Waste Classification of Spent Refractory Materials to Achieve Sustainable Development Goals Exploiting Multiple Criteria Decision Aiding Approach
Abstract
:Featured Application
Abstract
1. Introduction
2. Background
2.1. Refractory Spent Materials and Recycling
2.2. Characterization of the Spent Refractory Materials
2.3. Multicriteria Decision Aid Methodologies and Circular Economy
3. Proposed Methodology for Appropriateness of Recycling
3.1. The On/Off Criteria Process
3.2. Assessment of the Nonhazardous Spent Refractory Recycling Compatibility
3.2.1. Development of the Marginal Value Functions
3.2.2. Weight Assessment
- (a)
- The experts rank order the attributes and the ex aequo sets of attributes in a pairwise manner, concerning their importance in environmental issues. The attributes are sorted according to their ranking from the most important to the least important and arranged in m classes (m ≤ n). Each class includes one attribute or a set of ex aequo criteria.
- (b)
- The key point of the WAP method is the utilization of the z indices for every pair of successive attributes or sets of ex aequo attributes that satisfy the following formula:
- (c)
- The robustness of the estimated hyper-polyhedron is calculated through the utilization of two indices. The first type of index used is the range between the maximum and minimum values of the criteria weights for every criterion, as these values are estimated for each vertex of the hyper-polyhedron. This gives a picture, at first glance, of the extent of robustness in each criterion. For instance, this index for the i-the attribute is calculated as follows:
4. Results
4.1. Evaluation Model for Spent Refractories
4.1.1. Estimation of Marginal Value Functions Using the MIIDAS System
4.1.2. Estimation of Criteria Weights Using the WAP Technique
4.2. Classification of Refractory Spent Materials
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tan, E.C.D.; Lamers, P. Circular Bioeconomy Concepts—A Perspective. Front. Sustain. 2021, 2, 701509. [Google Scholar] [CrossRef]
- Ferreira, G.; López-Sabirón, A.M.; Aranda, J.; Mainar-Toledo, M.D.; Aranda-Usón, A. Environmental Analysis for Identifying Challenges to Recover Used Reinforced Refractories in Industrial Furnaces. J. Clean. Prod. 2015, 88, 242–253. [Google Scholar] [CrossRef]
- Horckmans, L.; Nielsen, P.; Dierckx, P.; Ducastel, A. Recycling of Refractory Bricks Used in Basic Steelmaking: A Review. Resour. Conserv. Recycl. 2019, 140, 297–304. [Google Scholar] [CrossRef]
- Fang, H.; Smith, J.D.; Peaslee, K.D. Study of Spent Refractory Waste Recycling from Metal Manufacturers in Missouri. Resour. Conserv. Recycl. 1999, 25, 111–124. [Google Scholar] [CrossRef]
- Hanagiri, S.; Matsui, T.; Shimpo, A.; Aso, S.; Inuzuka, T.; Matsuda, T.; Sakaki, S.; Nakagawa, H. Recent Improvement of Recycling Technology for Refractories. Spec. Issue Refract. Technol. Steel Ind. Nippon Steel Tech. Rep. 2008, 98, 93–98. [Google Scholar]
