Strontium Ferromolybdate-Based Magnetic Tunnel Junctions
Abstract
:1. Introduction
2. Theoretical Considerations
2.1. Effective Electronegativity of Complex Oxide Compounds
2.2. Néel Coupling at the Interface
2.3. Interface Dead Layer
2.4. Tunnel Magnetoresistance
2.5. Low-Field Magnetoresistance
3. Results and Discussion
3.1. Selection of Tunneling Barrier Material Based on Electronegativity Differences
3.2. Evaluation of the Néel-Coupling Surface Characteristics
3.3. Estimation of the Dead Layer Thickness of SFMO Thin Films
3.4. Attainable Tunnel Magnetoresistance
3.5. Promotion of the Low-Field Magnetoresistance in (111)-Oriented Thin Films
4. Conclusions
- -
- In the case of a lower effective electronegativity of the barrier material compared to SFMO, e.g., for MgO, La2O3, BaTiO3, SrTiO3, LaAlO3, and ZnO, the attraction of more electrons to the SFMO side of the interface increases the occupation of the spin-down states by electrons near the interface. This increases the density of states at the Fermi level and, thus, the tunnel current.
- -
- The magnetic offset field caused by magnetic coupling due to interfacial waviness is determined not only by the surface roughness (amplitude of spatial waves) but also by the width or spacing of surface features (wavelength of spatial waves). A slowly changing surface profile corresponding to a wavy surface rather than a rough one is beneficial.
- -
- The thickness of the SFMO layer should be much larger than that of the magnetic dead layer at the surface/interface amounting to about 10 nm.
- -
- The presence of a magnetically disordered interface layer, as well as spin-independent tunneling through the barrier layer, deteriorates the TMR.
- -
- The TMR in SFMO-based MTJs may be enhanced by means of (111)-oriented SFMO thin films. This is attributed to the influence of antiphase boundaries on charge carrier scattering in SFMO.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kobayashi, K.I.; Kimura, T.; Sawada, H.; Terakura, K.; Tokura, Y. Room-Temperature Magnetoresistance in an Oxide Material with an Ordered Double-Perovskite Structure. Nature 1998, 395, 677–680. [Google Scholar] [CrossRef]
- Bibes, M.; Bouzehouane, K.; Barthélémy, A.; Besse, M.; Fusil, S.; Bowen, M.; Seneor, P.; Carrey, J.; Cros, V.; Vaurès, A.; et al. Tunnel Magnetoresistance in Nanojunctions Based on Sr2FeMoO6. Appl. Phys. Lett. 2003, 83, 2629–2631. [Google Scholar] [CrossRef]
- Fix, T.; Stoeffler, D.; Henry, Y.; Colis, S.; Dinia, A.; Dimopoulos, T.; Bär, L.; Wecker, J. Diode Effect in All-Oxide Sr2FeMoO6-Based Magnetic Tunnel Junctions. J. Appl. Phys. 2006, 99, 08J107. [Google Scholar] [CrossRef]
- Fix, T.; Barla, A.; Ulhaq-Bouillet, C.; Colis, S.; Kappler, J.P.; Dinia, A. Absence of Tunnel Magnetoresistance in Sr2FeMoO6-Based Magnetic Tunnel Junctions. Chem. Phys. Lett. 2007, 434, 276–279. [Google Scholar] [CrossRef]
