A Deadbeat Current and Flux Vector Control for IPMSM Drive with High Dynamic Performance
Abstract
:1. Introduction
2. IPMSM Fundamental Model
3. Proposed DB-CFVC Method for IPMSM Drive
3.1. Principle of the Proposed DB-CFVC
3.2. Proposed Hybrid Flux Linkage Observer
3.3. Stator Flux Linkage and Current Predictions
3.4. Stator Flux Linkage and Current Reference Calculations
3.5. Voltage Command Determination with “Reinforced Flux Phase Angle” Concept
3.6. Study on Motor Parameter Variation
4. Test Bench Configuration
5. Evaluation Results
5.1. Assessment of Proposed MO-FOB Scheme
5.2. High Dynamic Performance Verification
5.3. Parameter Sensitivity Analysis for Proposed DB-CFVC
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pellegrino, G.; Vagati, A.; Boazzo, B.; Guglielmi, P. Comparison of Induction and PM Synchronous Motor Drives for EV Application Including Design Examples. IEEE Trans. Ind. Appl. 2012, 48, 2322–2332. [Google Scholar] [CrossRef] [Green Version]
- Huynh, T.A.; Hsieh, M.F. Performance Analysis of Permanent Magnet Motors for Electric Vehicles (EV) Traction Considering Driving Cycles. Energies 2018, 11, 1385. [Google Scholar] [CrossRef] [Green Version]
- Ton, T.-D.; Hsieh, M.-F.; Chen, P.-H. A Novel Robust Sensorless Technique for Field-Oriented Control Drive of Permanent Magnet Synchronous Motor. IEEE Access 2021, 9, 100882–100894. [Google Scholar] [CrossRef]
- Jidin, A.; Idris, N.R.N.; Yatim, A.H.M.; Sutikno, T.; Elbuluk, M.E. An Optimized Switching Strategy for Quick Dynamic Torque Control in DTC-Hysteresis-Based Induction Machines. IEEE Trans. Ind. Electron. 2011, 58, 3391–3400. [Google Scholar] [CrossRef]
- Tang, L.; Zhong, L.; Rahman, M.F.; Hu, Y. A novel direct torque controlled interior permanent magnet synchronous machine drive with low ripple in flux and torque and fixed switching frequency. IEEE Trans. Power Electron. 2004, 19, 346–354. [Google Scholar] [CrossRef]
- Karamanakos, P.; Geyer, T. Guidelines for the design of finite control set model predictive controllers. IEEE Trans. Power Electron. 2019, 35, 7434–7450. [Google Scholar] [CrossRef]
- Niu, F.; Chen, X.; Huang, S.; Huang, X.; Wu, L.; Li, K.; Fang, Y. Model predictive current control with adaptive-adjusting timescales for PMSMs. CES Trans. Electr. Mach. Syst. 2021, 5, 108–117. [Google Scholar] [CrossRef]
- Cortés, P.; Kazmierkowski, M.P.; Kennel, R.M.; Quevedo, D.E.; Rodríguez, J. Predictive control in power electronics and drives. IEEE Trans. Ind. Electron. 2008, 55, 4312–4324. [Google Scholar] [CrossRef]
- Zhou, Z.; Xia, C.; Shi, T.; Geng, Q. Model predictive direct duty-cycle control for PMSM drive systems with variable control set. IEEE Trans. Ind. Electron. 2020, 68, 2976–2987. [Google Scholar] [CrossRef]
- Sandre-Hernandez, O.; Rangel-Magdaleno, J.; Morales-Caporal, R. A comparison on finite-set model predictive torque control schemes for PMSMs. IEEE Trans. Power Electron. 2017, 33, 8838–8847. [Google Scholar] [CrossRef]
- Moon, H.T.; Kim, H.S.; Youn, M.J. A discrete-time predictive current control for PMSM. IEEE Trans. Power Electron. 2003, 18, 464–472. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Y.; Lei, G.; Guo, Y.; Zhu, J. An improved deadbeat predictive stator flux control with reduced-order disturbance observer for in-wheel PMSMs. IEEE/ASME Trans. Mechatron. 2021. [Google Scholar] [CrossRef]
