera, A.; Blanco, J. Whole genome sequencing and characteristics of mcr-1–harboring plasmids of porcine Escherichia coli isolates belonging to the high-risk clone O25b:H4-ST131 Clade, B. Front. Microbiol. 2020, 11, 387. [Google Scholar] [CrossRef] [Green Version]
- Naidoo, Y.; Valverde, A.; Cason, E.D.; Pierneef, R.E.; Cowan, D.A. A clinically important, plasmid-borne antibiotic resistance gene (beta-lactamase TEM-116) present in desert soils. Sci. Total Environ. 2020, 719, 137497. [Google Scholar] [CrossRef] [PubMed]
- Hagbø, M.; Ravi, A.; Angell, I.L.; Sunde, M.; Ludvigsen, J.; Diep, D.B.; Foley, S.L.; Vento, M.; Collado, M.C.; Perez-Martinez, G.; et al. Experimental support for multidrug resistance transfer potential in the preterm infant gut microbiota. Pediatr. Res. 2020, 88, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Brantl, S. Plasmid replication control by antisense RNAs. Microbiol. Spectr. 2014, 2, PLAS-0001-2013. [Google Scholar] [CrossRef] [Green Version]
- Lilly, J.; Camps, M. Mechanisms of theta plasmid replication. Microbiol. Spectr. 2015, 3, 45–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kavita, K.; De Mets, F.; Gottesman, S. New aspects of RNA-based regulation by Hfq and its partner sRNAs. Curr. Opin. Microbiol. 2018, 42, 53–61. [Google Scholar] [CrossRef]
- Cech, G.M.; Szalewska-Pałasz, A.; Kubiak, K.; Malabirade, A.; Grange, W.; Arluison, V.; Węgrzyn, G. The Escherichia coli Hfq protein: An unattended DNA-transactions regulator. Front. Mol. Biosci. 2016, 3, 36. [Google Scholar] [CrossRef] [Green Version]
- Cech, G.M.; Pakula, B.; Kamrowska, D.; Wegrzyn, G.; Arluison, V.; Szalewska-Palasz, A. Hfq protein deficiency in Escherichia coli affects ColE1-like but not lambda plasmid DNA replication. Plasmid 2014, 73, 10–15. [Google Scholar] [CrossRef]
- Gaffke, L.; Kubiak, K.; Cyske, Z.; Węgrzyn, G. Differential chromosome- and plasmid-borne resistance of Escherichia coli hfq mutants to high concentrations of various antibiotics. Int. J. Mol. Sci. 2021, 22, 8886. [Google Scholar] [CrossRef]
- Santiago-Frangos, A.; Kavita, K.; Schu, D.J.; Gottesman, S.; Woodson, S.A. C-terminal domain of the RNA chaperone Hfq drives sRNA competition and release of target RNA. Proc. Natl. Acad. Sci. USA 2016, 113, E6089–E6096. [Google Scholar] [CrossRef] [Green Version]
- Gottesman, S.; Storz, G. RNA reflections: Converging on Hfq. RNA 2015, 21, 511–512. [Google Scholar] [CrossRef] [Green Version]
- Orans, J.; Kovach, A.R.; Hoff, K.E.; Horstmann, N.M.; Brennan, R.G. Crystal structure of an Escherichia coli Hfq Core (residues 2-69)-DNA complex reveals multifunctional nucleic acid binding sites. Nucleic Acids Res. 2020, 48, 3987–3997. [Google Scholar] [CrossRef] [PubMed]
- Olsen, A.S.; Møller-Jensen, J.; Brennan, R.G.; Valentin-Hansen, P. C-Terminally Truncated Derivatives of Escherichia coli Hfq Are Proficient in Riboregulation. J. Mol. Biol. 2010, 404, 173–182. [Google Scholar] [CrossRef]
- Arluison, V.; Folichon, M.; Marco, S.; Derreumaux, P.; Pellegrini, O.; Seguin, J.; Hajnsdorf, E.; Regnier, P. The C-terminal domain of Escherichia coli Hfq increases the stability of the hexamer. Eur. J. Biochem. 2004, 271, 1258–1265. [Google Scholar] [CrossRef] [PubMed]
