Recursive Optimal Finite Impulse Response Filter and Its Application to Adaptive Estimation
Abstract
:1. Introduction
2. Recursive Optimal FIR Filter and Adaptive FIR Filter
2.1. Recursive Optimal FIR Filter with Optimally Estimated Initial Conditions
2.2. Opimallity and Unbiasdness of Recursive Optimal FIR Filter
2.3. Adaptive FIR Filter with Sequential Noise Statistics Esitmation
3. Simulation Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IIR | Infinite Impulse Response |
FIR | Finite Impulse Response |
BIBO | Bounded Input Bounded Output |
RHK | Receding Horizon Kalman |
KUFIR | Kalman-like Unbiased Finite Impulse Response |
ROFIR | Recursive Optimal Finite Impulse Response |
AFIR | Adative Finite Impulse Response |
SHAK | Sage-Husa Adaptive Kalman |
LMAK | Limited Memory Adaptive Kalman |
References
- Fitzgerald, R.J. Divergence of the Kalman filter. IEEE Trans. Autom. Control 1971, 6, 736–747. [Google Scholar] [CrossRef]
- Sangsuk-Iam, S.; Bullock, T.E. Analysis of discrete-time Kalman filtering under incorrect noise covariances. IEEE Trans. Autom. Control 1990, 35, 1304–1309. [Google Scholar] [CrossRef]
- Grewal, M.S.; Anderews, A.P. Kalman Filtering—Theory and Practice; Prentice-Hall: Englewood Cliffs, NJ, USA, 1993. [Google Scholar]
- Kwon, W.H.; Lee, K.S.; Kwon, O.K. Optimal FIR Filters for Time-Varying State-Space Models. IEEE Trans. Aerosp. Electron. Syst. 1990, 26, 1011–1021. [Google Scholar] [CrossRef]
- Kwon, B.; Quan, Z.; Han, S. A robust fixed-lag receding horizon smoother for uncertain state space models. Int. J. Adapt. Control Signal Process. 2015, 29, 1354–1366. [Google Scholar] [CrossRef]
- Kwon, B.; Han, S.; Han, S. Improved Receding Horizon Fourier Analysis for Quasi-periodic Signals. J. Electr. Eng. Technol. 2017, 12, 378–384. [Google Scholar] [CrossRef] [Green Version]
- Kwon, W.H.; Kim, P.S.; Park, P. A receding horizon Kalman FIR filter for discrete time-invariant systems. IEEE Trans. Autom. Control 1999, 44, 1787–1791. [Google Scholar] [CrossRef]
- Kwon, W.H.; Kim, P.S.; Han, S.H. A Receding Horizon Unbiased FIR Filter for Discrete-Time State Space Models. Automatica 2002, 38, 545–551. [Google Scholar] [CrossRef]
- Shmaliy, Y.S.; Munoz-Diaz, J.; Arceo-Miquel, L. Optimal horizons for a one-parameter family of unbiased FIR filter. Digit. Signal Process. 2008, 18, 739–750. [Google Scholar] [CrossRef]
- Shmaliy, Y.S. An iterative Kalman-like algorithm ignoring noise and initial conditions. IEEE Trans. Signal Process 2011, 59, 2465–2473. [Google Scholar] [CrossRef]
- Kou, Y.; Jiao, Y.; Xu, D.; Zhang, M.; Liu, Y.; Li, X. Low-cost precise measurement of oscillator frequency instability based on GNSS carrier observation. Adv. Space Res. 2012, 51, 969–977. [Google Scholar] [CrossRef]
- Pak, J.M.; Ahn, C.K.; Shmaliy, Y.S.; Shi, P.; Lim, M.T. Switching extensible FIR filter bank for adaptive horizon state estimation with application. IEEE Trans. Control Syst. Technol. 2016, 24, 1052–1058. [Google Scholar] [CrossRef]
- Shmaliy, Y.S.; Khan, S.; Zhao, S. Ultimate iterative UFIR filtering algorithm. Measurement 2016, 92, 236–242. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Shmaliy, Y.S.; Liu, F. Fast Kalman-Like Optimal Unbiased FIR Filtering with Applications. IEEE Trans. Signal Process. 2016, 64, 2284–2297. [Google Scholar] [CrossRef]