- Poirier, J.; Blond, E.; de Bilbao, E.; Michel, R.; Coulon, A.; Gillibert, J.; Boussuge, M.; Zhang, Y.; Ryckelynk, D.; Dusserre, G.; et al. New Advances in the Laboratory Characterization of Refractories: Testing and Modelling. Metall. Res. Technol. 2017, 114, 610. [Google Scholar] [CrossRef]
- Arianpour, F.; Kazemi, F.; Golestani-Fard, F.; Rasti, M. Characterisation of spent MgO-C refractory bricks with emphasise on recycling. In Proceedings of the Unified International Technical Conference on Refractorie, Dresden, Germany, 18–21 September 2007; pp. 598–601. [Google Scholar]
- Pantazopoulou, E.; Zebiliadou, O.; Mitrakas, M.; Zouboulis, A. Stabilization of Tannery Sludge by Co-Treatment with Aluminum Anodizing Sludge and Phytotoxicity of End-Products. Waste Manag. 2017, 61, 327–336. [Google Scholar] [CrossRef]
- Kasina, M.; Kajdas, B.; Michalik, M. The Leaching Potential of Sewage Sludge and Municipal Waste Incineration Ashes in Terms of Landfill Safety and Potential Reuse. Sci. Total Environ. 2021, 791, 148313. [Google Scholar] [CrossRef] [PubMed]
- Vlachokostas, C.; Achillas, C.; Diamantis, V.; Michailidou, A.V.; Baginetas, K.; Aidonis, D. Supporting Decision Making to Achieve Circularity via a Biodegradable Waste-to-Bioenergy and Compost Facility. J. Environ. Manag. 2021, 285, 112215. [Google Scholar] [CrossRef] [PubMed]
- Kyriakopoulos, G.L.; Kapsalis, V.C.; Aravossis, K.G.; Zamparas, M.; Mitsikas, A. Evaluating Circular Economy under a Multi-Parametric Approach: A Technological Review. Sustainability 2019, 11, 6139. [Google Scholar] [CrossRef] [Green Version]
- European Parliament. Council of the European Union Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives. Off. J. Eur. Union L312 2008, 51, 3–30. [Google Scholar]
- Rodrigues, P.; Silvestre, J.D.; Flores-Colen, I.; Viegas, C.A.; De Brito, J.; Kurad, R.; Demertzi, M. Methodology for the Assessment of the Ecotoxicological Potential of Construction Materials. Materials 2017, 10, 649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, P.; Silvestre, J.D.; Flores-Colen, I.; Viegas, C.A.; Ahmed, H.H.; Kurda, R.; de Brito, J. Evaluation of the Ecotoxicological Potential of Fly Ash and Recycled Concrete Aggregates Use in Concrete. Appl. Sci. 2020, 10, 351. [Google Scholar] [CrossRef] [Green Version]
- Council of the European Union. Council of the European Union 2003/33/EC: Council Decision of 19 December 2002 Establishing Criteria and Procedures for the Acceptance of Waste at Landfills Pursuant to Article 16 of and Annex II to Directive 1999/31/EC. Off. J. Eur. Communities L11 2003, 46, 27–49. [Google Scholar]
- Huysman, S.; Debaveye, S.; Schaubroeck, T.; Meester, S.D.; Ardente, F.; Mathieux, F.; Dewulf, J. The Recyclability Benefit Rate of Closed-Loop and Open-Loop Systems: A Case Study on Plastic Recycling in Flanders. Resour. Conserv. Recycl. 2015, 101, 53–60. [Google Scholar] [CrossRef]
- EN 12457-2:2002; Characterisation of Waste-Leaching-Compliance Test for Leaching of Granular Waste Materials and Sludges. One Stage Batch Test at a Liquid to Solid Ratio of 10 l/Kg for Materials with Particle Size below 4 Mm (without or with Size Reduction). European Committee for Standardization: Brussels, Belgium, 2002.
