On Thermodynamic Aspects of Oxide Crystal Growth
Abstract
:1. Introduction
1.1. Oxide Bulk Crystal Growth
1.2. Calcium Ferrite as Model Substance
2. Experiments and Results
3. Discussion
3.1. Calcium Ferrite
- Their CaO/FeO melt contained only 36.6% CaO, but the CaO concentration of the samples in this study was on the same CaO/FeO scale at 53.8%. The higher CaO content is known to stabilize Fe [30].
3.2. Other Examples
- The rare-earth calcium oxyborates YCaO(BO) and GdCaO(BO) gain 0.009% or 0.014% mass, respectively, upon melting in air [37].
- If mixtures of MoO and VO are molten together, a phase 6 MoO 0.5 VO 4 VO = VMoO is formed, which contains V and V. If the mixtures are molten in air, the mass rises due to oxidation of V to V. The reverse effect occurs during crystallization. If molten or cooled in Ar, the mass remains constant [38,39]. It should be noted that also in some ABO-type materials, molybdenum plays a role in oxygen storage and transport [17,18].
- The color of SrPrGaO (SPG) crystals depends sensitively on the growth atmosphere. Only if the atmosphere is virtually free of O, or if grown crystals are annealed under reducing conditions (e.g., in forming gas), the crystals are green from Pr. Already, several ppm O result in dark red/brownish coloring. It seems that the darker color is related to partial oxidation to Pr; however, this explanation is disputed. Nevertheless, incorporation of interstitial oxygen is proven. With simultaneous DTA/TG measurements, it was found that melting is accompanied by a positive TG step, and the magnitude of this step (≲0.2%) is almost proportional to the oxygen concentration in the atmosphere during the measurement [40,41].
- Recently Wolff et al. reported crystal growth experiments from the melt with delafossite-type crystals CuMeO (Me = Al, Fe) [42,43]. It turned out that only small millimeter-sized crystallites of CuAlO could be obtained. The experiments with CuFeO, in contrast, were more successful, and single crystalline OFZ bars with diameters up to 10 mm and several centimeters in length were obtained. It is shown in the next section that this very different behavior of isotype crystals with similar melting temperatures around 1200 °C results from the different oxidation levels of the ions in the liquid and solid phases: the melts contain in both cases Cu and Cu, and both solids only Cu. This requires the reduction in Cu ions during crystallization. The valence state of Al does not change during the crystallization of CuAlO. For CuFeO, in contrast, the melt contains besides the incorporated Fe also significant amounts of Fe which must be oxidized.
- More recently, it was shown that also during the crystallization of BiCuO and BiPdO, the mass rises, due to oxygen incorporation and partial oxidation of Cu or Pd to the two-valent state. BiCuO single crystals up to 6 mm in diameter and 7 cm in length were obtained by OFZ [44].
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Walker, A.C. Hydrothermal synthesis of quartz crystals. J. Am. Ceram. Soc. 1953, 36, 250–256. [Google Scholar] [CrossRef]
- Sarukura, N.; Nawata, T.; Ishibashi, H.; Ishii, M.; Fukuda, T. Czochralski growth of oxides and fluorides. In Handbook of Crystal Growth, 2nd ed.; Rudolph, P., Ed.; Elsevier: Boston, MA, USA, 2015; pp. 131–168. [Google Scholar] [CrossRef]
- Dabkowska, H.A.; Da̧bkowski, A.B.; Hermann, R.; Priede, J.; Gerbeth, G. Floating zone growth of oxides and metallic alloys. In Handbook of Crystal Growth (Second Edition); Rudolph, P., Ed.; Elsevier: Boston, MA, USA, 2015; pp. 281–329. [Google Scholar] [CrossRef]
- Brandle, C.D. Czochralski growth of oxides. J. Cryst. Growth 2004, 264, 593–604. [Google Scholar] [CrossRef]
- Tomm, Y.; Reiche, P.; Klimm, D.; Fukuda, T. Czochralski grown Ga2O3 crystals. J. Cryst. Growth 2000, 220, 510–514. [Google Scholar] [CrossRef]
- Klimm, D.; Ganschow, S.; Schulz, D.; Fornari, R. The growth of ZnO crystals from the melt. J. Cryst. Growth 2008, 310, 3009–3013. [Google Scholar] [CrossRef] [Green Version]
- GTT Technologies, Kaiserstr. 100, 52134 Herzogenrath, Germany. FactSage 8.1. 2021. Available online: http://www.factsage.com/ (accessed on 1 October 2021).