- Asano, H.; Koduka, N.; Imaeda, K.; Sugiyama, M.; Matsui, M. Magnetic and Junction Properties of Half-Metallic Double-Perovskite Thin Films. IEEE Trans. Magn. 2005, 41, 2811–2813. [Google Scholar] [CrossRef]
- Kumar, N.; Misra, P.; Kotnala, R.K.; Gaur, A.; Katiyar, R.S. Room Temperature Magnetoresistance in Sr2FeMoO6/SrTiO3/Sr2FeMoO6 Trilayer Devices. J. Phys. D Appl. Phys. 2014, 47, 065006. [Google Scholar] [CrossRef]
- Kumar, N.; Misra, P.; Kotnala, R.K.; Gaur, A.; Katiyar, R.S. Growth of Sr2FeMoO6 Based Tri-Layer Structure for Room Temperature Magnetoresistive Applications. Integr. Ferroelectr. 2014, 157, 89–94. [Google Scholar] [CrossRef]
- Volkov, N.V. Spintronics: Manganite-based Magnetic Tunnel Structures. Phys.-Usp. 2012, 55, 250–260. [Google Scholar] [CrossRef]
- Butler, W.H.; Zhang, X.-G.; Schulthess, T.C.; MacLaren, J.M. Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches. Phys. Rev. B-Condens. Matter Mater. Phys. 2001, 63, 054416. [Google Scholar] [CrossRef] [Green Version]
- Zumdahl, S.S. Chemical Principles, 5th ed.; Houghton Mifflin: Boston, MA, USA, 2005; pp. 587–590. [Google Scholar]
- Nethercot, A.H. Prediction of Fermi Energies and Photoelectric Thresholds Based on Electronegativity Concepts. Phys. Rev. Lett. 1974, 33, 1088. [Google Scholar] [CrossRef]
- Perfetti, P.; Quaresima, C.; Coluzza, C.; Fortunato, C.; Margaritondo, G. Dipole-Induced Changes of the Band Discontinuities at the SiO2-Si Interface. Phys. Rev. Lett. 1986, 57, 2065. [Google Scholar] [CrossRef] [PubMed]
- Schaeffer, J.K.; Gilmer, D.C.; Capasso, C.; Kalpat, S.; Taylor, B.; Raymond, M.V.; Triyoso, D.; Hegde, R.; Samavedam, S.B.; White, B.E. Application of Group Electronegativity Concepts to the Effective Work Functions of Metal Gate Electrodes on High-κ Gate Oxides. Microelectron. Eng. 2007, 84, 2196–2200. [Google Scholar] [CrossRef]
- Néel, L. Sur Un Nouveau Mode de Couplage Entre Les Aimantations de Deux Couches Minces Ferromagnétiques. Comptes Rendus Acad. Sci. 1962, 255, 1676–1681. [Google Scholar]
- Kools, J.C.S. Effect of Energetic Particle Bombardment during Sputter Deposition on the Properties of Exchange-Biased Spin-Valve Multilayers. J. Appl. Phys. 1995, 77, 2993. [Google Scholar] [CrossRef]
- Kools, J.C.S.; Kula, W.; Mauri, D.; Lin, T. Effect of Finite Magnetic Film Thickness on Néel Coupling in Spin Valves. J. Appl. Phys. 1999, 85, 4466. [Google Scholar] [CrossRef]
- Schrag, B.D.; Anguelouch, A.; Ingvarsson, S.; Xiao, G.; Lu, Y.; Trouilloud, P.L.; Gupta, A.; Wanner, R.A.; Gallagher, W.J.; Rice, P.M.; et al. Néel “Orange-Peel” Coupling in Magnetic Tunnelling Junction Devices. Appl. Phys. Lett. 2000, 77, 2373. [Google Scholar] [CrossRef]
- Kim, K.Y.; Jang, S.H.; Shin, K.H.; Kim, H.J.; Kang, T. Interlayer Coupling Field in Spin Valves with CoFe/Ru/CoFe/FeMn Synthetic Antiferromagnets (Invited). J. Appl. Phys. 2001, 89, 7612. [Google Scholar] [CrossRef]