- Lee, J.S.; Lorenz, R.D. Robustness analysis of deadbeat-direct torque and flux control for IPMSM drives. IEEE Trans. Ind. Electron. 2016, 63, 2775–2784. [Google Scholar] [CrossRef]
- Zuo, Y.; Mei, J.; Jiang, C.; Lee, C.H. Digital implementation of deadbeat-direct torque and flux control for permanent magnet synchronous machines in the M–T reference frame. IEEE Trans. Power Electron. 2020, 36, 4610–4621. [Google Scholar] [CrossRef]
- Zhang, X.; Hou, B.; Mei, Y. Deadbeat predictive current control of permanent-magnet synchronous motors with stator current and disturbance observer. IEEE Trans. Power Electron. 2016, 32, 3818–3834. [Google Scholar] [CrossRef]
- Sun, X.; Cao, J.; Lei, G.; Guo, Y.; Zhu, J. A robust deadbeat predictive controller with delay compensation based on composite sliding-mode observer for PMSMs. IEEE Trans. Power Electron. 2021, 36, 10742–10752. [Google Scholar] [CrossRef]
- Dai, S.; Wang, J.; Sun, Z.; Chong, E. Deadbeat predictive current control for high-speed PMSM drives with low switching-to-fundamental frequency ratios. IEEE Trans. Ind. Electron. 2021, 69, 4510–4521. [Google Scholar] [CrossRef]
- Boazzo, B.; Pellegrino, G. Model-based direct flux vector control of permanent-magnet synchronous motor drives. IEEE Trans. Ind. Appl. 2015, 51, 3126–3136. [Google Scholar] [CrossRef] [Green Version]
- Rubino, S.; Bojoi, I.R.; Armando, E.; Tenconi, A. Deadbeat direct flux vector control of surface permanent magnet motor drives. IEEE Trans. Ind. Appl. 2020, 56, 2685–2699. [Google Scholar] [CrossRef]
- Khalilzadeh, M.; Vaez-Zadeh, S.; Rodriguez, J.; Heydari, R. Model-Free Predictive Control of Motor Drives and Power Converters: A Review. IEEE Access 2021, 9, 105733–105747. [Google Scholar] [CrossRef]
- Pei, G.; Li, L.; Gao, X.; Liu, J.; Kennel, R. Predictive current trajectory control for PMSM at voltage limit. IEEE Access 2019, 8, 1670–1679. [Google Scholar] [CrossRef]
- Lee, J.S.; Lorenz, R.D. Deadbeat direct torque and flux control of IPMSM drives using a minimum time ramp trajectory method at voltage and current limits. IEEE Trans. Ind. Appl. 2014, 50, 3795–3804. [Google Scholar] [CrossRef]
- Vafaie, M.H.; Dehkordi, B.M.; Moallem, P.; Kiyoumarsi, A. Improving the steady-state and transient-state performances of PMSM through an advanced deadbeat direct torque and flux control system. IEEE Trans. Power Electron. 2016, 32, 2964–2975. [Google Scholar] [CrossRef]
- Xiao, M.; Shi, T.; Yan, Y.; Xu, W.; Xia, C. Predictive torque control of permanent magnet synchronous motors using flux vector. IEEE Trans. Ind. Appl. 2018, 54, 4437–4446. [Google Scholar] [CrossRef]
- Dianov, A.; Tinazzi, F.; Calligaro, S.; Bolognani, S. Review and classification of MTPA control algorithms for synchronous motors. IEEE Trans. Power Electron. 2021, 37, 3990–4007. [Google Scholar] [CrossRef]
- Hwang, S.-H.; Kim, J.-M. Dead time compensation method for voltage-fed PWM inverter. IEEE Trans. Energy Conver. 2009, 25, 1–10. [Google Scholar] [CrossRef]
- Jansen, P.L.; Lorenz, R.D. A physically insightful approach to the design and accuracy assessment of flux observers for field oriented induction machine drives. IEEE Trans. Ind. Appl. 1994, 30, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Wu, B. New integration algorithms for estimating motor flux over a wide speed range. IEEE Trans. Power Electron. 1998, 13, 969–977. [Google Scholar]
- Jo, G.J.; Choi, J.W. Gopinath Model-Based Voltage Model Flux Observer Design for Field-Oriented Control of Induction Motor. IEEE Trans. Power Electron. 2019, 34, 4581–4592. [Google Scholar] [CrossRef]
