Investigating the Potential Use of EEG for the Objective Measurement of Auditory Presence
Abstract
:1. Introduction
2. Materials and Methods
- 1.
- Please rate your sense of being in the virtual environment on a scale of 0 to 10, where 10 represents your normal experience of being in a place;
- 2.
- During your experience, did you often think to yourself that you were actually in the virtual environment? Please rate it on a scale of 0 to 10, where 10 represents you almost felt you were actually in the virtual environment;
- 3.
- How well could you identify sounds? Please rate it on a scale of 0 to 10, where 10 represents you could clearly identify different kinds of sounds;
- 4.
- How well could you localize sounds? Please rate it on a scale of 0 to 10, where 10 represents you could easily detect the location of each sound.
3. Results
3.1. Experiment 1
3.2. Experiment 2
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EEG | electroencephalography |
PAF | peak alpha frequency |
VR | virtual reality |
References
- Slater, M.; Usoh, M.; Steed, A. Depth of Presence in Virtual Environments. Presence Teleoperators Virtual Environ. 1994, 3, 130–144. [Google Scholar] [CrossRef]
- Witmer, B.G.; Singer, M.J. Measuring presence in virtual environments: A presence questionnaire. Presence Teleoperators Virtual Environ. 1998, 7, 225–240. [Google Scholar] [CrossRef]
- Slater, M.; Steed, A. A virtual presence counter. Presence Teleoperators Virtual Environ. 2000, 9, 413–434. [Google Scholar] [CrossRef] [Green Version]
- Schwind, V.; Knierim, P.; Haas, N.; Henze, N. Using presence questionnaires in virtual reality. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; pp. 1–12. [Google Scholar]
- Martin Usoh, M.S.; Steed, A. Taking Steps: The Influence of a Walking Technique on Presence in Virtual Reality. Acm Trans.-Comput.-Hum. Interact. 1995, 2, 201–219. [Google Scholar] [CrossRef]
- Witmer, B.G.; Jerome, C.J.; Singer, M.J. The factor structure of the Presence Questionnaire. Presence Teleoperators Virtual Environ. 2005, 14, 298–312. [Google Scholar] [CrossRef]
- Slater, M.; McCarthy, J.; Maringelli, F. The influence of body movement on subjective presence in virtual environments. Hum. Factors 1998, 40, 469–477. [Google Scholar] [CrossRef] [Green Version]
- Kober, S.E.; Neuper, C. Using auditory event-related EEG potentials to assess presence in virtual reality. Int. J. Hum. Comput. Stud. 2012, 70, 577–587. [Google Scholar] [CrossRef]
- Dey, A.; Phoon, J.; Saha, S.; Dobbins, C.; Billinghurst, M. A Neurophysiological Approach for Measuring Presence in Immersive Virtual Environments. In Proceedings of the 2020 IEEE International Symposium on Mixed and Augmented Reality, ISMAR 2020, Porto de Galinhas, Brazil, 9–13 November 2020; pp. 474–485. [Google Scholar] [CrossRef]
- Kober, S.E.; Kurzmann, J.; Neuper, C. Cortical correlate of spatial presence in 2D and 3D interactive virtual reality: An EEG study. Int. J. Psychophysiol. 2012, 83, 365–374. [Google Scholar] [CrossRef]
- Clemente, M.; Rodríguez, A.; Rey, B.; Alcañiz, M. Assessment of the influence of navigation control and screen size on the sense of presence in virtual reality using EEG. Expert Syst. Appl. 2014, 41, 1584–1592. [Google Scholar] [CrossRef]
- Slater, M. How colorful was your day? Why questionnaires cannot assess presence in virtual environments. Presence 2004, 13, 484–493. [Google Scholar] [CrossRef]
- Sanchez-Vives, M.V.; Slater, M. From presence to consciousness through virtual reality. Nat. Rev. Neurosci. 2005, 6, 332–339. [Google Scholar] [CrossRef]
- Terkildsen, T.; Makransky, G. Measuring presence in video games: An investigation of the potential use of physiological measures as indicators of presence. Int. J. Hum. Comput. Stud. 2019, 126, 64–80. [Google Scholar] [CrossRef]
- Clemente, M.; Rodriguez, A.; Rey, B.; Alcañiz, M. Measuring presence during the navigation in a virtual environment using EEG. Stud. Health Technol. Inform. 2013, 191, 136–140. [Google Scholar] [PubMed]
- Jap, B.T.; Lal, S.; Fischer, P.; Bekiaris, E. Using EEG spectral components to assess algorithms for detecting fatigue. Expert Syst. Appl. 2009, 36, 2352–2359. [Google Scholar] [CrossRef]
- Wen, T.Y.; Aris, S.A.M. Electroencephalogram (EEG) stress analysis on alpha/beta ratio and theta/beta ratio. Indones. J. Electr. Eng. Comput. Sci. 2020, 17, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Zhong, B. Review on portable EEG technology in educational research. Comput. Hum. Behav. 2018, 81, 340–349. [Google Scholar] [CrossRef]
- Ramirez, R.; Vamvakousis, Z. Detecting emotion from EEG signals using the emotive epoc device. In Proceedings of the International Conference on Brain Informatics, Macau, China, 4–7 December 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 175–184. [Google Scholar]