- Chopra, H.D.; Yang, D.X.; Chen, P.; Parks, D.; Egelhoff, W. Nature of Coupling and Origin of Coercivity in Giant Magnetoresistance NiO-Co-Cu-Based Spin Valves. Phys. Rev. B-Condens. Matter Mater. Phys. 2000, 61, 9642. [Google Scholar] [CrossRef]
- Yao, X.; Schneider, C.W.; Lippert, T.; Wokaun, A. Manipulation of Ion Energies in Pulsed Laser Deposition to Improve Film Growth. Appl. Phys. A Mater. Sci. Process. 2019, 125, 344. [Google Scholar] [CrossRef]
- Welzel, T.; Kleinhempel, R.; Dunger, T.; Richter, F. Ion Energy Distributions in Magnetron Sputtering of Zinc Aluminium Oxide. Plasma Process. Polym. 2009, 6, S331–S336. [Google Scholar] [CrossRef]
- Suchaneck, G.; Kalanda, N.; Artsiukh, E.; Gerlach, G. Challenges in Sr2FeMoO6−δ Thin Film Deposition. Phys. Status Solidi Basic Res. 2019, 257, 1900312. [Google Scholar] [CrossRef]
- Moritz, J.; Garcia, F.; Toussaint, J.C.; Dieny, B.; Nozières, J.P. Orange Peel Coupling in Multilayers with Perpendicular Magnetic Anisotropy: Application to (Co/Pt)-Based Exchange-Biased Spin-Valves. Europhys. Lett. 2004, 65, 123. [Google Scholar] [CrossRef]
- Kuznetsov, M.A.; Udalov, O.G.; Fraerman, A.A. Anisotropy of Neel “Orange-Peel” Coupling in Magnetic Multilayers. J. Magn. Magn. Mater. 2019, 474, 104–106. [Google Scholar] [CrossRef] [Green Version]
- Nečas, D.; Klapetek, P. Gwyddion: An Open-Source Software for SPM Data Analysis. Cent. Eur. J. Phys. 2012, 10, 181–188. [Google Scholar] [CrossRef]
- Duparré, A.; Ferre-Borrull, J.; Gliech, S.; Notni, G.; Steinert, J.; Bennett, J.M. Surface Characterization Techniques for Determining the Root-Mean-Square Roughness and Power Spectral Densities of Optical Components. Appl. Opt. 2002, 41, 154–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palasantzas, G. Roughness Spectrum and Surface Width of Self-Affine Fractal Surfaces via the k-Correlation Model. Phys. Rev. B 1993, 48, 11472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Church, E.L.; Takacs, P.Z. Optimal Estimation of Finish Parameters. In Proceedings of the Proc. SPIE 1530, Optical Scatter: Applications, Measurement, and Theory, San Diego, CA, USA, 24–26 July 1991; Stover, J.C., Ed.; pp. 71–85. [Google Scholar] [CrossRef]
- Buijnsters, J.G.; Camero, M.; Vázquez, L. Growth Dynamics of Ultrasmooth Hydrogenated Amorphous Carbon Films. Phys. Rev. B-Condens. Matter Mater. Phys. 2006, 74, 155417. [Google Scholar] [CrossRef]
- Tegen, S.; Mönch, I.; Schumann, J.; Vinzelberg, H.; Schneider, C.M. Effect of Néel Coupling on Magnetic Tunnel Junctions. J. Appl. Phys. 2001, 89, 8169. [Google Scholar] [CrossRef]
- Roy, S.; Dubenko, I.; Edorh, D.D.; Ali, N. Size Induced Variations in Structural and Magnetic Properties of Double Exchange La0.8Sr0.2MnO3-δ Nano-Ferromagnet. J. Appl. Phys. 2004, 96, 1202. [Google Scholar] [CrossRef] [Green Version]
- Liebermann, L.N.; Fredkin, D.R.; Shore, H.B. Two-Dimensional “Ferromagnetism” in Iron. Phys. Rev. Lett. 1969, 22, 539. [Google Scholar] [CrossRef]