- Turbant, F.; Wu, P.; Wien, F.; Arluison, V. The amyloid region of Hfq riboregulator promotes DsrA:rpoS RNAs annealing. Biology 2021, 10, 900. [Google Scholar] [CrossRef] [PubMed]
- Fortas, E.; Piccirilli, F.; Malabirade, A.; Militello, V.; Trépout, S.; Marco, S.; Taghbalout, A.; Arluison, V. New insight into the structure and function of Hfq C-terminus. Biosci. Rep. 2015, 35, 35. [Google Scholar] [CrossRef] [PubMed]
- Malabirade, A.; Jiang, K.; Kubiak, K.; Diaz-Mendoza, A.; Liu, F.; van Kan, J.A.; Berret, J.-F.; Arluison, V.; Van Der Maarel, J.R. Compaction and condensation of DNA mediated by the C-terminal domain of Hfq. Nucleic Acids Res. 2017, 45, 7299–7308. [Google Scholar] [CrossRef]
- Malabirade, A.; Partouche, D.; El Hamoui, O.; Turbant, F.; Geinguenaud, F.; Recouvreux, P.; Bizien, T.; Busi, F.; Wien, F.; Arluison, V. Revised role for Hfq bacterial regulator on DNA topology. Sci. Rep. 2018, 8, 16792. [Google Scholar] [CrossRef]
- Beaufay, F.; Amemiya, H.M.; Guan, J.; Basalla, J.; Meinen, B.A.; Chen, Z.; Mitra, R.; Bardwell, J.C.A.; Biteen, J.S.; Vecchiarelli, A.G.; et al. Polyphosphate drives bacterial heterochromatin formation. Sci. Adv. 2021, 7, 0233. [Google Scholar] [CrossRef]
- Parekh, V.J.; Niccum, B.A.; Shah, R.; Rivera, M.A.; Novak, M.J.; Geinguenaud, F.; Wien, F.; Arluison, V.; Sinden, R.R. Role of Hfq in Genome Evolution: Instability of G-Quadruplex Sequences in E. coli. Microorganisms 2019, 8, 28. [Google Scholar] [CrossRef] [Green Version]
- Parekh, V.J.; Wien, F.; Grange, W.; De Long, T.A.; Arluison, V.; Sinden, R.R. Crucial role of the C-terminal domain of Hfq protein in genomic instability. Microorganisms 2020, 8, 1598. [Google Scholar] [CrossRef]
- El Hamoui, O.; Yadav, I.; Radiom, M.; Wien, F.; Berret, J.-F.; Van Der Maarel, J.R.C.; Arluison, V. Interactions between DNA and the Hfq amyloid-like region trigger a viscoelastic response. Biomacromolecules 2020, 21, 3668–3677. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Gottesman, S. Hfq links translation repression to stress-induced mutagenesis in E. coli. Genes Dev. 2017, 31, 1382–1395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amemiya, H.M.; Goss, T.J.; Nye, T.M.; Hurto, R.L.; Simmons, L.A.; Freddolino, P.L. Distinct heterochromatin-like domains promote transcriptional memory and silence parasitic genetic elements in bacteria. EMBO J. 2021, 41, e108708. [Google Scholar] [CrossRef] [PubMed]
- Le Brun, E.; Arluison, V.; Wien, F. Application of synchrotron radiation circular dichroism for rna structural analysis. Methods Mol. Biol. 2020, 2113, 135–148. [Google Scholar]
- Wien, F.; Martinez, D.; Le Brun, E.; Jones, N.C.; Hoffmann, S.V.; Waeytens, J.; Berbon, M.; Habenstein, B.; Arluison, V. The bacterial amyloid-like Hfq promotes In Vitro DNA alignment. Microorganisms 2019, 7, 639. [Google Scholar] [CrossRef] [Green Version]
- Wien, F.; Wallace, B.A. Calcium fluoride micro cells for synchrotron radiation circular dichroism spectroscopy. Appl. Spectrosc. 2005, 59, 1109–1113. [Google Scholar] [CrossRef]
- Wien, F.; Miles, A.J.; Lees, J.G.; Hoffmann, S.V.; Wallace, B.A. VUV irradiation effects on proteins in high-flux synchrotron radiation circular dichroism spectroscopy. J. Synchrotron Radiat. 2005, 12, 517–523. [Google Scholar] [CrossRef] [Green Version]
