Synchrotron X-ray Radiation (SXR) in Medical Imaging: Current Status and Future Prospects
Abstract
:Featured Application
Abstract
1. Introduction
2. Overview of Synchrotron
3. Synchrotron X-ray Radiation in Medical Imaging
3.1. Breast Cancer
3.2. Coronary Angiography
3.3. Imaging Lung Ventilation
3.4. Bone and Joint Imaging
3.4.1. Microstructural Features
3.4.2. Crack Propagation
3.4.3. Mineralization
3.4.4. Incudostapedial Joint
3.5. Organ to Cellular Scale Imaging
4. Future Direction
4.1. Photon-Counting Detector (PCD)
4.2. Deep Learning (DL) for SXR Imaging
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mobilio, S.; Federico, B.F.; Meneghini, C. Synchrotron Radiation; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Ando, M.; Uyama, C. Medical Applications of Synchrotron Radiation; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Bayat, S.; Porra, L.; Suortti, P.; Thomlinson, W. Functional lung imaging with synchrotron radiation: Methods and preclinical applications. Phys. Med. PM Int. J. Devoted Appl. Phys. Med. Biol. Off. J. Ital. Assoc. Biomed. Phys. 2020, 79, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Shirai, M.; Schwenke, D.O.; Tsuchimochi, H.; Umetani, K.; Yagi, N.; Pearson, J.T. Synchrotron radiation imaging for advancing our understanding of cardiovascular function. Circ. Res. 2013, 112, 209–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomlinson, W. Medical applications of synchrotron radiation. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1992, 319, 295–304. [Google Scholar] [CrossRef] [Green Version]
- Helliwell, J.R. Synchrotron radiation facilities. Nat. Struct. Biol. 1998, 5, 614–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nalin, G. Synchrotron Radiation and Synchrotron Light Sources. Available online: https://www.nottingham.ac.uk/aspire-itn/aspire-blog/aspire-blogs-2020/synchrotron-radiation-and-synchrotron-light-sources.aspx (accessed on 6 November 2021).
- Margaritondo, G.; Meuli, R. Synchrotron radiation in radiology: Novel X-ray sources. Eur. Radiol. 2003, 13, 2633–2641. [Google Scholar] [CrossRef] [PubMed]
- Suortti, P.; Thomlinson, W. Medical applications of synchrotron radiation. Phys. Med. Biol. 2003, 48, R1-35. [Google Scholar] [CrossRef]
- Fonseca, M.C.; Araujo, B.H.S.; Dias, C.S.B.; Archilha, N.L.; Neto, D.P.A.; Cavalheiro, E.; Westfahl, H., Jr.; da Silva, A.J.R.; Franchini, K.G. High-resolution synchrotron-based X-ray microtomography as a tool to unveil the three-dimensional neuronal architecture of the brain. Sci. Rep. 2018, 8, 12074. [Google Scholar] [CrossRef]
- Chen, W.; Liu, R.; Tao, S.; Shen, W.; Zhou, W.; Song, C.; Lu, H.; Xing, C. Ultrastructural Analysis of Human Gallstones using Synchrotron Radiation microCT. Comb. Chem. High Throughput Screen. 2019, 22, 13–17. [Google Scholar] [CrossRef]
- Tang, L.; Li, G.; Sun, Y.S.; Li, J.; Zhang, X.P. Synchrotron-radiation phase-contrast imaging of human stomach and gastric cancer: In vitro studies. J. Synchrotron Radiat. 2012, 19, 319–322. [Google Scholar] [CrossRef]
- Han, S.M.; Chikawa, J.; Jeon, J.K.; Hwang, M.Y.; Lim, J.; Jeong, Y.J.; Park, S.H.; Kim, H.T.; Jheon, S.; Kim, J.K. Synchrotron nanoscopy imaging study of scalp hair in breast cancer patients and healthy individuals: Difference in medulla loss and cortical membrane enhancements. Microsc. Res. Tech. 2016, 79, 23–30. [Google Scholar] [CrossRef]