- Liebermann, L.; Clinton, J.; Edwards, D.M.; Mathon, J. “Dead” Layers in FM Transition Metals. Phys. Rev. Lett. 1970, 25, 232. [Google Scholar] [CrossRef]
- Gangopadhyay, S.; Hadjipanayis, G.C.; Dale, B.; Sorensen, C.M.; Klabunde, K.J.; Papaefthymiou, V.; Kostikas, A. Magnetic Properties of Ultrafine Iron Particles. Phys. Rev. B 1992, 45, 9778. [Google Scholar] [CrossRef] [PubMed]
- Popova, E.; Keller, N.; Gendron, F.; Guyot, M.; Brianso, M.C.; Dumond, Y.; Tessier, M. Structure and Magnetic Properties of Yttrium-Iron-Garnet Thin Films Prepared by Laser Deposition. J. Appl. Phys. 2001, 90, 1422. [Google Scholar] [CrossRef]
- Aeschlimann, R.; Preziosi, D.; Scheiderer, P.; Sing, M.; Valencia, S.; Santamaria, J.; Luo, C.; Ryll, H.; Radu, F.; Claessen, R.; et al. A Living-Dead Magnetic Layer at the Surface of Ferrimagnetic DyTiO3 Thin Films. Adv. Mater. 2018, 30, 1707489. [Google Scholar] [CrossRef]
- Angeloni, M.; Balestrino, G.; Boggio, N.G.; Medaglia, P.G.; Orgiani, P.; Tebano, A. Suppression of the Metal-Insulator Transition Temperature in Thin La0.7Sr0.3MnO3 Films. J. Appl. Phys. 2004, 96, 6387. [Google Scholar] [CrossRef]
- Huijben, M.; Martin, L.W.; Chu, Y.H.; Holcomb, M.B.; Yu, P.; Rijnders, G.; Blank, D.H.A.; Ramesh, R. Critical Thickness and Orbital Ordering in Ultrathin La0.7Sr0.3MnO3 Films. Phys. Rev. B-Condens. Matter Mater. Phys. 2008, 78, 094413. [Google Scholar] [CrossRef] [Green Version]
- Mottaghi, N.; Seehra, M.S.; Trappen, R.; Kumari, S.; Huang, C.Y.; Yousefi, S.; Cabrera, G.B.; Romero, A.H.; Holcomb, M.B. Insights into the Magnetic Dead Layer in La0.7Sr0.3MnO3 Thin Films from Temperature, Magnetic Field and Thickness Dependence of Their Magnetization. AIP Adv. 2018, 8, 056319. [Google Scholar] [CrossRef] [Green Version]
- Julliere, M. Tunnelling between FM Films. Phys. Lett. A 1975, 54, 225–226. [Google Scholar] [CrossRef]
- Shang, C.H.; Nowak, J.; Jansen, R.; Moodera, J.S. Temperature Dependence of Magnetoresistance and Surface Magnetization in FM Tunnel Junctions. Phys. Rev. B-Condens. Matter Mater. Phys. 1998, 58, R2917–R2920. [Google Scholar] [CrossRef]
- Pierce, D.T.; Celotta, R.J.; Unguris, J.; Siegmann, H.C. Spin-Dependent Elastic Scattering of Electrons from a FM Glass, Ni40Fe40B20. Phys. Rev. B 1982, 26, 2566–2574. [Google Scholar] [CrossRef]
- Mauri, D.; Scholl, D.; Siegmann, H.C.; Kay, E. Observation of the Exchange Interaction at the Surface of a Ferromagnet. Phys. Rev. Lett. 1988, 61, 758–761. [Google Scholar] [CrossRef] [PubMed]
- Kou, X.; Schmalhorst, J.; Thomas, A.; Reiss, G. Temperature Dependence of the Resistance of Magnetic Tunnel Junctions with MgO Barrier. Appl. Phys. Lett. 2006, 88, 212115. [Google Scholar] [CrossRef]
- Slonczewski, J.C. Conductance and Exchange Coupling of Two Ferromagnets Separated by a Tunnelling Barrier. Phys. Rev. B 1989, 39, 6995. [Google Scholar] [CrossRef] [PubMed]
- Stearns, M.B. Simple Explanation of Tunnelling Spin-Polarization of Fe, Co, Ni and Its Alloys. J. Magn. Magn. Mater. 1977, 5, 167–171. [Google Scholar] [CrossRef]