- Miles, A.J.; Janes, R.W.; Brown, A.; Clarke, D.T.; Sutherland, J.C.; Tao, Y.; Wallace, B.A.; Hoffmann, S.V. Light flux density threshold at which protein denaturation is induced by synchrotron radiation circular dichroism beamlines. J. Synchrotron Radiat. 2008, 15, 420–422. [Google Scholar] [CrossRef]
- Miles, A.J.; Wallace, B.A. CDtoolX, a downloadable software package for processing and analyses of circular dichroism spectroscopic data. Protein Sci. 2018, 27, 1717–1722. [Google Scholar] [CrossRef]
- Wien, F.; Paternostre, M.; Gobeaux, F.; Artzner, F.; Réfrégiers, M. Calibration and quality assurance procedures at the far UV linear and circular dichroism experimental station DISCO. J. Phys. Conf. Ser. 2013, 425, 122014. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, J.C. Linear dichroism of DNA: Characterization of the orientation distribution function caused by hydrodynamic shear. Anal. Biochem. 2017, 523, 24–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wien, F.; Geinguenaud, F.; Grange, W.; Arluison, V. SRCD and FTIR spectroscopies to monitor protein-induced nucleic acid remodeling. Methods Mol. Biol. 2021, 2209, 87–108. [Google Scholar] [PubMed]
- Moore, D.S.; Williams, A.L., Jr. CD of nucleic acids: III. Calculated CD of RNAs from new A, U, G, and C transition-moment parameters. Biopolymers 1986, 25, 1461–1491. [Google Scholar] [CrossRef] [PubMed]
- Holm, A.I.S.; Nielsen, L.M.; Hoffmann, S.V.; Nielsen, S.B. Vacuum-ultraviolet circular dichroism spectroscopy of DNA: A valuable tool to elucidate topology and electronic coupling in DNA. Phys. Chem. Chem. Phys. 2010, 12, 9581–9596. [Google Scholar] [CrossRef] [PubMed]
- Gray, D.M.; Ratliff, R.L.; Vaughan, M.R. Circular dichroism spectroscopy of DNA. Methods Enzymol. 1992, 211, 389–406. [Google Scholar] [PubMed]
- Sutherland, J.C. Measurement of circular dichroism and related spectroscopies with conventional and synchrotron light sources: Theory and instrumentation. In Modern Techniques for Circular Dichroism and Synchrotron Radiation Circular Dichroism Spectroscopy; Wallace, B.A., Janes, R.W., Eds.; IOS Press: Amsterdam, The Netherlands, 2009; pp. 19–72. [Google Scholar]
- Arluison, V.; Hohng, S.; Roy, R.; Pellegrini, O.; Régnier, P.; Ha, T. Spectroscopic observation of RNA chaperone activities of Hfq in post-transcriptional regulation by a small non-coding RNA. Nucleic Acids Res. 2007, 35, 999–1006. [Google Scholar] [CrossRef] [Green Version]
- Jensen, H.P.; Schellman, J.A.; Troxell, T. Modulation techniques in polarization spectroscopy. Appl. Spectrosc. 1978, 32, 192–200. [Google Scholar] [CrossRef]
- Updegrove, T.B.; Zhang, A.; Storz, G. Hfq: The flexible RNA matchmaker. Curr. Opin. Microbiol. 2016, 30, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Johnson, W.C. CD Spectra for Nucleic Acid Monomers; Springer: Berlin/Heidelberg, Germany, 1990; Volume 1C. [Google Scholar]
- Harinarayanan, R.; Gowrishankar, J. Host factor titration by chromosomal r-loops as a mechanism for runaway plasmid replication in transcription termination-defective mutants of Escherichia coli. J. Mol. Biol. 2003, 332, 31–46. [Google Scholar] [CrossRef]