- Rohani, S.A.; Allen, D.; Gare, B.; Zhu, N.; Agrawal, S.; Ladak, H. High-resolution imaging of the human incudostapedial joint using synchrotron-radiation phase-contrast imaging. J. Microsc. 2020, 277, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Obata, Y.; Bale, H.A.; Barnard, H.S.; Parkinson, D.Y.; Alliston, T.; Acevedo, C. Quantitative and qualitative bone imaging: A review of synchrotron radiation microtomography analysis in bone research. J. Mech. Behav. Biomed. Mater. 2020, 110, 103887. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, G.; Morita, K.; Hoshino, M.; Ko, Y.; Tsukube, T.; Kaneko, Y.; Morishita, H.; Oshima, Y.; Matsuhisa, H.; Iwaki, R.; et al. Three Dimensional Visualization of Human Cardiac Conduction Tissue in Whole Heart Specimens by High-Resolution Phase-Contrast CT Imaging Using Synchrotron Radiation. World J. Pediatric Congenit. Heart Surg. 2016, 7, 700–705. [Google Scholar] [CrossRef] [PubMed]
- Turyanskaya, A.; Rauwolf, M.; Pichler, V.; Simon, R.; Burghammer, M.; Fox, O.J.L.; Sawhney, K.; Hofstaetter, J.G.; Roschger, A.; Roschger, P.; et al. Detection and imaging of gadolinium accumulation in human bone tissue by micro- and submicro-XRF. Sci. Rep. 2020, 10, 6301. [Google Scholar] [CrossRef] [Green Version]
- Pascolo, L.; Gianoncelli, A.; Kaulich, B.; Rizzardi, C.; Schneider, M.; Bottin, C.; Polentarutti, M.; Kiskinova, M.; Longoni, A.; Melato, M. Synchrotron soft X-ray imaging and fluorescence microscopy reveal novel features of asbestos body morphology and composition in human lung tissues. Part. Fibre Toxicol. 2011, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Szczerbowska-Boruchowska, M.; Dumas, P.; Kastyak, M.Z.; Chwiej, J.; Lankosz, M.; Adamek, D.; Krygowska-Wajs, A. Biomolecular investigation of human substantia nigra in Parkinson’s disease by synchrotron radiation Fourier transform infrared microspectroscopy. Arch. Biochem. Biophys. 2007, 459, 241–248. [Google Scholar] [CrossRef]
- Honkanen, M.K.M.; Saukko, A.E.A.; Turunen, M.J.; Shaikh, R.; Prakash, M.; Lovric, G.; Joukainen, A.; Kroger, H.; Grinstaff, M.W.; Toyras, J. Synchrotron MicroCT Reveals the Potential of the Dual Contrast Technique for Quantitative Assessment of Human Articular Cartilage Composition. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2020, 38, 563–573. [Google Scholar] [CrossRef] [Green Version]
- PeÃlka, J.B. Synchrotron Radiation in Biology and Medicine. Acta Phys. Pol. A 2022, 141, 3–34. [Google Scholar] [CrossRef]
- Porra, L.; Degrugilliers, L.; Broche, L.; Albu, G.; Strengell, S.; Suhonen, H.; Fodor, G.H.; Petak, F.; Suortti, P.; Habre, W.; et al. Quantitative Imaging of Regional Aerosol Deposition, Lung Ventilation and Morphology by Synchrotron Radiation CT. Sci. Rep. 2018, 8, 3519. [Google Scholar] [CrossRef] [Green Version]
- Pacile, S.; Baran, P.; Dullin, C.; Dimmock, M.; Lockie, D.; Missbach-Guntner, J.; Quiney, H.; McCormack, M.; Mayo, S.; Thompson, D.; et al. Advantages of breast cancer visualization and characterization using synchrotron radiation phase-contrast tomography. J. Synchrotron Radiat. 2018, 25, 1460–1466. [Google Scholar] [CrossRef]
- Peleg Walg, Y.; Krutman, Y.; Berman, A.; Orion, I. Synchrotron X-ray Irradiation of a Rat’s Head Model: Monte Carlo Study of Chromatic Gel Dosimetry. Appl. Sci. 2021, 11, 7389. [Google Scholar] [CrossRef]
- Bouchet, A.; Potez, M.; Coquery, N.; Rome, C.; Lemasson, B.; Brauer-Krisch, E.; Remy, C.; Laissue, J.; Barbier, E.L.; Djonov, V.; et al. Permeability of Brain Tumor Vessels Induced by Uniform or Spatially Microfractionated Synchrotron Radiation Therapies. Int. J. Radiat. Oncol. Biol. Phys. 2017, 98, 1174–1182. [Google Scholar] [CrossRef] [PubMed]