- Siskos, Y.; Spyridakos, A. Intelligent Multicriteria Decision Support: Overview and Perspectives. Eur. J. Oper. Res. 1999, 113, 236–246. [Google Scholar] [CrossRef]
- Pardalos, P.M.; Siskos, Y.; Zopounidis, C. Editorial: Advances in Multicriteria Analysis; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995. [Google Scholar]
- Saaty, T.L.; Sodenkamp, M. The analytic hierarchy and analytic network measurement processes: The measurement of intangibles. In Handbook of Multicriteria Analysis; Pardalos, P.M., Zopounidis, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 91–166. [Google Scholar]
- Saaty, R.W. The Analytic Hierarchy Process—What It Is and How It Is Used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill International: New York, NY, USA, 1980. [Google Scholar]
- Dyer, J.S. Multiattribute utility and value theories: MAUT—Multiattribute utility theory. In Multiple Criteria Decision Analysis-State of the Art Surveys; Figueira, J., Greco, S., Ehrgott, M., Eds.; Springer: New York, NY, USA, 2005; pp. 265–298. [Google Scholar]
- Fishburn, P.C. The Foundation of Expected Utility; Reidel: Dordrecht, The Netherlands, 1982. [Google Scholar]
- Fishburn, P.C. Utility Theory for Decision Making; Wiley: New York, NY, USA, 1970. [Google Scholar]
- Keeney, R.L. Value-Focused Thinking: A Path to Creative Decisionmaking, Revised edition; Harvard University Press: Cambridge, MA, USA, 1996; ISBN 978-0-674-93198-5. [Google Scholar]
- Roy, B. From Optimization to multicriteria decision aid: Three main operational attitutes. In Multiple Criteria Decission Making; Springer: Belin/Heidelberg, Germany, 1976; Volume 130, pp. 1–32. [Google Scholar]
- Roy, B. Méthodologie Multicritere d’Aide à La Decision; Economica: Paris, France, 1985. [Google Scholar]
- Vanderpooten, D. The construction of prescriptions in outranking methods. In Reading in Multiple Criteria Decision Aid; e Costa, B., Ed.; Springer: Berlin/Heidelberg, Germany, 1990; pp. 184–215. [Google Scholar]
- Brans, J.-P.; Mareschal, B. Outranking methods: Promethee methods. In Multiple Criteria Decision Analysis-State of the Art Surveys; Figueira, J., Greco, S., Ehrgott, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 163–198. [Google Scholar]
- Martel, J.-M.; Matarazzo, B. Outranking methods: Other outranking approaches. In Multiple Criteria Decision Analysis-State of the Art Surveys; Figueira, J., Greco, S., Ehrgott, M., Eds.; Springer: New York, NY, USA, 2005; pp. 197–264. [Google Scholar]
- Jacquet-Lagreze, E.; Siskos, J. Assessing a Set of Additive Utility Functions for Multicriteria Decision-Making, the UTA Method. Eur. J. Oper. Res. 1982, 10, 151–164. [Google Scholar] [CrossRef]
- Siskos, Y. Comment Modeliser Les Preferences Au Moyen de Fonctions d’utilite Additives. RAIRO Rech. Oper. 1980, 14, 53–82. [Google Scholar] [CrossRef] [Green Version]
- Siskos, Y.; Grigoroudis, E.; Matsatsinis, N.F. UTA Methods. In Multiple Criteria Decision Analysis-State of the Art Surveys; Figueira, J., Greco, S., Ehrgott, M., Eds.; Springer: New York, NY, USA, 2005; pp. 297–344. [Google Scholar]
