Facile Synthesis of NiCo2S4/rGO Composites in a Micro-Impinging Stream Reactor for Energy Storage
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Construction of Micro-Impinging Stream Reactor
2.3. Synthesis of NiS, Co3S4, and NiCo2S4
2.4. Synthesis of NiCo2S4/rGO Composites
2.5. Material Characterization
2.6. Preparation and Electrochemical Characterization of Electrodes
3. Results and Discussion
3.1. Morphological and Electrochemical Characterization of NiS, Co3S4, and NiCo2S4
3.2. Structure and Morphology of rGO
3.3. Electrochemical Properties and Characterization of NiCo2S4/rGO Composites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Wang, T.; Chen, H.; Yu, F.; Zhao, X.; Wang, H. Boosting the Cycling Stability of Transition Metal Compounds-based Supercapacitors. Energy Storage Mater. 2019, 16, 545–573. [Google Scholar] [CrossRef] [Green Version]
- Forse, A.C.; Merlet, C.; Griffin, J.M.; Grey, C.P. New Perspectives on the Charging Mechanisms of Supercapacitors. J. Am. Chem. Soc. 2016, 138, 5731–5744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lokhande, P.E.; Chavan, U.S.; Pandey, A. Materials and Fabrication Methods for Electrochemical Supercapacitors: Overview. Electrochem. Energy Rev. 2020, 3, 155–186. [Google Scholar] [CrossRef]
- Sharma, P.; Kumar, V. Current Technology of Supercapacitors: A Review. J. Electron. Mater. 2020, 49, 3520–3532. [Google Scholar] [CrossRef]
- Oliva, P.; Leonardi, J.; Laurent, J.F.; Delmas, C.; Braconnier, J.J.; Figlarz, M. Review of the Structure and the Electrochemistry of Nickel Hydroxides and Oxy-hydroxides. J. Power Sources 1982, 8, 229–255. [Google Scholar] [CrossRef]
- Brousse, T.; Bélanger, D.; Long, J.W. To be or Not to be Pseudocapacitive. J. Electrochem. Soc. 2015, 162, A5185–A5189. [Google Scholar] [CrossRef] [Green Version]
- Bélanger, D.; Brousse, T.; Sugimoto, W.; Long, J.W.; Balducci, A. A Guideline for Reporting Performance Metrics with Electrochemical Capacitors: From Electrode Materials to Full Devices. J. Electrochem. Soc. 2017, 164, A1487–A1488. [Google Scholar]
- Pell, W.G.; Conway, B.E. Peculiarities and Requirements of Asymmetric Capacitor Devices Based on Combination of Capacitor and Battery-type Electrodes. J. Power Sources 2004, 136, 334–345. [Google Scholar] [CrossRef]
- Ansari, S.A.; Parveen, N.; Al-Othoum, M.A.S.; Ansari, M.O. Effect of Washing on the Electrochemical Performance of a Three-dimensional Current Collector for Energy Storage Applications. Nanomaterials 2021, 11, 1596. [Google Scholar] [CrossRef]
- Parveen, N.; Ansari, S.A.; Ansari, M.Z.; Ansari, M.O. Manganese Oxide as an Efective Electrode Material for Energy Storage: A Review. Environ. Chem. Lett. 2021, 21, 01316. [Google Scholar]
- Lu, F.; Zhou, M.; Li, W.; Weng, Q.; Li, C.; Xue, Y.; Jiang, X.; Zeng, X.; Bando, Y.; Golberg, D. Engineering Sulfur Vacancies and Impurities in NiCo2S4 Nanostructures Toward Optimal Supercapacitive Performance. Nano Energy 2016, 26, 313–323. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, J.; Zhao, Y.; Zhang, L.; Guo, D.; Xia, D. One-pot Synthesis of Porous Nickel Cobalt Sulphides: Tuning the Composition for Superior Pseudocapacitance. J. Mater. Chem. A 2015, 3, 428. [Google Scholar] [CrossRef]