- Fedon, C.; Rigon, L.; Arfelli, F.; Dreossi, D.; Quai, E.; Tonutti, M.; Tromba, G.; Cova, M.A.; Longo, R. Dose and diagnostic performance comparison between phase-contrast mammography with synchrotron radiation and digital mammography: A clinical study report. J. Med. Imaging 2018, 5, 013503. [Google Scholar] [CrossRef]
- Brombal, L.; Golosio, B.; Arfelli, F.; Bonazza, D.; Contillo, A.; Delogu, P.; Donato, S.; Mettivier, G.; Oliva, P.; Rigon, L.; et al. Monochromatic breast computed tomography with synchrotron radiation: Phase-contrast and phase-retrieved image comparison and full-volume reconstruction. J. Med. Imaging 2019, 6, 031402. [Google Scholar] [CrossRef]
- Cole, J.M.; Wood, J.C.; Lopes, N.C.; Poder, K.; Abel, R.L.; Alatabi, S.; Bryant, J.S.; Jin, A.; Kneip, S.; Mecseki, K.; et al. Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone. Sci. Rep. 2015, 5, 13244. [Google Scholar] [CrossRef]
- Bliznakova, K.; Russo, P.; Kamarianakis, Z.; Mettivier, G.; Requardt, H.; Bravin, A.; Buliev, I. In-line phase-contrast breast tomosynthesis: A phantom feasibility study at a synchrotron radiation facility. Phys. Med. Biol. 2016, 61, 6243–6263. [Google Scholar] [CrossRef]
- Kawata, Y.; Niki, N.; Umetani, K.; Nakano, Y.; Ohamatsu, H.; Moriyama, N.; Itoh, H. Stochastic Tracking of Small Pulmonary Vessels in Human Lung Alveolar Walls Using Synchrotron Radiation Micro CT Images; SPIE: Bellingham, WA, USA, 2013; Volume 8672. [Google Scholar]
- Society, T.A.C. Cancer Facts and Statistics. Available online: https://www.cancer.org/research/cancer-facts-statistics (accessed on 8 November 2021).
- Xu, C.; Vavadi, H.; Merkulov, A.; Li, H.; Erfanzadeh, M.; Mostafa, A.; Gong, Y.; Salehi, H.; Tannenbaum, S.; Zhu, Q. Ultrasound-Guided Diffuse Optical Tomography for Predicting and Monitoring Neoadjuvant Chemotherapy of Breast Cancers: Recent Progress. Ultrason. Imaging 2016, 38, 5–18. [Google Scholar] [CrossRef] [Green Version]
- Brooksby, B.; Pogue, B.W.; Jiang, S.; Dehghani, H.; Srinivasan, S.; Kogel, C.; Tosteson, T.D.; Weaver, J.; Poplack, S.P.; Paulsen, K.D. Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography. Proc. Natl. Acad. Sci. USA 2006, 103, 8828–8833. [Google Scholar] [CrossRef] [Green Version]
- Althobaiti, M.; Vavadi, H.; Zhu, Q. Diffuse optical tomography reconstruction method using ultrasound images as prior for regularization matrix. J. Biomed. Opt. 2017, 22, 26002. [Google Scholar] [CrossRef] [Green Version]
- Fang, Q.; Selb, J.; Carp, S.A.; Boverman, G.; Miller, E.L.; Brooks, D.H.; Moore, R.H.; Kopans, D.B.; Boas, D.A. Combined optical and X-ray tomosynthesis breast imaging. Radiology 2011, 258, 89–97. [Google Scholar] [CrossRef] [Green Version]
- James, V. The Molecular Architecture for the Intermediate Filaments of Hard alpha-Keratin based on the Superlattice Data Obtained from a Study of Mammals Using Synchrotron Fibre Diffraction. Biochem. Res. Int. 2011, 2011, 198325. [Google Scholar] [CrossRef] [Green Version]
- Mistry, D.A.; Haklani, J.; French, P.W. Identification of breast cancer-associated lipids in scalp hair. Breast Cancer Basic Clin. Res. 2012, 6, 113–123. [Google Scholar] [CrossRef]
- Choi, Y.; Jeong, Y.J.; Jeon, J.G.; Park, S.H.; Choi, H.R.; Kim, J.K. Medulla loss of scalp hair in breast cancer patients determined by near-infrared microscopy. J. Biomed. Opt. 2019, 24, 1–9. [Google Scholar] [CrossRef]
- Rubenstein, E.; Hofstadter, R.; Zeman, H.D.; Thompson, A.C.; Otis, J.N.; Brown, G.S.; Giacomini, J.C.; Gordon, H.J.; Kernoff, R.S.; Harrison, D.C. Transvenous coronary angiography in humans using synchrotron radiation. Proc. Natl. Acad. Sci. USA 1986, 83, 9724–9728. [Google Scholar] [CrossRef] [Green Version]