- Suto, J.; Jambor, Z. Music stimuli recognition from EEG signals with emotiv epoc headset. CEUR Workshop Proc. 2020, 2650, 309–317. [Google Scholar]
- Zhang, S.; Feng, X.; Shen, Y. Quantifying Auditory Presence Using Electroencephalography. Appl. Sci. 2021, 11, 10461. [Google Scholar] [CrossRef]
- Berger, H. Über das elektroenkephalogramm des menschen. Arch. Psychiatr. Nervenkrankh. 1929, 87, 527–570. [Google Scholar] [CrossRef]
- Adrian, E.D.; Matthews, B.H.C. The Berger rhythm: Potential changes from the occipital lobes in man. Brain 1934, 57, 355–385. [Google Scholar] [CrossRef]
- Klimesch, W. Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn. Sci. 2012, 16, 606–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanslmayr, S.; Sauseng, P.; Doppelmayr, M.; Schabus, M.; Klimesch, W. Increasing individual upper alpha power by neurofeedback improves cognitive performance in human subjects. Appl. Psychophysiol. Biofeedback 2005, 30, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Angelakis, E.; Lubar, J.F.; Stathopoulou, S. Electroencephalographic peak alpha frequency correlates of cognitive traits. Neurosci. Lett. 2004, 371, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Grandy, T.H.; Werkle-Bergner, M.; Chicherio, C.; Schmiedek, F.; Lövdén, M.; Lindenberger, U. Peak individual alpha frequency qualifies as a stable neurophysiological trait marker in healthy younger and older adults. Psychophysiology 2013, 50, 570–582. [Google Scholar] [CrossRef] [Green Version]
- Grandy, T.H.; Werkle-Bergner, M.; Chicherio, C.; Lövdén, M.; Schmiedek, F.; Lindenberger, U. Individual alpha peak frequency is related to latent factors of general cognitive abilities. Neuroimage 2013, 79, 10–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coben, L.A.; Danziger, W.; Storandt, M. A longitudinal EEG study of mild senile dementia of Alzheimer type: Changes at 1 year and at 2.5 years. Electroencephalogr. Clin. Neurophysiol. 1985, 61, 101–112. [Google Scholar] [CrossRef]
- Smit, C.M.; Wright, M.J.; Hansell, N.K.; Geffen, G.M.; Martin, N.G. Genetic variation of individual alpha frequency (IAF) and alpha power in a large adolescent twin sample. Int. J. Psychophysiol. 2006, 61, 235–243. [Google Scholar] [CrossRef]
- Nunez, P.L.; Reid, L.; Bickford, R.G. The relationship of head size to alpha frequency with implications to a brain wave model. Electroencephalogr. Clin. Neurophysiol. 1978, 44, 344–352. [Google Scholar] [CrossRef]
- Bazanova, O.M.; Auer, T.; Sapina, E.A. On the efficiency of individualized theta/beta ratio neurofeedback combined with forehead EMG training in ADHD children. Front. Hum. Neurosci. 2018, 12, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Lansbergen, M.M.; Arns, M.; van Dongen-Boomsma Martine, M.; Spronk, D.; Buitelaar, J.K. The increase in theta/beta ratio on resting-state EEG in boys with attention-deficit/hyperactivity disorder is mediated by slow alpha peak frequency. Prog.-Neuro-Psychopharmacol. Biol. Psychiatry 2011, 35, 47–52. [Google Scholar] [CrossRef]
- Osaka, M.; Osaka, N.; Koyama, S.; Okusa, T.; Kakigi, R. Individual differences in working memory and the peak alpha frequency shift on magnetoencephalography. Cogn. Brain Res. 1999, 8, 365–368. [Google Scholar] [CrossRef]
- Clark, C.R.; Veltmeyer, M.D.; Hamilton, R.J.; Simms, E.; Paul, R.; Hermens, D.; Gordon, E. Spontaneous alpha peak frequency predicts working memory performance across the age span. Int. J. Psychophysiol. 2004, 53, 1–9. [Google Scholar] [CrossRef]
- Köpruner, V.; Pfurtscheller, G.; Auer, L.M. Quantitative EEG in normals and in patients with cerebral ischemia. Prog. Brain Res. 1984, 62, 29–50. [Google Scholar] [PubMed]
- Ng, S.C.; Raveendran, P. EEG peak alpha frequency as an indicator for physical fatigue. In Proceedings of the 11th Mediterranean Conference on Medical and Biomedical Engineering and Computing 2007, Ljubljana, Slovenia, 26–30 June 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 517–520. [Google Scholar]
- Haegens, S.; Cousijn, H.; Wallis, G.; Harrison, P.J.; Nobre, A.C. Inter-and intra-individual variability in alpha peak frequency. Neuroimage 2014, 92, 46–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maurer, U.; Brem, S.; Liechti, M.; Maurizio, S.; Michels, L.; Brandeis, D. Frontal midline theta reflects individual task performance in a working memory task. Brain Topogr. 2015, 28, 127–134. [Google Scholar] [CrossRef] [Green Version]
- ESMA-3D Immersive Soundscape Recordings. Available online: https://zenodo.org/record/3549050#.Ye6VSfVBwlj (accessed on 24 January 2022).