- Ivančić-Baće, I.; Radovčić, M.; Bočkor, L.; Howard, J.L.; Bolt, E.L. Cas3 stimulates runaway replication of a ColE1 plasmid in Escherichia coli and antagonises RNaseHI. RNA Biol. 2013, 10, 770–778. [Google Scholar] [CrossRef] [Green Version]
- Radovčić, M.; Čulo, A.; Ivančić-Baće, I. Cas3-stimulated runaway replication of modified ColE1 plasmids in Escherichia coli is temperature dependent. FEMS Microbiol. Lett. 2019, 366, 366. [Google Scholar] [CrossRef] [PubMed]
- Guyot, S.; Pottier, L.; Hartmann, A.; Ragon, M.; Tiburski, J.H.; Molin, P.; Ferret, E.; Gervais, P. Extremely rapid acclimation of Escherichia coli to high temperature over a few generations of a fed-batch culture during slow warming. Microbiologyopen 2014, 3, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Partouche, D.; Militello, V.; Gomez-Zavaglia, A.; Wien, F.; Sandt, C.; Arluison, V. In Situ characterization of Hfq bacterial amyloid: A Fourier-transform infrared spectroscopy study. Pathogens 2019, 8, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arluison, V.; Taghbalout, A. Cellular localization of RNA degradation and processing components in Escherichia coli. Methods Mol. Biol. 2014, 1259, 87–101. [Google Scholar]
- Diestra, E.; Cayrol, B.; Arluison, V.; Risco, C. Cellular electron microscopy imaging reveals the localization of the Hfq protein close to the bacterial membrane. PLoS ONE 2009, 4, e8301. [Google Scholar] [CrossRef] [Green Version]
- McQuail, J.; Switzer, A.; Burchell, L.; Wigneshweraraj, S. The RNA-binding protein Hfq assembles into foci-like structures in nitrogen starved Escherichia coli. J. Biol. Chem. 2020, 295, 12355–12367. [Google Scholar] [CrossRef]
- Busi, F.; Turbant, F.; Arluison, V.; Wien, F. Evaluation of amyloid inhibitor efficiency to block bacterial survival. Methods Mol. Biol. 2022, Bacterial amyloids, in press. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wien, F.; Kubiak, K.; Turbant, F.; Mosca, K.; Węgrzyn, G.; Arluison, V. Synchrotron Radiation Circular Dichroism, a New Tool to Probe Interactions between Nucleic Acids Involved in the Control of ColE1-Type Plasmid Replication. Appl. Sci. 2022, 12, 2639. https://doi.org/10.3390/app12052639
Wien F, Kubiak K, Turbant F, Mosca K, Węgrzyn G, Arluison V. Synchrotron Radiation Circular Dichroism, a New Tool to Probe Interactions between Nucleic Acids Involved in the Control of ColE1-Type Plasmid Replication. Applied Sciences. 2022; 12(5):2639. https://doi.org/10.3390/app12052639
Chicago/Turabian StyleWien, Frank, Krzysztof Kubiak, Florian Turbant, Kevin Mosca, Grzegorz Węgrzyn, and Véronique Arluison. 2022. "Synchrotron Radiation Circular Dichroism, a New Tool to Probe Interactions between Nucleic Acids Involved in the Control of ColE1-Type Plasmid Replication" Applied Sciences 12, no. 5: 2639. https://doi.org/10.3390/app12052639
APA StyleWien, F., Kubiak, K., Turbant, F., Mosca, K., Węgrzyn, G., & Arluison, V. (2022). Synchrotron Radiation Circular Dichroism, a New Tool to Probe Interactions between Nucleic Acids Involved in the Control of ColE1-Type Plasmid Replication. Applied Sciences, 12(5), 2639. https://doi.org/10.3390/app12052639