- Peng, S.; Li, L.; Li, C.; Tan, H.; Cai, R.; Yu, H.; Mhaisalkar, S.; Srinivasan, M.; Ramakrishna, S.; Yan, Q. In Situ Growth of NiCo2S4 Nanosheets on Graphene for High-performance Supercapacitors. Chem. Commun. 2013, 49, 10178–10180. [Google Scholar] [CrossRef]
- Yang, J.; Yu, C.; Fan, X.; Liang, S.; Li, S.; Huang, H.; Ling, Z.; Hao, C.; Qiu, J. Electroactive Edge Site-enriched Nickel–cobalt Sulfide into Graphene Frameworks for High-performance Asymmetric Supercapacitors. Energy Environ. Sci. 2016, 9, 1299–1307. [Google Scholar] [CrossRef]
- Yan, J.; Fan, Z.; Sun, W.; Ning, G.; Wei, T.; Zhang, Q.; Zhang, R.; Zhi, L.; Wei, F. Advanced Asymmetric Supercapacitors Based on Ni(OH)2/Graphene and Porous Graphene Electrodes with High Energy Density. Adv. Funct. Mater. 2012, 22, 2632–2641. [Google Scholar] [CrossRef]
- Li, Z.; Li, X.; Xiang, L.; Xie, X.; Li, X.; Xiao, D.; Shen, J.; Lu, W.; Lu, L.; Liu, S. Three-dimensional Hierarchical Nickel–cobalt–sulfide Nanostructures for High Performance Electrochemical Energy Storage Electrodes. J. Mater. Chem. A 2016, 4, 18335–18341. [Google Scholar] [CrossRef]
- Shen, L.; Wang, J.; Xu, G.; Li, H.; Dou, H.; Zhang, X. NiCo2S4 Nanosheets Grown on Nitrogen-Doped Carbon Foams as an Advanced Electrode for Supercapacitors. Adv. Energy Mater. 2015, 5, 1400977. [Google Scholar] [CrossRef]
- Hong, W.; Wang, J.; Li, Z.; Yang, S. Fabrication of Co3O4@Co–Ni Sulfides Core/shell Nanowire Arrays as Binder-free Electrode for Electrochemical Energy Storage. Energy 2015, 93, 435–441. [Google Scholar] [CrossRef]
- Shen, L.; Yu, L.; Wu, H.; Yu, X.; Zhang, X.; Lou, X. Formation of Nickel Cobalt Sulfide Ball-in-ball Hollow Spheres with Enhanced Electrochemical Pseudocapacitive Properties. Nat. Commun. 2015, 6, 6694. [Google Scholar] [CrossRef]
- Jiao, Z.; Luan, J.; Miller, M.K.; Chung, Y.W.; Liu, C. Co-precipitation of Nanoscale Particles in Steels with Ultra-high Strength for a New Era. Mater. Today 2017, 20, 142–154. [Google Scholar] [CrossRef]
- Cocero, M.J.; Martín, Á.; Mattea, F.; Varona, S. Encapsulation and Co-precipitation Processes with Supercritical Fluids: Fundamentals and Applications. J. Supercrit. Fluids 2009, 47, 546–555. [Google Scholar] [CrossRef]
- Carolin, C.F.; Kumar, P.S.; Saravanan, A.; Joshiba, G.J.; Naushad, M. Efficient Techniques for the Removal of Toxic Heavy Metals from Aquatic Environment: A Review. J. Environ. Chem. Eng. 2017, 5, 2782–2799. [Google Scholar] [CrossRef]
- Hernández-Uresti, D.B.; Martínez-de la Cruz, A.; Torres-Martínez, L.M. Photocatalytic Properties of PbMoO4 Synthesized by Co-precipitation Method: Organic Dyes Degradation under UV irradiation. Res. Chem. Intermed. 2011, 38, 817–828. [Google Scholar] [CrossRef]
- Huber, F.; Venvik, H.; Ronning, M.; Walmsley, J.; Holmen, A. Preparation and Characterization of Nanocrystalline, High-surface Area CuCeZr Mixed Oxide Catalysts from Homogeneous Co-precipitation. Chem. Eng. J. 2008, 137, 686–702. [Google Scholar] [CrossRef]
- Wiles, C.; Watts, P. Continuous Flow Reactors: A Perspective. Green Chem. 2012, 14, 38–54. [Google Scholar] [CrossRef]
- DeMello, A.J. Control and Detection of Chemical Reactions in Microfluidic Systems. Nature 2006, 442, 394–402. [Google Scholar] [CrossRef]
- Theberge, A.B.; Courtois, F.; Schaerli, Y.; Fischlechner, M.; Abell, C.; Hollfelder, F.; Huck, W.T. Microdroplets in Microfluidics: An Evolving Platform for Discoveries in Chemistry and Biology. Angew. Chem. Int. Ed. Engl. 2010, 49, 5846–5868. [Google Scholar] [CrossRef]