- Le Cann, S.; Tudisco, E.; Turunen, M.J.; Patera, A.; Mokso, R.; Tägil, M.; Belfrage, O.; Hall, S.A.; Isaksson, H. Investigating the Mechanical Characteristics of Bone-Metal Implant Interface Using in situ Synchrotron Tomographic Imaging. Front. Bioeng. Biotechnol. 2019, 6, 208. [Google Scholar] [CrossRef]
- Withers, P.J. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy. Philos. Transactions. Ser. A Math. Phys. Eng. Sci. 2015, 373, 20130157. [Google Scholar] [CrossRef]
- Walsh, C.L.; Tafforeau, P.; Wagner, W.L.; Jafree, D.J.; Bellier, A.; Werlein, C.; Kuhnel, M.P.; Boller, E.; Walker-Samuel, S.; Robertus, J.L.; et al. Imaging intact human organs with local resolution of cellular structures using hierarchical phase-contrast tomography. Nat. Methods 2021, 18, 1532–1541. [Google Scholar] [CrossRef]
- Wang, X.; Meier, D.; Mikkelsen, S.; Maehlum, G.E.; Wagenaar, D.J.; Tsui, B.M.; Patt, B.E.; Frey, E.C. MicroCT with energy-resolved photon-counting detectors. Phys. Med. Biol. 2011, 56, 2791–2816. [Google Scholar] [CrossRef]
- Taguchi, K.; Iwanczyk, J.S. Vision 20/20: Single photon counting x-ray detectors in medical imaging. Med. Phys. 2013, 40, 100901. [Google Scholar] [CrossRef]
- Leng, S.; Bruesewitz, M.; Tao, S.; Rajendran, K.; Halaweish, A.F.; Campeau, N.G.; Fletcher, J.G.; McCollough, C.H. Photon-counting Detector CT: System Design and Clinical Applications of an Emerging Technology. Radiographics 2019, 39, 729–743. [Google Scholar] [CrossRef]
- Iwanczyk, J.S.; Nygard, E.; Meirav, O.; Arenson, J.; Barber, W.C.; Hartsough, N.E.; Malakhov, N.; Wessel, J.C. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging. IEEE Trans. Nucl. Sci. 2009, 56, 535–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shikhaliev, P.M. Energy-resolved computed tomography: First experimental results. Phys. Med. Biol. 2008, 53, 5595–5613. [Google Scholar] [CrossRef] [PubMed]
- Hameed, K.; Zainon, R.; Tamal, M. Characterization of CdZnTe detector for spectral Computed Tomography. In Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Manchester, UK, 26 October–2 November 2019; pp. 1–2. [Google Scholar] [CrossRef]
- Hamann, E.; Koenig, T.; Zuber, M.; Cecilia, A.; Tyazhev, A.; Tolbanov, O.; Procz, S.; Fauler, A.; Baumbach, T.; Fiederle, M. Performance of a Medipix3RX spectroscopic pixel detector with a high resistivity gallium arsenide sensor. IEEE Trans. Med. Imaging 2015, 34, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Danielsson, M.; Karlsson, S.; Svensson, C.; Bornefalk, H. Preliminary evaluation of a silicon strip detector for photon-counting spectral CT. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2012, 677, 45–51. [Google Scholar] [CrossRef]
- Tamal, M.; Reader, A.J.; Markiewicz, P.J.; Julyan, P.J.; Hastings, D.L. Noise Properties of Four Strategies for Incorporation of Scatter and Attenuation Information in PET Reconstruction Using the EM-ML Algorithm. IEEE Trans. Nucl. Sci. 2006, 53, 2778–2786. [Google Scholar] [CrossRef]
- Markiewicz, P.J.; Tamal, M.; Julyan, P.J.; Hastings, D.L.; Reader, A.J. High accuracy multiple scatter modelling for 3D whole body PET. Phys. Med. Biol. 2007, 52, 829–847. [Google Scholar] [CrossRef]
- Oh, S.; Kim, S. Deformable image registration in radiation therapy. Radiat. Oncol. J. 2017, 35, 101–111. [Google Scholar] [CrossRef]
- Dowling, J.A.; O’Connor, L.M. Deformable image registration in radiation therapy. J. Med. Radiat. Sci. 2020, 67, 257–259. [Google Scholar] [CrossRef]