- Ehrgott, M.; Wiecek, M.M. Multiobjective Programming. In Multiple Criteria Decision Analysis-State of the Art Surveys; Figueira, J., Greco, S., Ehrgott, M., Eds.; Springer: New York, NY, USA, 2005; pp. 667–722. [Google Scholar]
- Evans, J.P.; Steuer, R.E. A Revised Simplex Method for Linear Multiple Objective Programs. Math. Program. 1973, 5, 54–72. [Google Scholar] [CrossRef]
- Korhonen, P.; Wallenius, J. A Multiple Objective Linear Programming Decision Support System. Decis. Support Syst. 1990, 6, 243–251. [Google Scholar] [CrossRef]
- Zeleny, M. Linear Multiobjective Programming; Springer: New York, NY, USA, 1974. [Google Scholar]
- Stewart, T. A Critical Survey on the Status of Multiple Criteria Decision Making Theory and Practice. Omega 1992, 20, 569–586. [Google Scholar] [CrossRef]
- Guarini, M.R.; Battisti, F.; Chiovitti, A. Public Initiatives of Settlement Transformation: A Theoretical-Methodological Approach to Selecting Tools of Multi-Criteria Decision Analysis. Buildings 2018, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Cinelli, M.; Kadziński, M.; Gonzalez, M.; Słowiński, R. How to Support the Application of Multiple Criteria Decision Analysis? Let Us Start with a Comprehensive Taxonomy. Omega 2020, 96, 102261. [Google Scholar] [CrossRef] [PubMed]
- Cinelli, M.; Kadziński, M.; Miebs, G.; Gonzalez, M.; Słowiński, R. Recommending Multiple Criteria Decision Analysis Methods with a New Taxonomy-Based Decision Support System. Eur. J. Oper. Res. 2022. [Google Scholar] [CrossRef]
- Alamerew, Y.A.; Kambanou, M.L.; Sakao, T.; Brissaud, D. A Multi-Criteria Evaluation Method of Product-Level Circularity Strategies. Sustainability 2020, 12, 5129. [Google Scholar] [CrossRef]
- Bachér, J.; Pihkola, H.; Kujanpää, L.; Mroueh, U.-M. Advancing the Circular Economy through Group Decision-Making and Stakeholder Involvement. Detritus 2018, 4, 22. [Google Scholar] [CrossRef]
- Stankevičienė, J.; Nikanorova, M.; Gentjan, Ç. Analysis of Green Economy Dimension in the Context of Circular Economy: The Case of Baltic Sea Region. E + M 2020, 23, 4–18. [Google Scholar] [CrossRef]
- Pieratti, E.; Paletto, A.; Meo, I.D.; Fagarazzi, C.; Migliorini, M.G.R. Assessing the Forest-Wood Chain at Local Level: A Multi-Criteria Decision Analysis (MCDA) Based on the Circular Bioeconomy Principles. Ann. For. Res. 2019, 62, 123–138. [Google Scholar] [CrossRef]
- Niero, M.; Kalbar, P.P. Coupling Material Circularity Indicators and Life Cycle Based Indicators: A Proposal to Advance the Assessment of Circular Economy Strategies at the Product Level. Resour. Conserv. Recycl. 2019, 140, 305–312. [Google Scholar] [CrossRef]
- Zhao, H.; Zhao, H.; Guo, S. Evaluating the Comprehensive Benefit of Eco-Industrial Parks by Employing Multi-Criteria Decision Making Approach for Circular Economy. J. Clean. Prod. 2017, 142, 2262–2276. [Google Scholar] [CrossRef]
- Parchomenko, A.; Nelen, D.; Gillabel, J.; Rechberger, H. Measuring the Circular Economy—A Multiple Correspondence Analysis of 63 Metrics. J. Clean. Prod. 2019, 210, 200–216. [Google Scholar] [CrossRef]
