Enhancement in Charge Carrier Mobility by Using Furan as Spacer in Thieno[3,2-b]Pyrrole and Alkylated-Diketopyrrolopyrrole Based Conjugated Copolymers
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bao, Z.; Locklin, J. Organic Field-Effect Transistors; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar] [CrossRef]
- Mullen, K.; Scherf, U. Organic Light Emitting Devices: Synthesis, Properties and Applications; Wiley-VCH: Weinheim, Germany, 2006. [Google Scholar]
- Sun, S.-S.; Dalton, L.R. Introduction to Organic Electronic and Optoelectronic Materials and Devices; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Brabec, C.J.; Dyakonov, V.; Scherf, U. Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies; Wiley-VCH: Weinheim, Germany, 2008. [Google Scholar]
- Grimsdale, A.C.; Leok Chan, K.; Martin, R.E.; Jokisz, P.G.; Holmes, A.B. Synthesis of Light-Emitting Conjugated Polymers for Applications in Electroluminescent Devices. Chem. Rev. 2009, 109, 897–1091. [Google Scholar] [CrossRef]
- Günes, S.; Neugebauer, H.; Sariciftci, N.S. Conjugated Polymer-Based Organic Solar Cells. Chem. Rev. 2007, 107, 1324–1338. [Google Scholar] [CrossRef]
- Skotheim, T.A.; Reynolds, J.R. (Eds.) Handbook of Conducting Polymers, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Perepichka, D.F. (Ed.) Handbook of Thiophene Based Materials: Applications in Organic Electronics and Photonics; John Wiley & Sons: West Sussex, UK, 2009. [Google Scholar]
- Beaujuge, P.M.; Amb, C.M.; Reynolds, J.R. Spectral Engineering in π-Conjugated Polymers with Intramolecular Donor-Acceptor Interactions. Acc. Chem. Res. 2010, 43, 1396–1407. [Google Scholar] [CrossRef]
- Muccini, M. A bright future for organic field-effect transistors. Nat. Mater. 2006, 5, 605–613. [Google Scholar] [CrossRef]
- Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Semiconducting π-Conjugated Systems in Field-Effect Transistors: A Material Odyssey of Organic Electronics. Chem. Rev. 2012, 112, 2208–2267. [Google Scholar] [CrossRef]
- Allard, S.; Forster, M.; Souharce, B.; Thiem, H.; Scherf, U. Organic Semiconductors for Solution-Processable Field-Effect Transistors (OFETs). Angew. Chem. Int. Ed. 2008, 47, 4070–4098. [Google Scholar] [CrossRef]
- Zhan, Y.; Mei, Y.; Zheng, L. Materials capability and device performance in flexible electronics for the Internet of Things. J. Mater. Chem. C 2014, 2, 1220–1232. [Google Scholar] [CrossRef]
- Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J.R.; Dötz, F.; Kastler, M.; Facchetti, A. A high-mobility electron-transporting polymer for printed transistors. Nature 2009, 457, 679–686. [Google Scholar] [CrossRef]
- Arias, A.C.; MacKenzie, J.D.; McCulloch, I.; Rivnay, J.; Salleo, A. Materials and Applications for Large Area Electronics: Solution-Based Approaches. Chem. Rev. 2010, 110, 3–24. [Google Scholar] [CrossRef]
- Fu, B.; Baltazar, J.; Sankar, A.R.; Chu, P.-H.; Zhang, S.; Collard, D.M.; Reichmanis, E. Enhancing Field-Effect Mobility of Conjugated Polymers Through Rational Design of Branched Side Chains. Adv. Funct. Mater. 2014, 24, 3734–3744. [Google Scholar] [CrossRef]
- Imae, I.; Tada, N.; Harima, Y. Tuning of electronic properties of novel donor–acceptor polymers containing oligothiophenes with electron-withdrawing ester groups. Polym. Bull. 2020, 78, 2341–2355. [Google Scholar] [CrossRef]
- Janssen, R.A.J.; Nelson, J. Factors Limiting Device Efficiency in Organic Photovoltaics. Adv. Mater. 2013, 25, 1847–1858. [Google Scholar] [CrossRef]
- Lee, M.-H.; Kim, J.; Kang, M.; Kim, J.; Kang, B.; Hwang, H.; Cho, K.; Kim, D.-Y. Precise Side-Chain Engineering of Thienylenevinylene–Benzotriazole-Based Conjugated Polymers with Coplanar Backbone for Organic Field Effect Transistors and CMOS-like Inverters. ACS Appl. Mater. Interfaces 2017, 9, 2758–2766. [Google Scholar] [CrossRef]