- Pickett, W.E.; Singh, D.J. Transport and Fermiology of the FM Phase of La2/3A1/3MnO3 (A = Ca, Sr, Ba). J. Magn. Magn. Mater. 1997, 172, 237–246. [Google Scholar] [CrossRef]
- Yamada, M.G.; Jackeli, G. Magnetic and Electronic Properties of Spin-Orbit Coupled Dirac Electrons on a (001) Thin Film of Double-Perovskite Sr2FeMoO6. Phys. Rev. Mater. 2020, 4, 074007. [Google Scholar] [CrossRef]
- Hwang, H.Y.; Cheong, S.; Ong, N.P.; Batlogg, B. Spin-Polarized Intergrain Tunnelling in La2/3Sr1/3MnO3. Phys. Rev. Lett. 1996, 77, 2041–2044. [Google Scholar] [CrossRef]
- Niebieskikwiat, D.; Caneiro, A.; Sánchez, R.D.; Fontcuberta, J. Oxygen-Induced Grain Boundary Effects on Magnetotransport Properties of Sr2FeMoO6+δ. Phys. Rev. B-Condens. Matter Mater. Phys. 2001, 64, 180406. [Google Scholar] [CrossRef]
- Sarma, D.D.; Ray, S.; Tanaka, K.; Kobayashi, M.; Fujimori, A.; Sanyal, P.; Krishnamurthy, H.R.; Dasgupta, C. Intergranular Magnetoresistance in Sr2FeMoO6 from a Magnetic Tunnel Barrier Mechanism across Grain Boundaries. Phys. Rev. Lett. 2007, 98, 157205. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, Z.; Xu, X.J.; Gu, Z.B.; Yuan, G.L.; Zhang, S.T. The Competitive and Combining Effects of Grain Boundary and Fe/Mo Antisite Defects on the Low-Field Magnetoresistance in Sr2FeMoO6. J. Am. Ceram. Soc. 2014, 97, 1137–1142. [Google Scholar] [CrossRef]
- García-Hernández, M.; Martínez, J.L.; Martínez-Lope, M.J.; Casais, M.T.; Alonso, J.A. Finding Universal Correlations between Cationic Disorder and Low Field Magnetoresistance in FeMo Double Perovskite Series. Phys. Rev. Lett. 2001, 88, 2443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomioka, Y.; Okuda, T.; Okimoto, Y.; Kumai, R.; Kobayashi, K.; Tokura, Y. Magnetic and Electronic Properties of a Single Crystal of Ordered Double Perovskite. Phys. Rev. B-Condens. Matter Mater. Phys. 2000, 61, 422. [Google Scholar] [CrossRef]
- Yin, H.Q.; Zhou, J.S.; Dass, R.; Zhou, J.P.; McDevitt, J.T.; Goodenough, J.B. Intra- versus intergranular low-field magnetoresistance of Sr2FeMoO6 thin films. Appl. Phys. Lett. 1999, 75, 2812. [Google Scholar] [CrossRef]
- Shinde, S.R.; Ogale, S.B.; Greene, R.L.; Venkatesan, T.; Tsoi, K.; Cheong, S.W.; Millis, A.J. Thin Films of Double Perovskite Sr2FeMoO6: Growth, Optimization, and Study of the Physical and Magnetotransport Properties of Films Grown on Single-Crystalline and Polycrystalline SrTiO3 Substrates. J. Appl. Phys. 2003, 93, 1605–1612. [Google Scholar] [CrossRef]
- Saloaro, M.; Majumdar, S.; Huhtinen, H.; Paturi, P. Absence of Traditional Magnetoresistivity Mechanisms in Sr2FeMoO6 Thin Films Grown on SrTiO3, MgO and NdGaO3 Substrates. J. Phys. Condens. Matter 2012, 24, 366003. [Google Scholar] [CrossRef]
- Sanchez, D.; Auth, N.; Jakob, G.; Martínez, J.L.; García-Hernández, M. Pulsed Laser Deposition of Sr2FeMoO6 Thin Films. J. Magn. Magn. Mater. 2005, 294, e119. [Google Scholar] [CrossRef]