- Deshpande, P.C.; Skaar, C.; Brattebø, H.; Fet, A.M. Multi-Criteria Decision Analysis (MCDA) Method for Assessing the Sustainability of End-of-Life Alternatives for Waste Plastics: A Case Study of Norway. Sci. Total Environ. 2020, 719, 137353. [Google Scholar] [CrossRef] [PubMed]
- Vlachokostas, C.; Michailidou, A.V.; Achillas, C. Multi-Criteria Decision Analysis towards Promoting Waste-to-Energy Management Strategies: A Critical Review. Renew. Sust. Energ. Rev. 2021, 138, 110563. [Google Scholar] [CrossRef]
- Keeney, R.L.; Raiffa, H. Decisions with Multiple Objectives: Preferences and Value Tradeoffs; John Wiley & Sons: New York, NY, USA, 1976. [Google Scholar]
- Vetschera, R.; Sarabando, P.; Dias, L. Levels of Incomplete Information in Group Decision Models–A Comprehensive Simulation Study. Comput. Oper. Res. 2014, 51, 160–171. [Google Scholar] [CrossRef] [Green Version]
- Kadziński, M.; Ghaderi, M.; Wąsikowski, J.; Agell, N. Expressiveness and Robustness Measures for the Evaluation of an Additive Value Function in Multiple Criteria Preference Disaggregation Methods: An Experimental Analysis. Comput. Oper. Res. 2017, 87, 146–164. [Google Scholar] [CrossRef]
- Siskos, Y.; Spyridakos, A.; Yannacopoulos, D. Using Artificial Intelligence and Visual Techniques into Preference Disaggregation Analysis: The MUDAS System. Eur. J. Oper. Res. 1999, 113, 281–299. [Google Scholar] [CrossRef]
- Siskos, E.; Tsotsolas, N. Elicitation of Criteria Importance Weights through the Simos Method: A Robustness Concern. Eur. J. Oper. Res. 2015, 246, 543–553. [Google Scholar] [CrossRef]
- Simos, J. L’Évaluation Environnementale: Un Processus Cognitif Négocié. Ph.D. Thesis, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 1990. [Google Scholar]
- Figueira, J.; Roy, B. Determining the Weights of Criteria in the ELECTRE Type Methods with a Revised Simos’ Procedure. Eur. J. Oper. Res. 2002, 139, 317–326. [Google Scholar] [CrossRef] [Green Version]
- Simos, J. Evaluer l’Impact Sur l’Environnement: Une Approche Originale Par l’Analyse Multicritère et La Négociation; Presses Polytechniques et Universitaires Romandes: Lausanne, Switzerland, 1990. [Google Scholar]
- Bana, E.; Costa, C.A.; De Corte, J.-M.; Vansnick, J.-C. Macbeth. Int. J. Inf. Tech. Dec. Mak. 2012, 11, 359–387. [Google Scholar] [CrossRef]
- Tsotsolas, N.; Spyridakos, A.; Siskos, E.; Salmon, I. Criteria Weights Assessment through Prioritizations (WAP) Using Linear Programming Techniques and Visualizations. Oper. Res. Int. J. 2019, 19, 135–150. [Google Scholar] [CrossRef]
- Hurson, C.; Siskos, Y. A Synergy of Multicriteria Techniques to Assess Additive Value Models. Eur. J. Oper. Res. 2014, 238, 540–551. [Google Scholar] [CrossRef]
- Grigoroudis, E.; Siskos, Y. Preference Disaggregation for Measuring and Analysing Customer Satisfaction: The MUSA Method. Eur. J. Oper. Res. 2002, 143, 148–170. [Google Scholar] [CrossRef]
- Grigoroudis, E.; Siskos, Y. Customer Satisfaction Evaluation; Springer: New York, NY, USA, 2010. [Google Scholar]