- Rong, Y.; Rosu-Bubulac, M.; Benedict, S.H.; Cui, Y.; Ruo, R.; Connell, T.; Kashani, R.; Latifi, K.; Chen, Q.; Geng, H.; et al. Rigid and Deformable Image Registration for Radiation Therapy: A Self-Study Evaluation Guide for NRG Oncology Clinical Trial Participation. Pract. Radiat. Oncol. 2021, 11, 282–298. [Google Scholar] [CrossRef]
- Vozzo, M.; Poder, J.; Yuen, J.; Bucci, J.; Haworth, A. Use of deformable image registration techniques to estimate dose to organs at risk following prostate external beam radiation therapy and high-dose-rate brachytherapy. J. Contemp. Brachytherapy 2021, 13, 72–79. [Google Scholar] [CrossRef]
- Bahrami, A.; Karimian, A.; Arabi, H. Comparison of different deep learning architectures for synthetic CT generation from MR images. Phys. Med. PM Int. J. Devoted Appl. Phys. Med. Biol. Off. J. Ital. Assoc. Biomed. Phys. 2021, 90, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.; Zhang, Y.; Wang, S.; Yap, P.T.; Shen, D. Synthesized 7T MRI from 3T MRI via deep learning in spatial and wavelet domains. Med. Image Anal. 2020, 62, 101663. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, Y.; Qin, W.; Liang, X.; Xu, J.; Xiong, J.; Xie, Y. Magnetic resonance image (MRI) synthesis from brain computed tomography (CT) images based on deep learning methods for magnetic resonance (MR)-guided radiotherapy. Quant. Imaging Med. Surg. 2020, 10, 1223–1236. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, W.; He, P.; Xiong, J.; Xia, J.; Xie, Y. CT synthesis from MRI images based on deep learning methods for MRI-only radiotherapy. In Proceedings of the 2019 International Conference on Medical Imaging Physics and Engineering (ICMIPE), Shenzhen, China, 22–24 November 2019; pp. 1–6. [Google Scholar] [CrossRef]
Reference | Type of Source and Imaging Modality | Application | Further Information |
---|---|---|---|
Chen et al. [11] | Synchrotron radiation phase contrast X-ray microtomography. | Analysis of gallstone ultrastructure. | |
Tang et al. [12] | Synchrotron radiation phase contrast imaging. | Study of human stomach and gastric cancer. | X-ray energy used was 9 keV The horizontal and vertical spatial coherence lengths were roughly 7 mm and 21 mm, respectively. The distance between the detector and the sample was 50 cm. The spatial resolution of the imaging detector was 10 mm. |
Han et al. [13] | Synchrotron nanoscopy imaging | Study of scalp hair in breast cancer patients and healthy individuals. | X-ray energy used was 6.78 keV. The dimension of objective zone plate: outermost zone width was 50 nm, diameter was 140 mm and thickness was 1.0 mm. The diameter of the detector was 10-μm diameter. The first-order focal length was 40 mm. The field of view was 110 μm. The resolution was 100 nm. Each pixel size was 40,963 × 4096 pixels in 9 μm size. |
Rohani et al. [14] | Synchrotron radiation | High resolution imaging of the human incudostapedial joint. | X-ray energy was 30 keV. Total number of projections were 900, spanning 180° of rotation for each sample. The field of view was 3.6 mm × 2.4 mm. Total scan time per sample was 2 h with exposure times ranging from 400 to 600 ms per frame. |
Obata et al. [15] | Synchrotron radiation microtomography analysis | Bone research: (i) Microstructural features, (ii) Crack propagation and fracture and (iii) Minerelization | X-ray energy used was 25 keV. FOV was a 0.15 × 0.15 mm2 area for 50 nm. The resolution was 30 to 100 nm. |