- Uecker, R.; Klimm, D.; Ganschow, S.; Reiche, P.; Bertram, R.; Roßberg, M.; Fornari, R. Czochralski growth of Ti:sapphire laser crystals. Optically Based Materials and Optically Based Biological and Chemical Sensing for Defence II; International Society for Optics and Photonics (SPIE): Bellingham, WA, USA, 2005; Volume 5990, pp. 53–61. [Google Scholar] [CrossRef]
- Xuan, L. Thermodynamic and Kinetic Model of Point Defect Distributions during Ti:sapphire Growth. Ph.D. Thesis, SIMaP-INP-UGA, Grenoble, France, 2021. [Google Scholar]
- Klimm, D.; Ganschow, S. The control of iron oxidation state during FeO and olivine crystal growth. J. Cryst. Growth 2005, 275, e849–e854. [Google Scholar] [CrossRef] [Green Version]
- Klimm, D.; Ganschow, S.; Schulz, D.; Bertram, R.; Uecker, R.; Reiche, P.; Fornari, R. Growth of oxide compounds under dynamic atmosphere composition. J. Cryst. Growth 2009, 311, 534–536. [Google Scholar] [CrossRef] [Green Version]
- Ganschow, S.; Schulz, D.; Klimm, D.; Bertram, R.; Uecker, R. Application of predominance diagrams in melt growth of oxides. Cryst. Res. Technol. 2010, 45, 1219–1224. [Google Scholar] [CrossRef]
- Sebakhy, K.O.; Vitale, G.; Pereira-Almao, P. Dispersed Ni-doped aegirine nanocatalysts for the selective hydrogenation of olefinic molecules. ACS Appl. Nano Mater. 2018, 1, 6269–6280. [Google Scholar] [CrossRef]
- Han, N.; Zhang, C.; Tan, X.; Wang, Z.; Kawi, S.; Liu, S. Re-evaluation ofLa0.6Sr0.4Co0.2Fe0.8O3−δ hollow fiber membranes for oxygen separation after long-term storage of five and ten years. J. Membr. Sci. 2019, 587, 117180. [Google Scholar] [CrossRef]
- Han, N.; Zhang, W.; Guo, W.; Xie, S.; Zhang, C.; Zhang, X.; Fransaer, J.; Liu, S. Novel oxygen permeable hollow fiber perovskite membrane with surface wrinkles. Sep. Purif. Technol. 2021, 261, 118295. [Google Scholar] [CrossRef]
- Han, N.; Shen, Z.; Zhao, X.; Chen, R.; Thakur, V.K. Perovskite oxides for oxygen transport: Chemistry and material horizons. Sci. Total Environ. 2022, 806, 151213. [Google Scholar] [CrossRef] [PubMed]
- Han, N.; Wei, Q.; Zhang, S.; Yang, N.; Liu, S. Rational design via tailoring Mo content in La2Ni1−xMoxO4+δ to improve oxygen permeation properties in CO2 atmosphere. J. Alloys Compds. 2019, 806, 153–162. [Google Scholar] [CrossRef]
- Han, N.; Guo, X.; Cheng, J.; Liu, P.; Zhang, S.; Huang, S.; Rowles, M.R.; Fransaer, J.; Liu, S. Inhibiting in situ phase transition in Ruddlesden-Popper perovskite via tailoring bond hybridization and its application in oxygen permeation. Matter 2021, 4, 1720–1734. [Google Scholar] [CrossRef]
- Bertaut, E.F.; Blum, P.; Sagnières, A. Structure du ferrite bicalcique et de la brownmillerite. Acta Cryst. 1959, 12, 149–159. [Google Scholar] [CrossRef]
- Berggren, J. Refinement of the crystal structure of dicalcium ferrite, Ca2Fe2O5. Acta Chem. Scand. 1971, 25, 3616–3624. [Google Scholar] [CrossRef] [Green Version]
- Redhammer, G.J.; Tippelt, G.; Roth, G.; Amthauer, G. Structural variations in the brownmillerite series Ca2(Fe2−xAlx)O5: Single-crystal X-ray diffraction at 25 °C and high-temperature X-ray powder diffraction (25 °C≤ T ≤ 1000 °C). Am. Mineral. 2004, 89, 405–420. [Google Scholar] [CrossRef]
- Shin, S.; Yonemura, M.; Ikawa, H. Crystallographic properties of Ca2Fe2O5. Difference in crystallographic properties of brownmillerite-like compounds, Ca2Fe2O5 and Sr2Fe2O5, at elevated temperatures. Bull. Chem. Soc. Jpn. 1979, 52, 947–948. [Google Scholar] [CrossRef] [Green Version]
- Krüger, H.; Kahlenberg, V. Incommensurately modulated ordering of tetrahedral chains in Ca2Fe2O5 at elevated temperatures. Acta Cryst. B: Struct. Sci. 2005, 61, 656–662. [Google Scholar] [CrossRef]
- Chesnokov, B.V.; Bazhenova, L.F. Srebrodolskite Ca2Fe2O5—A new mineral. Zap. VseSoyuznogo Mineral. Obshchestva 1985, 114, 195–199. Available online: https://rruff.info/uploads/ZVMO114N2_195.pdf (accessed on 1 October 2021). (In Russian).