- Spyridakos, A.; Tsotsolas, N.; Siskos, Y.; Yannakopoulos, D.; Vryzidis, I. A Visualization Approach for Robustness Analysis in Multicriteria Disaggregation–Aggregation Approaches. Oper. Res. Int. J. 2020, 20, 1841–1861. [Google Scholar] [CrossRef]
- Mandal, B.K.; Suzuki, K.T. Arsenic Round the World: A Review. Talanta 2002, 58, 201–235. [Google Scholar] [CrossRef]
- Golfinopoulos, S.K.; Varnavas, S.P.; Alexakis, D.E. The Status of Arsenic Pollution in the Greek and Cyprus Environment: An Overview. Water 2021, 13, 224. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (US EPA). Cleanup Laws, Regulations and Guidance; United States Environmental Protection Agency (US EPA): Washington, DC, USA, 2011.
- Council of the European Union. Council of the European Union 98/83/EC: Council Directive of 3 November 1998 on the Quality of Water Intended for Human Consumption. Off. J. Eur. Communities L330 1998, 41, 32–54. [Google Scholar]
Leaching Limit Values (L/S = 10 L/Kg) | |||
---|---|---|---|
Component | Inert | Non-Hazardous | Hazardous (Li) |
pH | minimum 6 | ||
mg/Kg | |||
As | 0.5 | 2 | 25 |
Ba | 20 | 100 | 300 |
Cd | 0.04 | 1 | 5 |
Crtotal | 0.5 | 10 | 70 |
Cu | 2 | 50 | 100 |
Hg | 0.01 | 0.2 | 2 |
Mo | 0.5 | 10 | 30 |
Ni | 0.4 | 10 | 40 |
Pb | 0.5 | 10 | 50 |
Sb | 0.06 | 0.7 | 5 |
Se | 0.1 | 0.5 | 7 |
Zn | 4 | 50 | 200 |
F | 10 | 150 | 500 |
Cl− | 800 | 15,000 | 25,000 |
SO42− | 1000 | 20,000 | 50,000 |
Components | S2051 | S2052 | S2053 | REF01 | REF02 | REF03 | REF04 | REF05 | REF06 | REF07 | REF08 | REF09 | Inert | Non- Hazardous |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
As | 0.050 | 0.050 | 0.050 | 0.400 | 0.200 | 0.270 | 1.000 | 0.700 | 1.900 | 22.000 | 13.000 | 19.000 | 0.5 | 2 |
Ba | 0.500 | 0.500 | 0.500 | 17.000 | 7.000 | 9.000 | 80.000 | 71.000 | 22.000 | 278.000 | 101.000 | 144.000 | 20 | 100 |
Cd | 0.002 | 0.002 | 0.002 | 0.020 | 0.010 | 0.030 | 0.700 | 0.180 | 0.310 | 3.000 | 2.000 | 3.000 | 0.04 | 1 |
Crtotal | 0.500 | 0.500 | 0.500 | 0.100 | 0.250 | 0.400 | 4.000 | 0.600 | 0.600 | 11.000 | 55.000 | 61.000 | 0.5 | 10 |
Cu | 1.000 | 1.000 | 1.000 | 0.200 | 0.160 | 0.170 | 26.000 | 2.100 | 39.000 | 100.000 | 55.000 | 77.000 | 2 | 50 |
Hg | 0.010 | 0.010 | 0.010 | 0.001 | 0.007 | 0.002 | 0.140 | 0.070 | 0.160 | 0.330 | 0.570 | 0.900 | 0.01 | 0.2 |
Mo | 0.500 | 0.500 | 0.500 | 0.050 | 0.010 | 0.400 | 2.000 | 9.000 | 0.700 | 29.000 | 17.000 | 22.000 | 0.5 | 10 |
Ni | 0.040 | 0.040 | 0.040 | 0.140 | 0.110 | 0.270 | 3.000 | 3.000 | 7.000 | 14.000 | 39.000 | 11.000 | 0.4 | 10 |
Pb | 0.500 | 0.500 | 0.500 | 0.050 | 0.340 | 0.300 | 5.000 | 0.610 | 8.000 | 38.000 | 11.000 | 48.000 | 0.5 | 10 |
Sb | 0.050 | 0.050 | 0.050 | 0.010 | 0.020 | 0.050 | 0.210 | 0.440 | 0.570 | 0.800 | 3.900 | 0.800 | 0.06 | 0.7 |
Se | 0.050 | 0.050 | 0.050 | 0.040 | 0.070 | 0.007 | 0.390 | 0.370 | 0.400 | 6.000 | 6.000 | 0.600 | 0.1 | 0.5 |
Zn | 0.620 | 0.620 | 0.620 | 1.000 | 2.000 | 3.000 | 19.000 | 37.000 | 34.000 | 199.000 | 144.000 | 147.000 | 4 | 50 |