- Hyunkook, L. Capturing 360° audio using an equal segment microphone array (ESMA). AES J. Audio Eng. Soc. 2019, 67, 13–26. [Google Scholar] [CrossRef]
- Emotiv Epoc X. Available online: https://www.emotiv.com/epoc-x/ (accessed on 24 January 2021).
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winkler, I.; Haufe, S.; Tangermann, M. Automatic classification of artifactual ICA-components for artifact removal in EEG signals. Behav. Brain Funct. 2011, 7, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Winkler, I.; Brandl, S.; Horn, F.; Waldburger, E.; Allefeld, C.; Tangermann, M. Robust artifactual independent component classification for BCI practitioners. J. Neural Eng. 2014, 11, 35013. [Google Scholar] [CrossRef] [Green Version]
- Corcoran, A.W.; Alday, P.M.; Schlesewsky, M.; Bornkessel-Schlesewsky, I. restingIAF Package. Available online: https://github.com/corcorana/restingIAF (accessed on 24 January 2022).
- Corcoran, A.W.; Alday, P.M.; Schlesewsky, M.; Bornkessel-Schlesewsky, I. Toward a reliable, automated method of individual alpha frequency (IAF) quantification. Psychophysiology 2018, 55, e13064. [Google Scholar] [CrossRef] [Green Version]
- McNemar, Q. Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 1947, 12, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Viera, A.J.; Garrett, J.M. Understanding interobserver agreement: The kappa statistic. Fam. Med. 2005, 37, 360–363. [Google Scholar] [PubMed]
- Angelidis, A.; van der Does, W.; Schakel, L.; Putman, P. Frontal EEG theta/beta ratio as an electrophysiological marker for attentional control and its test-retest reliability. Biol. Psychol. 2016, 121, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Putman, P.; Verkuil, B.; Arias-Garcia, E.; Pantazi, I.; van Schie, C. EEG theta/beta ratio as a potential biomarker for attentional control and resilience against deleterious effects of stress on attention. Cogn. Affect. Behav. Neurosci. 2014, 14, 782–791. [Google Scholar] [CrossRef]
- Klimesch, W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Res. Rev. 1999, 29, 169–195. [Google Scholar] [CrossRef]
- Finley, A.; Angus, D.; van Reekum, C.; Davidson, R.; Schaefer, S. Age, theta/beta ratios, and individual peak alpha frequency in older adults. Psychophysiology 2020, 57, S58. [Google Scholar]
- Finley, A.J.; Angus, D.J.; Van Reekum, C.M.; Davidson, R.; Schaefer, S.M. Periodic and Aperiodic Contributions to Theta-Beta Ratios Across Adulthood. PsyArXiv 2021. [Google Scholar] [CrossRef]
- Angelakis, E.; Stathopoulou, S.; Frymiare, J.L.; Green, D.L.; Lubar, J.F.; Kounios, J. EEG neurofeedback: A brief overview and an example of peak alpha frequency training for cognitive enhancement in the elderly. Clin. Neuropsychol. 2007, 21, 110–129. [Google Scholar] [CrossRef]
- Jin, Y.I.; O’HALLORAN, J.P.; Plon, L.; Sandman, C.A.; Potkin, S.G. Alpha EEG predicts visual reaction time. Int. J. Neurosci. 2006, 116, 1035–1044. [Google Scholar] [CrossRef]