- Metsänoja, M.; Majumdar, S.; Huhtinen, H.; Paturi, P. Effect of Ex Situ Post-Annealing Treatments on Sr2FeMoO6 Thin Films. J. Supercond. Nov. Magn. 2012, 25, 829–833. [Google Scholar] [CrossRef]
- Manako, T.; Izumi, M.; Konishi, Y.; Kobayashi, K.I.; Kawasaki, M.; Tokura, Y. Epitaxial Thin Films of Ordered Double Perovskite Sr2FeMoO6. Appl. Phys. Lett. 1999, 74, 2215–2217. [Google Scholar] [CrossRef]
- Arora, S.K.; Sofin, R.G.S.; Shvets, I.V. Magnetoresistance Enhancement in Epitaxial Magnetite Films Grown on Vicinal Substrates. Phys. Rev. B-Condens. Matter Mater. Phys. 2005, 72, 134404. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.; Park, Y.S.; Kim, S.K. Atomically Flat Single-Terminated SrTiO3 (111) Surface. Appl. Phys. Lett. 2008, 92, 152910. [Google Scholar] [CrossRef]
- Hu, Y.C.; Ge, J.J.; Ji, Q.; Lv, B.; Wu, X.S.; Cheng, G.F. Synthesis and Crystal Structure of Double-Perovskite Compound Sr2FeMoO6. Powder Diffr. 2010, 25, S17–S21. [Google Scholar] [CrossRef]
- Garcia, V.; Bibes, M.; Barthélémy, A.; Bowen, M.; Jacquet, E.; Contour, J.P.; Fert, A. Temperature Dependence of the Interfacial Spin Polarization of La2/3Sr1/3MnO3. Phys. Rev. B-Condens. Matter Mater. Phys. 2004, 69, 052403. [Google Scholar] [CrossRef]
- Jo, M.H.; Mathur, N.D.; Evetts, J.E.; Blamire, M.G.; Bibes, M.; Fontcuberta, J. Inhomogeneous Transport in Heteroepitaxial La0.7Ca0.3MnO3/SrTiO3 Multilayers. Appl. Phys. Lett. 1999, 75, 3689. [Google Scholar] [CrossRef]
- LeClair, P.; Swagten, H.J.M.; Kohlhepp, J.T.; Van De Veerdonk, R.J.M.; De Jonge, W.J.M. Apparent Spin Polarization Decay in Cu-Dusted Co/Al2O3/Co Tunnel Junctions. Phys. Rev. Lett. 2000, 84, 2933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bibes, M.; Valencia, S.; Balcells, L.; Martínez, B.; Fontcuberta, J.; Wojcik, M.; Nadolski, S.; Jedryka, E. Charge Trapping in Optimally Doped Epitaxial Manganite Thin Films. Phys. Rev. B-Condens. Matter Mater. Phys. 2002, 66, 134416. [Google Scholar] [CrossRef]
- Izumi, M.; Ogimoto, Y.; Okimoto, Y.; Manako, T.; Ahmet, P.; Nakajima, K.; Chikyow, T.; Kawasaki, M.; Tokura, Y. Insulator-Metal Transition Induced by Interlayer Coupling in La0.6Sr0.4MnO3/SrTiO3 Superlattices. Phys. Rev. B-Condens. Matter Mater. Phys. 2001, 64, 064429. [Google Scholar] [CrossRef]
- Zhang, X.G.; Butler, H.; Bandyopadhyay, A. Effects of the Iron-Oxide Layer in Fe-FeO-MgO-Fe Tunnelling Junctions. Phys. Rev. B-Condens. Matter Mater. Phys. 2003, 68, 092402. [Google Scholar] [CrossRef]
- Zermatten, P.J.; Bonell, F.; Andrieu, S.; Chshiev, M.; Tiusan, C.; Schuhl, A.; Gaudin, G. Influence of Oxygen Monolayer at Fe/MgO Interface on Transport Properties in Fe/MgO/Fe(001) Magnetic Tunnel Junctions. Appl. Phys. Express 2012, 5, 023001. [Google Scholar] [CrossRef]
- Kircheisen, R.; Töpfer, J. Nonstoichiometry, Point Defects and Magnetic Properties in Sr2FeMoO6-δ Double Perovskites. J. Solid State Chem. 2012, 185, 76–81. [Google Scholar] [CrossRef]