- Lei, T.; Cao, Y.; Zhou, X.; Peng, Y.; Bian, J.; Pei, J. Systematic Investigation of Isoindigo-Based Polymeric Field-Effect Transistors: Design Strategy and Impact of Polymer Symmetry and Backbone Curvature. Chem. Mater. 2012, 24, 1762–1770. [Google Scholar] [CrossRef]
- Zhu, Y.; Champion, R.D.; Jenekhe, S.A. Conjugated Donor−Acceptor Copolymer Semiconductors with Large Intramolecular Charge Transfer: Synthesis, Optical Properties, Electrochemistry, and Field Effect Carrier Mobility of Thienopyrazine-Based Copolymers. Macromolecules 2006, 39, 8712–8719. [Google Scholar] [CrossRef]
- Gur, I.; Fromer, N.A.; Geier, M.L.; Alivisatos, A.P. Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution. Science 2005, 310, 462–465. [Google Scholar] [CrossRef] [Green Version]
- Lei, T.; Dou, J.-H.; Pei, J. Influence of Alkyl Chain Branching Positions on the Hole Mobilities of Polymer Thin-Film Transistors. Adv. Mater. 2012, 24, 6457–6461. [Google Scholar] [CrossRef]
- Frank, A.; Arroyave, F.A.; Richard, C.A.; Reynolds, J.R. Efficient Synthesis of Benzo[1,2-b:6,5-b0]dithiophene-4,5-dione (BDTD) and Its Chemical Transformations into Precursors for π-Conjugated Materials. Org. Lett. 2012, 14, 6138–6141. [Google Scholar]
- Du, J.; Bulumulla, C.; Mejia, I.; McCandless, G.T.; Biewer, M.C.; Stefan, M.C. Evaluation of (E)-1,2-di(furan-2-yl)ethene as building unit in diketopyrrolopyrrole alternating copolymers for transistors. Polym. Chem. 2017, 8, 6181–6187. [Google Scholar] [CrossRef]
- Bulumulla, C.; Kularatne, R.N.; Gunawardhana, R.; Nguyen, H.Q.; McCandless, G.T.; Biewer, M.C.; Stefan, M.C. Incorporation of Thieno[3,2-b]pyrrole into Diketopyrrolopyrrole-Based Copolymers for Efficient Organic Field Effect Transistors. ACS Macro Lett. 2018, 7, 629–634. [Google Scholar] [CrossRef]
- Ha, T.-J.; Sonar, P.; Dodabalapur, A. Improved Performance in Diketopyrrolopyrrole-Based Transistors with Bilayer Gate Dielectrics. ACS Appl. Mater. Interfaces 2014, 6, 3170–3175. [Google Scholar] [CrossRef]
- Heeney, M.; Bailey, C.; Genevicius, K.; Shkunov, M.; Sparrowe, D.; Tierney, S.; McCulloch, I. Stable Polythiophene Semiconductors Incorporating Thieno[2,3-b]thiophene. J. Am. Chem. Soc. 2005, 127, 1078–1079. [Google Scholar] [CrossRef] [PubMed]
- McCulloch, I.; Heeney, M.; Bailey, C.; Genevicius, K.; MacDonald, I.; Shkunov, M.; Sparrowe, D.; Tierney, S.; Wagner, R.; Zhang, W.; et al. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 2006, 5, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Fortney, A.; Washington, K.E.; Bulumulla, C.; Huang, P.; Dissanayake, D.; Biewer, M.C.; Kowalewski, T.; Stefan, M.C. Systematic Investigation of Benzodithiophene-Benzothiadiazole Isomers for Organic Photovoltaics. ACS Appl. Mater. Interfaces 2016, 8, 33025–33033. [Google Scholar] [CrossRef]
- Bulumulla, C.; Gunawardhana, R.; Gamage, P.L.; Miller, J.T.; Kularatne, R.N.; Biewer, M.C.; Stefan, M.C. Pyrrole-Containing Semiconducting Materials: Synthesis and Applications in Organic Photovoltaics and Organic Field-Effect Transistors. ACS Appl. Mater. Interfaces 2020, 12, 32209–32232. [Google Scholar] [CrossRef] [PubMed]
- Bulumulla, C.; Gunawardhana, R.; Kularatne, R.N.; Hill, M.E.; McCandless, G.T.; Biewer, M.C.; Stefan, M.C. Thieno[3,2-b]pyrrole-benzothiadiazole Banana-Shaped Small Molecules for Organic Field-Effect Transistors. ACS Appl. Mater. Interfaces 2018, 10, 11818–11825. [Google Scholar] [CrossRef]