F | 0.900 | 1.000 | 1.000 | 2.000 | 7.000 | 5.000 | 102.000 | 11.000 | 74.000 | 354.000 | 322.000 | 222.000 | 10 | 150 |
Cl− | 71.000 | 71.000 | 71.000 | 457.000 | 91.000 | 770.000 | 4.000 | 1087.00 | 14,700.00 | 5.000 | 24,711.00 | 16,000.00 | 800 | 15,000 |
SO42− | 148.000 | 123.000 | 288.000 | 222.000 | 124.000 | 7.000 | 11.000 | 14,777.00 | 5478.00 | 547.000 | 49,780.00 | 41,547.00 | 1000 | 20,000 |
No. | Component | U = U (a, b, c; di)/[min, max] a, b, c Real | Marginal Value Function |
---|---|---|---|
1 | As | a = −0.0034999, b = −1.881829, c = −0.628751 | |
2 | Ba | a = −0.3045179, b = −1.533395, c = −0.161651 | |
3 | Cd | a = 0.5390968, b = −0.9881042, c = −0.7626 a = 0.64202844, b = −0.009505888, c = 0.4210001 | |
4 | Crtotal | 70] a = −0.00727097, b = −1.742195, c = −0.547901 | |
5 | Cu | a = 0.5483023, b = −0.9684657, c = −0.7627 a = 0.8111737, b = −0.05840966, c = 0.2631001 | |
6 | Hg | a = 0.5864021, b = −2.104839, c = −1.6271 a = 0.6454874, b = −0.009583134, c = 0.4210001 | |
7 | Mo | a = −0.2018096, b = −1.465328, c = −0.198251 | |
8 | Ni | a = −0.2032343, b = −1.466112, c = −0.197601 | |
9 | Pb | a = −0.08888087, b = −1.438429, c = −0.278401 | |
10 | Sb | 5] a = −0.04104724, b = −1.491046, c = −0.359251 | |
11 | Se | 7] a = −0.0270333, b = −1.538527, c = −0.404151 | |
12 | Zn | a = −0.2032343, b = −1.466112, c = −0.197601 | |
13 | F | a = −0.2242262, b = −1.478325, c = −0.188601 | |
14 | Cl− | a = 0.562557, b = −0.8913583, c = −0.7118 a = 0.6260664, b = −0.001916413, c = 0.5789001 | |
15 | SO42− | a = 0.4392703, b = −0.84213393, c = −0.4067 , a = 0.6567029, b = −0.01649786, c = 0.3684001 |
Component | Ranking |
---|---|
Cd | 1 |
Hg | 1 |
Sb | 1 |
Se | 1 |
As | 2 |
Crtotal | 2 |
Mo | 2 |
Ni | 2 |
Pb | 2 |
Cu | 3 |
Zn | 3 |
Ba | 4 |
F | 4 |
Cl− | 5 |
SO42− | 5 |
Class/Order | Component | [Zmin, Zmax] | Pi | μi |
---|---|---|---|---|
1 | Cd, Hg, Sb, Se | [1.3256, 1.5641] | 0.1045 | 0.0186 |
2 | As, Cr, Mo, Pb, Ni | [1.439, 1.667] | 0.0725 | 0.0885 |
3 | Cu, Zn | [1.299, 1.5] | 0.0469 | 0.0094 |
4 | Ba, F | [1.083, 1.2472] | 0.03375 | 0.0105 |
5 | Cl, SO42− | 0.0292 | 0.0127 | |
Average stability index (ASI) | 0.989 |
Weight | Components | S2051 | S2052 | S2053 | REF01 | REF02 | REF03 | REF04 | REF05 | REF06 | REF07 | REF08 | REF09 | Inert | Hazardous |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.07248 | As | 0.98871 | 0.98871 | 0.98871 | 0.91313 | 0.95558 | 0.94051 | 0.79673 | 0.85296 | 0.64924 | 0.00340 | 0.04942 | 0.01011 | 0.89262 | 0.63463 |
0.03375 | Ba | 0.99684 | 0.99684 | 0.99684 | 0.89677 | 0.95646 | 0.94429 | 0.58052 | 0.62000 | 0.86799 | 0.03429 | 0.49482 | 0.34437 | 0.87942 | 0.49871 |
0.10447 | Cd | 0.99874 | 0.99874 | 0.99874 | 0.98752 | 0.99372 | 0.98141 | 0.71542 | 0.89910 | 0.84026 | 0.49963 | 0.57436 | 0.49963 | 0.97538 | 0.65590 |
0.07248 | Crtotal | 0.96514 | 0.96514 | 0.96514 | 0.99293 | 0.98242 | 0.97201 | 0.75266 | 0.95831 | 0.95831 | 0.45683 | 0.01365 | 0.00644 | 0.96514 | 0.49071 |
0.04680 | Cu | 0.97003 | 0.97003 | 0.97003 | 0.99384 | 0.99507 | 0.99476 | 0.62412 | 0.93936 | 0.57936 | 0.00000 | 0.53169 | 0.34064 | 0.94206 | 0.56290 |