- Yuasa, S.; Nagahama, T.; Fukushima, A.; Suzuki, Y.; Ando, K. Giant Room-Temperature Magnetoresistance in Single-Crystal Fe/MgO/Fe Magnetic Tunnel Junctions. Nat. Mater. 2004, 3, 868–871. [Google Scholar] [CrossRef]
- Daughton, J.M. Magnetic Tunnelling Applied to Memory (Invited). J. Appl. Phys. 1997, 81, 3758. [Google Scholar] [CrossRef]
- Parkin, S.S.P.; Kaiser, C.; Panchula, A.; Rice, P.M.; Hughes, B.; Samant, M.; Yang, S.H. Giant Tunnelling Magnetoresistance at Room Temperature with MgO (100) Tunnel Barriers. Nat. Mater. 2004, 3, 862–867. [Google Scholar] [CrossRef]
- Yuasa, S.; Fukushima, A.; Kubota, H.; Suzuki, Y.; Ando, K. Giant Tunnelling Magnetoresistance up to 410% at Room Temperature in Fully Epitaxial Co/MgO/Co Magnetic Tunnel Junctions with Bcc Co(001) Electrodes. Appl. Phys. Lett. 2006, 89, 042505. [Google Scholar] [CrossRef]
- Angervo, I.; Saloaro, M.; Palonen, H.; Majumdar, S.; Huhtinen, H.; Paturi, P. Thickness Dependent Properties of Sr2FeMoO6 Thin Films Grown on SrTiO3 and (LaAlO3)0.3(Sr2AlTaO6)0.7 Substrates. Phys. Procedia 2015, 75, 1011–1021. [Google Scholar] [CrossRef]
- Bibes, M.; Balcells, L.; Valencia, S.; Fontcuberta, J.; Wojcik, M.; Jedryka, E.; Nadolski, S. Nanoscale Multiphase Separation at La2/3Ca1/3MnO3/SrTiO3 Interfaces. Phys. Rev. Lett. 2001, 87, 067210. [Google Scholar] [CrossRef] [PubMed]
- Sidorenko, A.A.; Allodi, G.; De Renzi, R.; Balestrino, G.; Angeloni, M. Mn55 NMR and Magnetization Studies of La0.67Sr0.33MnO3 Thin Films. Phys. Rev. B-Condens. Matter Mater. Phys. 2006, 73, 054406. [Google Scholar] [CrossRef] [Green Version]
- Speriosu, V.S.; Nozieres, J.P.; Gurney, B.A.; Dieny, B.; Huang, T.C.; Lefakis, H. Role of Interfacial Mixing in Giant Magnetoresistance. Phys. Rev. B 1993, 47, 11579. [Google Scholar] [CrossRef]
- Schnittger, S.; Jooss, C.; Sievers, S. Magnetic and Structural Properties of Cobalt Ferrite Thin Films and Structures. J. Phys. Conf. Ser. 2010, 200, 072086. [Google Scholar] [CrossRef]
- Wakabayashi, Y.K.; Nonaka, Y.; Takeda, Y.; Sakamoto, S.; Ikeda, K.; Chi, Z.; Shibata, G.; Tanaka, A.; Saitoh, Y.; Yamagami, H.; et al. Electronic Structure and Magnetic Properties of Magnetically Dead Layers in Epitaxial CoFe2O4/AL2O3/Si(111) Films Studied by x-Ray Magnetic Circular Dichroism. Phys. Rev. B 2017, 96, 104410. [Google Scholar] [CrossRef] [Green Version]
- Miao, G.-X.; Moodera, J.S. Numerical Evaluations on the Asymmetric Bias dependence of Magnetoresistance in Double Spin Filter Tunnel Junctions. J. Appl. Phys. 2009, 106, 023911. [Google Scholar] [CrossRef]
- Panguluri, R.P.; Xu, S.; Moritomo, Y.; Solovyev, I.V.; Nadgorny, B. Disorder Effects in Half-Metallic Sr2FeMoO6 Single Crystals. Appl. Phys. Lett. 2009, 94, 012501. [Google Scholar] [CrossRef]