- Khan, S.A.; Gunther, A.; Schmidt, M.A.; Jensen, K.F. Microfluidic Synthesis of Colloidal Silica. Langmuir 2004, 20, 8604–8611. [Google Scholar] [CrossRef]
- Roberge, D.M.; Ducry, L.; Bieler, N.; Cretton, P.; Zimmermann, B. Microreactor Technology: A Revolution for the Fine Chemical and Pharmaceutical Industries? Chem. Eng. Technol. 2005, 28, 318–323. [Google Scholar] [CrossRef]
- Geyer, K.; Codee, J.D.; Seeberger, P.H. Microreactors as Tools for Synthetic Chemists—The Chemists’ Round-bottomed Flask of the 21st Century? Chemistry 2006, 12, 8434–8442. [Google Scholar] [CrossRef]
- Kiwi-Minsker, L.; Renken, A. Microstructured Reactors for Catalytic Reactions. Catal. Today 2005, 110, 2–14. [Google Scholar] [CrossRef] [Green Version]
- Watts, P.; Haswell, S.J. The Application of Micro Reactors for Organic Synthesis. Chem. Soc. Rev. 2005, 34, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Tian, L.; Wu, Y.; Li, Y.; Wen, L.; Wang, S. Fast Coprecipitation of Nickel-cobalt Oxide in a Micro-impinging Stream Reactor for the Construction of High-performance Asymmetric Supercapacitors. J. Alloys Compd. 2019, 792, 314–327. [Google Scholar] [CrossRef]
- Cheng, M.; Fan, H.; Song, Y.; Cui, Y.; Wang, R. Interconnected Hierarchical NiCo2O4 Microspheres as High-performance Electrode Materials for Supercapacitors. Dalton Trans. 2017, 46, 9201–9209. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Yang, Y.; Li, G.; Xia, H.; Wang, P.; Sun, P.; Li, X.; Cai, H.; Xiong, J. One-step Sulfuration Synthesis of Hierarchical NiCo2S4@NiCo2S4 Nanotube/nanosheet Arrays on Carbon Cloth as Advanced Electrodes for High-performance Flexible Solid-state Hybrid Supercapacitors. RSC. Adv. 2019, 9, 3041–3049. [Google Scholar] [CrossRef] [Green Version]
- Xiong, S.; Chen, J.; Lou, X.; Zeng, H. Mesoporous Co3O4 and CoO@C Topotactically Transformed from Chrysanthemum-like Co(CO3)0.5(OH)0.11H2O and Their Lithium-Storage Properties. Adv. Funct. Mater. 2012, 22, 861–871. [Google Scholar] [CrossRef]
- Huang, Y.; Shi, T.; Jiang, S.; Cheng, S.; Tao, X.; Zhong, Y.; Liao, G.; Tang, Z. Enhanced Cycling Stability of NiCo2S4@NiO Core-shell Nanowire Arrays for All-solid-state Asymmetric Supercapacitors. Sci. Rep. 2016, 6, 38620. [Google Scholar] [CrossRef]
- Xiao, J.; Wan, L.; Yang, S.; Xiao, F.; Wang, S. Design Hierarchical Electrodes with Highly Conductive NiCo2S4 Nanotube Arrays Grown on Carbon Fiber Paper for High-performance Pseudocapacitors. Nano Lett. 2014, 14, 831–838. [Google Scholar] [CrossRef]
- Mei, L.; Yang, T.; Xu, C.; Zhang, M.; Chen, L.; Li, Q.; Wang, T. Hierarchical Mushroom-like CoNi2S4 Arrays as a Novel Electrode Material for Supercapacitors. Nano Energy 2014, 3, 36–45. [Google Scholar] [CrossRef]
- Ma, M.; Zhang, C.; Huang, G.; Xing, B.; Zhang, C. Synthesis and Electrochemical Performance of Polyacrylonitrile Carbon Nanostructure Microspheres for Supercapacitor Application. J. Nanomater. 2016, 16, 269. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B.Z. Graphene-based Supercapacitor with an Ultrahigh Energy Density. Nano Lett. 2010, 10, 4863–4868. [Google Scholar] [CrossRef]
- Chang, H.; Wu, H. Graphene-based Nanocomposites: Preparation, Functionalization, and Energy and Environmental Applications. Energy Environ. Sci. 2013, 6, 3483–3507. [Google Scholar] [CrossRef]