Shinohara et al. [16] | Synchrotron radiation-based phase-contrast computed tomography | Visualization of the atrioventricular conduction axis in human whole heart specimens. | The system had the following specifications: Field of view, 24.7 mm (H) 17.1 mm (V); Voxel size, 12.5 mm; Density resolution, 1 mg/cm3, Target density range, 0.9 to 1.2 g/cm3 and 1.2 g/cm3; Exposure time, 1 s/image. |
Turyanskaya et al. [17] | Synchrotron radiation-induced micro- and submicro-X-ray fluorescence spectroscopy | Detection of gadolinium accumulation in human bone tissue. | X-ray energy used was 9.2 keV. 1st beamline: The beam size was defned at Ti-Ka (4.51 keV) as 27 μm × 18 μm × 24.5 µm (hor. × vert. × dep.), The step size was 25 µm × 15 µm. 2nd beamline, The beam size was defned at Ti-Ka as 28 μm × 19.5 μm × 35 µm (hor. × vert. × dep.). The step size was 25 µm × 17 µm. |
Pascolo et al. [18] | Synchrotron soft X-ray imaging and fluorescence microscopy | Revealing novel features of asbestos body morphology and composition in human lung tissue. | Accelerating voltage was 20 keV. Working distance was 15–17 mm. The spatial resolution was 1.1 nm. EDX spectra were acquired on the selected regions at 10 keV beam energy and spot size of 100 nm2 |
Szczerbowska-Boruchowska et al. [19] | Synchrotron radiation-based fourier transform infrared microspectroscopy | Investigation of chemical composition and morphologies of human substantial nigra of brain. | Most of the analysis and maps presented were achieved with a The projected area on the sample was 6 × 6 μm2. The step size was 6 μm. Each spectra were acquired after 64 accumulations at 8 cm−1 spectral resolution. |
Honkanen et al. [20] | Dual contrast synchrotron micro-computed tomography | Detection of articular cartilage degeneration. | Two monochromatic X-ray energies were 32 and 34 keV (utilizing a double-multilayer monochromator) The field of view (FOV) was 16.640 × 3497 mm2. Isometric voxel size was 6.5 × 6.5 × 6.5 μm3. The X-ray flux was measured using calibrated passivated implanted planar silicon diodes29: the 32 KeV diodes yielded 9.8 × 1010 photons/mm2/s and the 34 KeV diodes yielded 1.0 × 1011 photons/mm2/s, respectively. |
PeÃlka et al. [21] | Synchrotron radiation X-ray | (i) Mammography, (ii) Stomatology, (iii) Thorax X-ray, (iv) Radio therapy and (v) Coronarography | Photon energies used: Mammography—17–25 KeV Stomatology—60–70 KeV; Thorax radiography—50–90 KeV; Radiotherapy—30–150 KeV Coronarography—50 KeV. |
Porra et al. [22] | Synchrotron radiation, CT | Lung (regional aerosol deposition) | The imaging technique used two X-ray beams that can be tuned at slightly different energies above and below the K-edge, of a contrasting element such as Xe (34.6 keV) or Iodine (33.2 keV). |
Suortti et al. [9] | Synchrotron radiation X-ray | (i) Coronary angiography, (ii) Bronchography, (iii) Mammography, (iv) Computed Tomography, (v) X-ray microscopy, (vi) Photon activation therapy and (vii) Microbeam radiation therapy | |
Pacile et al. [23] | Synchrotron radiation X-ray | Breast cancer | CT scans were collected, in propagation-based imaging mode (PB-CT), at a sample-to-detector distance of 5.71 m using monochromatic X-rays with an energy of 32 keV. For each scan, 1800 projections equally distributed over 180, with a detector exposure time of 0.05 s per projection was acquired. The detector was used in the partial scan mode with a pixel size of 100 mm-100 mm. |