- Sharma, N.; Shaju, K.M.; Subba Rao, G.V.; Chowdari, B.V.R. Mixed oxides Ca2Fe2O5 and Ca2Co2O5 as anode materials for Li-ion batteries. Electrochim. Acta 2004, 49, 1035–1043. [Google Scholar] [CrossRef]
- Chan, M.S.C.; Liu, W.; Ismail, M.; Yang, Y.; Scott, S.A.; Dennis, J.S. Improving hydrogen yields, and hydrogen:steam ratio in the chemical looping production of hydrogen using Ca2Fe2O5. Chem. Eng. J. 2016, 296, 406–411. [Google Scholar] [CrossRef] [Green Version]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Jeon, J.; Jung, S.M.; Sasaki, Y. Formation of calcium ferrites under controlled oxygen potentials at 1273 K. ISIJ Int. 2010, 50, 1064–1070. [Google Scholar] [CrossRef] [Green Version]
- Ceretti, M.; Corallini, S.; Paulus, W. Influence of phase transformations on crystal growth of stoichiometric brownmillerite oxides: Sr2ScGaO5 and Ca2Fe2O5. Crystals 2016, 6, 146. [Google Scholar] [CrossRef] [Green Version]
- Phillips, B.; Muan, A. Phase equilibria in the system CaO–iron oxide in air and at 1 atm. O2 Pressure. J. Amer. Ceram. Soc. 1958, 41, 445–454. [Google Scholar] [CrossRef]
- Bertram, R.; Klimm, D. Assay measurements of oxide materials by thermogravimetry and ICP-OES. Thermochim. Acta 2004, 419, 189–193. [Google Scholar] [CrossRef]
- Hillert, M.; Selleby, M.; Sundman, B. An assessment of the Ca–Fe–O system. Met. Trans. A 1990, 21, 2759–2776. [Google Scholar] [CrossRef]
- Klimm, D. Thermal Analysis and Thermodynamics in Materials Science; De Gruyter STEM: Berlin, Germany, 2022. [Google Scholar]
- Gurry, R.W.; Darken, L.S. The composition of CaO–FeO–Fe2O3 and MnO–FeO–Fe2O3 melts at several oxygen pressures in the vicinity of 1600°. J. Amer. Chem. Soc. 1950, 72, 3906–3910. [Google Scholar] [CrossRef]
- Bykova, E.; Dubrovinsky, L.; Dubrovinskaia, N.; Bykov, M.; McCammon, C.; Ovsyannikov, S.V.; Liermann, H.P.; Kupenko, I.; Chumakov, A.I.; Rüffer, R.; et al. Structural complexity of simple Fe2O3 at high pressures and temperatures. Nat. Commun. 2016, 7, 10661. [Google Scholar] [CrossRef]
- Berger, C.M.; Mahmoud, A.; Hermann, R.P.; Braun, W.; Yazhenskikh, E.; Sohn, Y.J.; Menzler, N.H.; Guillon, O.; Bram, M. Calcium-iron oxide as energy storage medium in rechargeable oxide batteries. J. Am. Ceram. Soc. 2016, 99, 4083–4092. [Google Scholar] [CrossRef]
- Klimm, D.; Bertram, R.; Ganschow, S.; Doerschel, J. Phase separation in oxide-borate mixed systems. J. Chem. Eng. Data 2003, 48, 120–123. [Google Scholar] [CrossRef]
- Slade, R.C.T.; Ramanan, A.; West, B.C.; Prince, E. The structure of V9Mo6O40 determined by powder neutron diffraction. J. Solid State Chem. 1989, 82, 65–69. [Google Scholar] [CrossRef]
- Klimm, D.; Orlinski, K.; Pawlak, D.A. Self-organized V–Mo oxide fibers by the micro-pulling down method. Mater. Res. Soc. Symp. Proc. 2010, 1223, 1209–1223. [Google Scholar] [CrossRef] [Green Version]