- Xia, X.; Tu, J.; Mai, Y.; Wang, X.; Gu, C.; Zhao, X. Self-supported Hydrothermal Synthesized Hollow Co3O4 Nanowire Arrays with High Supercapacitor Capacitance. J. Mater. Chem. 2011, 21, 9319–9325. [Google Scholar] [CrossRef]
- Lin, J.; Wang, Y.; Zheng, X.; Liang, H.; Jia, H.; Qi, J.; Cao, J.; Tu, J.; Fei, W.; Feng, J. P-doped NiCo2S4 Nanotubes as Battery-type Electrode for High-performance Asymmetric Supercapacitor. Dalton Trans. 2018, 47, 8771–8778. [Google Scholar] [CrossRef]
- Tang, Z.; Tang, C.; Gong, H. A High Energy Density Asymmetric Supercapacitor from Nano-architectured Ni(OH)2/Carbon Nanotube Electrodes. Adv. Funct. Mater. 2012, 22, 1272–1278. [Google Scholar] [CrossRef]
- Kirubasankar, B.; Murugadoss, V.; Lin, J.; Ding, T.; Dong, M.; Liu, H.; Zhang, J.; Li, T.; Wang, N.; Guo, Z.; et al. In Situ Grown Nickel Selenide on Graphene Nanohybrid Electrodes for High Energy Density Asymmetric Supercapacitors. Nanoscale 2018, 10, 20414–20425. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, G.; Yuan, C.; Lou, X. Hierarchical NiCo2O4@MnO2 Core-shell Heterostructured Nanowire Arrays on Ni Foam as High-performance Supercapacitor Electrodes. Chem. Commun. 2013, 49, 137–139. [Google Scholar] [CrossRef]
- Brisse, A.; Stevens, P.; Toussaint, G.; Crosnier, O.; Thierry, B. Ni(OH)2 and NiO Based Composites: Battery Type Electrode Materials for Hybrid Supercapacitor Devices. Materials 2018, 11, 1178. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Ma, M.; Yang, J.; Sun, C.; Su, H.; Huang, W.; Dong, X. Shape-controlled Synthesis of NiCo2S4 and Their Charge Storage Characteristics in Supercapacitors. Nanoscale 2014, 6, 9824–9830. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Shen, M.; Fu, X.; Huang, M.; Liu, X.; Zhang, Y.X. Uniform Growth of NiCo2S4 Nanoflakes Arrays on Nickel Foam for Binder-free High-performance Supercapacitors. J. Mater. Sci. 2018, 54, 4821–4830. [Google Scholar] [CrossRef]
Materials | Methods | Capacity | Capacity Retention Rate |
---|---|---|---|
NiCo2S4/rGO (This work) | MISR | 198 mAh g−1 (1 A g−1) | 83.6% (1 A g−1, 1000 cycles) |
Tube-like NiCo2S4 [49] | Solvothermal method | 116.4 mAh g−1 (3 A g−1) | 75.9% (10 A g−1, 5000 cycles) |
Ni1.5Co1.5S4 [12] | Polyol method | 167.0 mAh g−1 (1 A g−1) | 108% (10 A g−1, 2000 cycles) |
NiCo2S4 arrays on nickel foam [50] | Hydrothermal method | 102.2 mAh g−1 (0.5 A g−1) | 85% (5 A g−1, 5000 cycles) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Chen, X.; Liu, C.; Wen, L. Facile Synthesis of NiCo2S4/rGO Composites in a Micro-Impinging Stream Reactor for Energy Storage. Appl. Sci. 2022, 12, 2882. https://doi.org/10.3390/app12062882
Zhang J, Chen X, Liu C, Wen L. Facile Synthesis of NiCo2S4/rGO Composites in a Micro-Impinging Stream Reactor for Energy Storage. Applied Sciences. 2022; 12(6):2882. https://doi.org/10.3390/app12062882
Chicago/Turabian StyleZhang, Jiawei, Xiguan Chen, Chunyu Liu, and Lixiong Wen. 2022. "Facile Synthesis of NiCo2S4/rGO Composites in a Micro-Impinging Stream Reactor for Energy Storage" Applied Sciences 12, no. 6: 2882. https://doi.org/10.3390/app12062882
APA StyleZhang, J., Chen, X., Liu, C., & Wen, L. (2022). Facile Synthesis of NiCo2S4/rGO Composites in a Micro-Impinging Stream Reactor for Energy Storage. Applied Sciences, 12(6), 2882. https://doi.org/10.3390/app12062882