- Cooper, N.R.; Croft, R.J.; Dominey, S.J.J.; Burgess, A.P.; Gruzelier, J.H. Paradox lost? Exploring the role of alpha oscillations during externally vs. internally directed attention and the implications for idling and inhibition hypotheses. Int. J. Psychophysiol. 2003, 47, 65–74. [Google Scholar] [CrossRef]
- Klimesch, W.; Sauseng, P.; Hanslmayr, S. EEG alpha oscillations: The inhibition–timing hypothesis. Brain Res. Rev. 2007, 53, 63–88. [Google Scholar] [CrossRef] [PubMed]
- Ganis, G.; Kosslyn, S.M. Multiple mechanisms of top-down processing in vision. In Representation and Brain; Springer: Berlin/Heidelberg, Germany, 2007; pp. 21–45. [Google Scholar]
Participant | Group | Presence Score (A) | Presence Score (B) | PAF (A)/Hz | PAF (B)/Hz |
---|---|---|---|---|---|
1 | I | 26 | 10 | 9.733 | 9.935 |
2 | I | 34 | 21 | 9.250 | 9.776 |
3 | I | 28 | 33 | 11.506 | 10.666 |
4 | I | 34 | 16 | 9.511 | 9.743 |
5 | I | 32 | 20 | 10.012 | 11.629 |
6 | I | 34 | 7 | 10.137 | 11.003 |
7 | II | 33 | 27 | 8.055 | 7.500 |
8 | II | 31 | 23 | 11.968 | 12.483 |
9 | II | 35 | 18 | 8.500 | 10.065 |
10 | II | 34 | 20 | 10.290 | 10.525 |
11 | II | 38 | 6 | 9.763 | 10.267 |
12 | II | 33 | 28 | 9.539 | 9.910 |
13 | II | 32 | 15 | 10.699 | 11.142 |
Participant | Group | Presence Score (A > B) | PAF (A < B) |
---|---|---|---|
1 | I | 1 | 1 |
2 | I | 1 | 1 |
3 | I | 0 | 0 |
4 | I | 1 | 1 |
5 | I | 1 | 1 |
6 | I | 1 | 1 |
7 | II | 1 | 0 |
8 | II | 1 | 1 |
9 | II | 1 | 1 |
10 | II | 1 | 1 |
11 | II | 1 | 1 |
12 | II | 1 | 1 |
13 | II | 1 | 1 |
Participant | Group | Presence Score (A) | Presence Score (B) | PAF (A)/Hz | PAF (B)/Hz |
---|---|---|---|---|---|
1 | I | 25 | 18 | 11.250 | 11.500 |
2 | I | 34 | 35 | 10.250 | 10.250 |
3 | I | 35 | 28 | 10.078 | 10.750 |
4 | I | 34 | 26 | 9.500 | 9.778 |
5 | I | 34 | 29 | 9.641 | 9.385 |
6 | I | 39 | 34 | 8.313 | 11.500 |
7 | I | 36 | 34 | 10.437 | 10.639 |
8 | I | 36 | 28 | 10.286 | 10.500 |
9 | I | 39 | 21 | 9.250 | 9.750 |
10 | II | 29 | 35 | 11.150 | 11.400 |
11 | II | 34 | 28 | 10.750 | 10.842 |
12 | II | 35 | 30 | 7.450 | 7.750 |
13 | II | 36 | 35 | 10.316 | 10.533 |
14 | II | 35 | 34 | 12.743 | 13.000 |
15 | II | 29 | 34 | 10.710 | 10.467 |
16 | II | 35 | 34 | 9.000 | 9.750 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Feng, X.; Shen, Y. Investigating the Potential Use of EEG for the Objective Measurement of Auditory Presence. Appl. Sci. 2022, 12, 2647. https://doi.org/10.3390/app12052647
Zhang S, Feng X, Shen Y. Investigating the Potential Use of EEG for the Objective Measurement of Auditory Presence. Applied Sciences. 2022; 12(5):2647. https://doi.org/10.3390/app12052647
Chicago/Turabian StyleZhang, Shufeng, Xuelei Feng, and Yong Shen. 2022. "Investigating the Potential Use of EEG for the Objective Measurement of Auditory Presence" Applied Sciences 12, no. 5: 2647. https://doi.org/10.3390/app12052647
APA StyleZhang, S., Feng, X., & Shen, Y. (2022). Investigating the Potential Use of EEG for the Objective Measurement of Auditory Presence. Applied Sciences, 12(5), 2647. https://doi.org/10.3390/app12052647