- Zhao, S.; Shmaliy, Y.S.; Ahn, C.K.; Liu, F. Adaptive-Horizon Iterative UFIR Filtering Algorithm with Applications. IEEE Trans. Ind. Electron. 2018, 65, 6393–6402. [Google Scholar] [CrossRef]
- Zhao, S.; Shmaliy, Y.S.; Ahn, C.K.; Liu, F. Self-Tuning Unbiased Finite Impulse Response Filtering Algorithm for Processes with Unknown Measurement Noise Covariance. IEEE Trans. Control Syst. Technol. 2021, 29, 1372–1379. [Google Scholar] [CrossRef]
- Pak, J.M.; Yoo, S.Y.; Lim, M.T.; Song, M.K. Weighted Average Extended FIR Filter Bank to Manage the Horizon Size in Nonlinear FIR Filtering. Int. J. Control Autom. Syst. 2014, 13, 138–145. [Google Scholar] [CrossRef]
- Pak, J.M.; Kim, P.S.; You, S.H.; Lee, S.S.; Song, M.K. Extended Least Square Unbiased FIR Filter for Target Tracking Using the Constant Velocity Motion Model. Int. J. Control Autom. Syst. 2017, 15, 947–951. [Google Scholar] [CrossRef]
- Kim, P.S. Selective Finite Memory Structure Filtering Using the Chi-Square Test Statistic for Temporarily Uncertain Systems. Appl. Sci. 2019, 9, 4257. [Google Scholar] [CrossRef] [Green Version]
- Kwon, B.; Han, S.; Lee, K. Robust Estimation and Tracking of Power System Harmonics Using an Optimal Finite Impulse Response Filter. Energies 2018, 11, 1811. [Google Scholar] [CrossRef] [Green Version]
- Kwon, B. An Optimal FIR Filter for Discrete Time-varying State Space Models. J. Inst. Control Robot. Syst. 2011, 17, 1183–1187. [Google Scholar] [CrossRef] [Green Version]
- Akhlaghi, S.; Zhou, N.; Huang, Z. Adaptive Adjustment of Noise Covariance in Kalman Filter for Dynamic State Estimation. In Proceedings of the 2017 IEEE Power and Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017. [Google Scholar]
- Myers, K.; Tapley, B. Adaptive sequential estimation with unknown noise statistics. IEEE Trans. Autom. Control 1976, 21, 520–523. [Google Scholar] [CrossRef]
Time Interval | ||||
---|---|---|---|---|
Kalman filter | ||||
SHAK filter | ||||
LMAK filter | ||||
ROFIR filter | ||||
AFIR filter |
Time Interval | ||||
---|---|---|---|---|
Kalman filter | ||||
SHAK filter | ||||
LMAK filter | ||||
ROFIR filter | ||||
AFIR filter |
Time Interval | ||||
---|---|---|---|---|
Kalman filter | ||||
SHAK filter | ||||
LMAK filter | ||||
ROFIR filter | ||||
AFIR filter |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, B.; Kim, S.-i. Recursive Optimal Finite Impulse Response Filter and Its Application to Adaptive Estimation. Appl. Sci. 2022, 12, 2757. https://doi.org/10.3390/app12052757
Kwon B, Kim S-i. Recursive Optimal Finite Impulse Response Filter and Its Application to Adaptive Estimation. Applied Sciences. 2022; 12(5):2757. https://doi.org/10.3390/app12052757
Chicago/Turabian StyleKwon, Bokyu, and Sang-il Kim. 2022. "Recursive Optimal Finite Impulse Response Filter and Its Application to Adaptive Estimation" Applied Sciences 12, no. 5: 2757. https://doi.org/10.3390/app12052757
APA StyleKwon, B., & Kim, S. -i. (2022). Recursive Optimal Finite Impulse Response Filter and Its Application to Adaptive Estimation. Applied Sciences, 12(5), 2757. https://doi.org/10.3390/app12052757