- Uecker, R.; Reiche, P.; Ganschow, S.; Uecker, D.C.; Schultze, D. Investigation of crystal growth of SrPrGaO4 and SrLaGaO4. Acta Phys. Pol. A 1997, 92, 23–34. [Google Scholar] [CrossRef]
- Pajaczkowska, A.; Novoselov, A.; Klimm, D.; Talik, E.; Uecker, R. Does valency of Pr ions influence color of SrPrGaO4 single crystals? Cryst. Growth Des. 2004, 4, 497–501. [Google Scholar] [CrossRef]
- Wolff, N.; Klimm, D.; Siche, D. Thermodynamic investigations on the growth of CuAlO2 delafossite crystals. J. Solid State Chem. 2018, 258, 495–500. [Google Scholar] [CrossRef] [Green Version]
- Wolff, N.; Schwaigert, T.; Siche, D.; Schlom, D.G.; Klimm, D. Growth of CuFeO2 single crystals by the optical floating-zone technique. J. Cryst. Growth 2020, 532, 125426. [Google Scholar] [CrossRef] [Green Version]
- Wolff, N.; Klimm, D.; Habicht, K.; Fritsch, K. Crystal growth and thermodynamic investigation of Bi2M2+O4 (M = Pd, Cu). CrystEngComm 2021, 23, 3230–3238. [Google Scholar] [CrossRef]
- Nielsen, J.W.; Blank, S.L. Crystal growth and phase equilibrium studies in the system (R.E.)2O3–Fe2O3. J. Cryst. Growth 1972, 13–14, 702–705. [Google Scholar] [CrossRef]
- Shimura, F.; Fujino, Y. Crystal growth and fundamental properties of LiNb1−yTayO3. J. Cryst. Growth 1977, 38, 293–302. [Google Scholar] [CrossRef]
- Behr, G.; Löser, W.; Apostu, M.O.; Gruner, W.; Hücker, M.; Schramm, L.; Souptel, D.; Teresiak, A.; Werner, J. Floating zone growth of CuO under elevated oxygen pressure and its relevance for the crystal growth of cuprates. Cryst. Res. Technol. 2005, 40, 21–25. [Google Scholar] [CrossRef]
- Li, Q.J.; Xu, L.M.; Fan, C.; Zhang, F.B.; Lv, Y.Y.; Ni, B.; Zhao, Z.Y.; Sun, X.F. Single crystal growth of the pyrochlores R2Ti2O7 (R = rare earth) by the optical floating-zone method. J. Cryst. Growth 2013, 377, 96–100. [Google Scholar] [CrossRef] [Green Version]
- Wizent, N.; Leps, N.; Behr, G.; Klingeler, R.; Büchner, B.; Löser, W. The effect of process parameters on floating zone crystal growth of selected cuprates. J. Cryst. Growth 2014, 401, 596–600. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klimm, D.; Wolff, N. On Thermodynamic Aspects of Oxide Crystal Growth. Appl. Sci. 2022, 12, 2774. https://doi.org/10.3390/app12062774
Klimm D, Wolff N. On Thermodynamic Aspects of Oxide Crystal Growth. Applied Sciences. 2022; 12(6):2774. https://doi.org/10.3390/app12062774
Chicago/Turabian StyleKlimm, Detlef, and Nora Wolff. 2022. "On Thermodynamic Aspects of Oxide Crystal Growth" Applied Sciences 12, no. 6: 2774. https://doi.org/10.3390/app12062774
APA StyleKlimm, D., & Wolff, N. (2022). On Thermodynamic Aspects of Oxide Crystal Growth. Applied Sciences, 12(6), 2774. https://doi.org/10.3390/app12062774