0.10447 | Hg | 0.97080 | 0.97080 | 0.97080 | 0.99698 | 0.97934 | 0.99399 | 0.73479 | 0.83414 | 0.71458 | 0.62332 | 0.60250 | 0.56516 | 0.97080 | 0.68203 |
0.07248 | Mo | 0.96479 | 0.96479 | 0.96479 | 0.99643 | 0.99929 | 0.97175 | 0.86522 | 0.50186 | 0.95099 | 0.01237 | 0.23544 | 0.12296 | 0.96479 | 0.46123 |
0.07248 | Ni | 0.99786 | 0.99786 | 0.99786 | 0.99253 | 0.99413 | 0.98564 | 0.84975 | 0.84975 | 0.67820 | 0.44246 | 0.00924 | 0.53459 | 0.97879 | 0.56813 |
0.07248 | Pb | 0.97306 | 0.97306 | 0.97306 | 0.99728 | 0.98160 | 0.98375 | 0.75866 | 0.96722 | 0.64036 | 0.03289 | 0.53857 | 0.00937 | 0.97306 | 0.57082 |
0.10447 | Sb | 0.96688 | 0.96688 | 0.96688 | 0.99329 | 0.98662 | 0.96688 | 0.86781 | 0.74221 | 0.67905 | 0.57954 | 0.04255 | 0.57954 | 0.96038 | 0.62099 |
0.10447 | Se | 0.97366 | 0.97366 | 0.97366 | 0.97887 | 0.96331 | 0.99627 | 0.81160 | 0.82036 | 0.80726 | 0.08420 | 0.01842 | 0.72491 | 0.94800 | 0.76501 |
0.04680 | Zn | 0.99338 | 0.99338 | 0.99338 | 0.98935 | 0.97879 | 0.96833 | 0.81296 | 0.66266 | 0.68607 | 0.00182 | 0.12240 | 0.12236 | 0.95796 | 0.56813 |
0.03375 | F | 0.99627 | 0.99585 | 0.99585 | 0.99172 | 0.97125 | 0.97940 | 0.64169 | 0.95513 | 0.72804 | 0.14385 | 0.18609 | 0.35195 | 0.95914 | 0.51149 |
0.02923 | Cl− | 0.99211 | 0.99211 | 0.99211 | 0.95166 | 0.98992 | 0.92167 | 0.99955 | 0.89365 | 0.55289 | 0.99944 | 0.03659 | 0.53012 | 0.91892 | 0.54817 |
0.02923 | SO42− | 0.99396 | 0.99497 | 0.98830 | 0.99096 | 0.99493 | 0.99971 | 0.99955 | 0.62936 | 0.81475 | 0.97799 | 0.00951 | 0.28179 | 0.96042 | 0.56896 |
EAI | 0.98009 | 0.98010 | 0.97991 | 0.98128 | 0.98138 | 0.97621 | 0.78548 | 0.81631 | 0.75179 | 0.31926 | 0.24560 | 0.36595 | 0.95464 | 0.60180 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spyridakos, A.; Alexakis, D.E.; Vryzidis, I.; Tsotsolas, N.; Varelidis, G.; Kagiaras, E. Waste Classification of Spent Refractory Materials to Achieve Sustainable Development Goals Exploiting Multiple Criteria Decision Aiding Approach. Appl. Sci. 2022, 12, 3016. https://doi.org/10.3390/app12063016
Spyridakos A, Alexakis DE, Vryzidis I, Tsotsolas N, Varelidis G, Kagiaras E. Waste Classification of Spent Refractory Materials to Achieve Sustainable Development Goals Exploiting Multiple Criteria Decision Aiding Approach. Applied Sciences. 2022; 12(6):3016. https://doi.org/10.3390/app12063016
Chicago/Turabian StyleSpyridakos, Athanasios, Dimitrios E. Alexakis, Isaak Vryzidis, Nikolaos Tsotsolas, George Varelidis, and Efthimios Kagiaras. 2022. "Waste Classification of Spent Refractory Materials to Achieve Sustainable Development Goals Exploiting Multiple Criteria Decision Aiding Approach" Applied Sciences 12, no. 6: 3016. https://doi.org/10.3390/app12063016
APA StyleSpyridakos, A., Alexakis, D. E., Vryzidis, I., Tsotsolas, N., Varelidis, G., & Kagiaras, E. (2022). Waste Classification of Spent Refractory Materials to Achieve Sustainable Development Goals Exploiting Multiple Criteria Decision Aiding Approach. Applied Sciences, 12(6), 3016. https://doi.org/10.3390/app12063016