Peleg Walg et al. [24] | Synchrotron radiation X-ray | Rat’s (i) Brain, (ii) Skull and (iii) Tumor/dosimeter | The 27-ID-HEX beamline at NSLS-II synchrotron is a 4.3 Tesla wiggler line that produces very hard X-rays with critical energy of 35.91 keV and up to 200 keV photons. |
Bouchet et al. [25] | Synchrotron radiation | Brain tumor | The wiggler source produces a wide spectrum of photons which is filtered to produce a spectrum ranging from 50 to 350 keV with a median energy of 105 keV (22). |
Fedon et al. [26] | Synchrotron radiation | Breast cancer (Mammography) | X-ray source: Type:Bending magnet; Source size: (3σ)-600 μm (horizontal) × 90 μm (vertical); Horizontal angular spread: 7 mrad; Energy range: 8.5 to 40 keV. Energy range for patient: Exposure: 17.5 to 21 keV; Energy resolution: ΔE∕E = ¼ 2 × 10−3;Source-to-sample distance:30 m (26.5 m in vacuum); Sample-to-detector distance: 2.0 m; Magnification: M-¼ 1.07. |
Brombal et al. [27] | Synchrotron radiation | Breast cancer (Mammography) | Images are acquired with a 60-μm pixel dead-time-free single-photon-counting CdTe detector. The samples are imaged at 32 and 38 keV in a continuous rotating mode, delivering 5 to 20 mGy of mean glandular dose. The object-to-detector distance was 1.6 m. |
Cole et al. [28] | Synchrotron X-rays | Bone | Photon energies of 10–100 keV (comprising 64% of the photons above 1 keV at Ecrit = 33 keV) |
Shirai et al. [4] | Synchrotron radiation | Cardiovascular imaging | |
Bliznakova et al. [29] | Synchrotron radiation | Breast tomosynthesis | Crystal is placed 153 m from the source to produce a monochromatic beam, with energy selectable in the range 25–140 keV. A tungsten slit system, located approximately 150 m from the source, collimated the beam cross section to a size of 150 mm × 6 mm; the photon energy for the experiments was 35 keV. The detector was a tapered optics FReLoN 2k CCD camera, a fast-readout and low-noise charge-coupled device with a pixel size of 47 μm and a field-of-view of 95 mm × 95 mm. |
Kawata et al. [30] | Synchrotron radiation | Tracking of pulmonary vessels in lung. | The CT system consists of an X-ray light source, a double crystal monochromator, a rotational stage, a high-resolution 2D image detector equipped with a cooled CCD camera (Hamamatsu Photonics, C4742-95R, 4000 × 2624 pixel elements, 12 bit readout, the size of each pixel 5.87 μm × 5.87 μm.). The lung specimen was reconstructed by the offset scan mode with synchrotron radiation at 15 keV, providing data for 7287 × 7287 × 2624 voxels image with an isotropic voxel size of 5.87 μm. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamal, M.; Althobaiti, M.; Alomari, A.-H.; Dipty, S.T.; Suha, K.T.; Al-Hashim, M. Synchrotron X-ray Radiation (SXR) in Medical Imaging: Current Status and Future Prospects. Appl. Sci. 2022, 12, 3790. https://doi.org/10.3390/app12083790
Tamal M, Althobaiti M, Alomari A-H, Dipty ST, Suha KT, Al-Hashim M. Synchrotron X-ray Radiation (SXR) in Medical Imaging: Current Status and Future Prospects. Applied Sciences. 2022; 12(8):3790. https://doi.org/10.3390/app12083790
Chicago/Turabian StyleTamal, Mahbubunnabi, Murad Althobaiti, Abdul-Hakeem Alomari, Sumaiya Tabassum Dipty, Khadiza Tun Suha, and Maryam Al-Hashim. 2022. "Synchrotron X-ray Radiation (SXR) in Medical Imaging: Current Status and Future Prospects" Applied Sciences 12, no. 8: 3790. https://doi.org/10.3390/app12083790
APA StyleTamal, M., Althobaiti, M., Alomari, A. -H., Dipty, S. T., Suha, K. T., & Al-Hashim, M. (2022). Synchrotron X-ray Radiation (SXR) in Medical Imaging: Current Status and Future Prospects. Applied Sciences, 12(8), 3790. https://doi.org/10.3390/app12083790