- Shinohara, A.; Inoue, Y.; Morimoto, S.; Sanada, M. Direct Calculation Method of Reference Flux Linkage for Maximum Torque per Ampere Control in DTC-Based IPMSM Drives. IEEE Trans. Power Electron. 2017, 32, 2114–2122. [Google Scholar] [CrossRef]
- Hsieh, M.-F.; Chen, N.-C.; Ton, T.-D. System Response of Permanent Magnet Synchronous Motor Drive Based on SiC Power Transistor. In Proceedings of the 2019 IEEE 4th International Future Energy Electronics Conference (IFEEC), Singapore, 24–28 November 2019; pp. 1–6. [Google Scholar]
- Morimoto, S.; Sanada, M.; Takeda, Y. Wide-Speed Operation of Interior Permanent-Magnet Synchronous Motors with High-Performance Current Regulator. IEEE Trans. Ind. Appl. 1994, 30, 920–926. [Google Scholar] [CrossRef]
- Petit, M.S.; Sarlioglu, B.; Lorenz, R.D.; Gagas, B.S.; Secrest, C.W. Using Flux and Current for Robust Wide-Speed Operation of IPMSMs. In Proceedings of the 2019 21st European Conference on Power Electronics and Applications (EPE’19 ECCE Europe), Genova, Italy, 3–5 September 2019; pp. 1–10. [Google Scholar]
- Kazerooni, M.; Hamidifar, S.; Kar, N.C. Analytical modelling and parametric sensitivity analysis for the PMSM steady-state performance prediction. IET Electr. Power Appl. 2013, 7, 586–596. [Google Scholar] [CrossRef]
- Niu, F.; Wang, X.; Huang, S.; Huang, X.; Wu, L.; Li, K.; Fang, Y. Current Prediction Error Reduction Method of Predictive Current Control for Permanent Magnet Synchronous Motors. IEEE Access 2020, 8, 124288–124296. [Google Scholar] [CrossRef]
- Paicu, M.; Boldea, I.; Andreescu, G.-D.; Blaabjerg, F. Very low speed performance of active flux based sensorless control: Interior permanent magnet synchronous motor vector control versus direct torque and flux control. IET Electr. Power Appl. 2009, 3, 551–561. [Google Scholar] [CrossRef]
Specification | Value | Unit (SI) |
---|---|---|
DC voltage, | 100 | VDC |
Rated current, | 10 | Apk |
Maximum current, | 20 | Apk |
Base speed, | 2300 | rpm |
Rated torque, | 2.9 | N.m |
Pole-pairs, | 4 | - |
Stator resistance, | 315 | mΩ |
Permanent magnet flux linkage, | 48.2 | mWb |
Torque constant, | 0.2892 | N.m/A |
d-axis inductance, | 2.03 | mH |
q-axis inductance, | 2.84 | mH |
Operation Condition | Conventional Closed-Loop Hybrid Flux Observer (CL-FOB) | Modified Hybrid Flux Observer (MO-FOB) | |||
---|---|---|---|---|---|
Speed (rpm) | Load (Nm) | Scenario A | Scenario B | Scenario A | Scenario B |
100 | 1.25 | 4.39% | 0.95% | 2.09% | −0.41% |
700 | 1.25 | 7.48% | 2.32% | 2.75% | 1.03% |
2300 | 2.5 | 8.37% | 3.15% | 3.28% | 2.39% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ton, T.-D.; Hsieh, M.-F. A Deadbeat Current and Flux Vector Control for IPMSM Drive with High Dynamic Performance. Appl. Sci. 2022, 12, 3789. https://doi.org/10.3390/app12083789
Ton T-D, Hsieh M-F. A Deadbeat Current and Flux Vector Control for IPMSM Drive with High Dynamic Performance. Applied Sciences. 2022; 12(8):3789. https://doi.org/10.3390/app12083789
Chicago/Turabian StyleTon, That-Dong, and Min-Fu Hsieh. 2022. "A Deadbeat Current and Flux Vector Control for IPMSM Drive with High Dynamic Performance" Applied Sciences 12, no. 8: 3789. https://doi.org/10.3390/app12083789
APA StyleTon, T. -D., & Hsieh, M. -F. (2022). A Deadbeat Current and Flux Vector Control for IPMSM Drive with High Dynamic Performance. Applied Sciences, 12(8), 3789. https://doi.org/10.3390/app12083789