- Serrate, D.; De Teresa, J.M.; Algarabel, P.A.; Ibarra, M.R.; Galibert, J. Intergrain Magnetoresistance up to 50 T in the Half-Metallic (Ba0.8Sr0.2)2FeMoO6 Double Perovskite: Spin-Glass Behavior of the Grain Boundary. Phys. Rev. B-Condens. Matter Mater. Phys. 2005, 71, 104409. [Google Scholar] [CrossRef]
- Miller, C.W.; Schuller, I.K.; Dave, R.W.; Slaughter, J.M.; Zhou, Y.; Åkerman, J. Temperature and Angular Dependences of Dynamic Spin-Polarized Resonant Tunnelling in CoFeB/MgO/NiFe Junctions. J. Appl. Phys. 2008, 103, 07A904. [Google Scholar] [CrossRef] [Green Version]
- Bratkovsky, A.M. Tunnelling of electrons in conventional and half-metallic systems: Towards very large magnetoresistance. Phys. Rev. B 1997, 56, 2344. [Google Scholar] [CrossRef]
- Xu, Y.; Matsuda, A.; Beasley, M.R. Role of Inelastic Effects on Tunnelling via Localized States in Metal-Insulator-Metal Tunnel Junctions. Phys. Rev. B 1990, 42, 1492. [Google Scholar] [CrossRef]
- Suchaneck, G.; Artiukh, E. Magnetoresistance of Antiphase Boundaries in Sr2FeMoO6−δ. Phys. Status Solidi 2021, 2100353. [Google Scholar] [CrossRef]
- Moritomo, Y.; Xu, S.; Machida, A.; Akimoto, T.; Nishibori, E.; Takata, M.; Sakata, M.; Ohoyama, K. Crystal and Magnetic Structure of Conducting Double Perovskite Sr2FeMoO6. J. Phys. Soc. Jpn. 2000, 69, 1723–1726. [Google Scholar] [CrossRef]
Compound | Function | <X> |
---|---|---|
Fe | Electrode | 1.83 |
NiFe | Electrode | 1.87 |
Co | Electrode | 1.88 |
MgO | Barrier | 2.12 |
La2O3 | Barrier | 2.18 |
BaTiO3 | Barrier | 2.24 |
SrTiO3 | Barrier | 2.26 |
Ce0.69La0.31O1.845 | Barrier | 2.31 |
La2/3Sr1/3MnO3 | Electrode | 2.31 |
La0.7Sr0.3MnO3 | Electrode | 2.31 |
LaAlO3 | Barrier | 2.35 |
ZnO | Barrier | 2.38 |
Sr2FeMoO6 | Electrode | 2.38 |
Mg3B2O6 | Barrier | 2.40 |
SrMoO3 | Barrier | 2.42 |
HfO2 | Barrier | 2.49 |
Mn2O3 | Barrier | 2.50 |
Al2O3 | Barrier | 2.54 |
SrMoO4 | Barrier | 2.57 |
Fe3O4 | Electrode | 2.62 |
TiO2 | Barrier | 2.63 |
MnO2 | Barrier | 2.64 |
Ta2O5 | Barrier | 2.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suchaneck, G.; Artiukh, E.; Sobolev, N.A.; Telesh, E.; Kalanda, N.; Kiselev, D.A.; Ilina, T.S.; Gerlach, G. Strontium Ferromolybdate-Based Magnetic Tunnel Junctions. Appl. Sci. 2022, 12, 2717. https://doi.org/10.3390/app12052717
Suchaneck G, Artiukh E, Sobolev NA, Telesh E, Kalanda N, Kiselev DA, Ilina TS, Gerlach G. Strontium Ferromolybdate-Based Magnetic Tunnel Junctions. Applied Sciences. 2022; 12(5):2717. https://doi.org/10.3390/app12052717
Chicago/Turabian StyleSuchaneck, Gunnar, Evgenii Artiukh, Nikolai A. Sobolev, Eugene Telesh, Nikolay Kalanda, Dmitry A. Kiselev, Tatiana S. Ilina, and Gerald Gerlach. 2022. "Strontium Ferromolybdate-Based Magnetic Tunnel Junctions" Applied Sciences 12, no. 5: 2717. https://doi.org/10.3390/app12052717
APA StyleSuchaneck, G., Artiukh, E., Sobolev, N. A., Telesh, E., Kalanda, N., Kiselev, D. A., Ilina, T. S., & Gerlach, G. (2022). Strontium Ferromolybdate-Based Magnetic Tunnel Junctions. Applied Sciences, 12(5), 2717. https://doi.org/10.3390/app12052717