- Bulumulla, C.; Gunawardhana, R.; Yoo, S.H.; Mills, C.R.; Kularatne, R.N.; Jackson, T.N.; Biewer, M.C.; Gomez, E.D.; Stefan, M.C. The effect of single atom replacement on organic thin film transistors: Case of thieno[3,2-b]pyrrole vs. furo[3,2-b]pyrrole. J. Mater. Chem. C 2018, 6, 10050–10058. [Google Scholar] [CrossRef]
- Gunawardhana, R.; Bulumulla, C.; Gamage, P.L.; Timmerman, A.J.; Udamulle, C.M.; Biewer, M.C.; Stefan, M.C. Thieno[3,2-b]pyrrole and Benzo[c][1,2,5]thiadiazole Donor–Acceptor Semiconductors for Organic Field-Effect Transistors. ACS Omega 2019, 4, 19676–19682. [Google Scholar] [CrossRef] [Green Version]
- Bulumulla, C.; Gunawardhana, R.; Gamage, P.L.; Kularatne, R.N.; Biewer, M.C.; Stefan, M.C. π-Spacer-Linked Bisthienopyrroles with Tunable Optical Properties. Synlett 2018, 29, 2567–2571. [Google Scholar]
- Nguyen, H.Q.; Rainbolt, E.A.; Sista, P.; Stefan, M.C. Synthesis and Polymerization of Fused-Ring Thienodipyrrole Monomers. Macromol. Chem. Phys. 2012, 213, 425–430. [Google Scholar] [CrossRef]
- Gao, D.; Tian, K.; Zhang, W.; Huang, J.; Chen, Z.; Mao, Z.; Yu, G. Approaching high charge carrier mobility by alkylating both donor and acceptor units at the optimized position in conjugated polymers. Polym. Chem. 2016, 7, 4046–4053. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, J.; Gao, D.; Yang, J.; Zhang, W.; Ju, H.; Yu, G. Highly-soluble multi-alkylated polymer semiconductors and applications in high-performance field-effect transistors. J. Mater. Chem. C 2019, 7, 9591–9598. [Google Scholar] [CrossRef]
- Kang, I.; An, T.K.; Hong, J.-A.; Yun, H.-J.; Kim, R.; Chung, D.S.; Park, C.E.; Kim, Y.-H.; Kwon, S.-K. Effect of Selenophene in a DPP Copolymer Incorporating a Vinyl Group for High-Performance Organic Field-Effect Transistors. Adv. Mater. 2013, 25, 524–528. [Google Scholar] [CrossRef] [PubMed]
- Sonar, P.; Zhuo, J.-M.; Zhao, L.-H.; Lim, K.-M.; Chen, J.; Rondinone, A.J.; Singh, S.P.; Chua, L.-L.; Ho, P.K.H.; Dodabalapur, A. Furan substituted diketopyrrolopyrrole and thienylenevinylene based low bandgap copolymer for high mobility organic thin film transistors. J. Mater. Chem. 2012, 22, 17284–17292. [Google Scholar] [CrossRef]
- Sonar, P.; Foong, T.R.B.; Singh, S.P.; Li, Y.; Dodabalapur, A. A furan-containing conjugated polymer for high mobility ambipolar organic thin film transistors. Chem. Commun. 2012, 48, 8383–8385. [Google Scholar] [CrossRef]
- McCulloch, I.; Salleo, A.; Chabinyc, M. Avoid the kinks when measuring mobility. Science 2016, 352, 1521. [Google Scholar] [CrossRef]
- Bittle, E.G.; Basham, J.I.; Jackson, T.N.; Jurchescu, O.D.; Gundlach, D.J. Mobility overestimation due to gated contacts in organic field-effect transistors. Nat. Commun. 2016, 7, 10908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Guo, Y.; Yu, G.; Zhao, Y.; Zhang, J.; Gao, D.; Liu, H.; Liu, Y. Highly π-extended copolymers with diketopyrrolopyrrole moieties for high-performance field-effect transistors. Adv. Mater. 2012, 24, 4618–4622. [Google Scholar] [CrossRef]
- Kang, I.; Yun, H.-J.; Chung, D.S.; Kwon, S.-K.; Kim, Y.-H. Record High Hole Mobility in Polymer Semiconductors via Side-Chain Engineering. J. Am. Chem. Soc. 2013, 135, 14896–14899. [Google Scholar] [CrossRef]
- Kline, R.J.; McGehee, M.D. Morphology and Charge Transport in Conjugated Polymers. J. Macromol. Sci. Part C 2006, 46, 27–45. [Google Scholar] [CrossRef] [Green Version]
- Patterson, A.L. The Scherrer formula for X-ray particle size determination. Phys. Rev. 1939, 56, 978–982. [Google Scholar] [CrossRef]
Peak | 2θ (Deg) | D Spacing (A°) |
---|---|---|
(100) | 3.80 | 23.20 |
(200) | 7.25 | 12.15 |
(010) | 21.10 | 4.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gamage, P.L.; Udamulle Gedara, C.M.; Gunawardhana, R.; Bulumulla, C.; Ma, Z.; Shrivastava, A.; Biewer, M.C.; Stefan, M.C. Enhancement in Charge Carrier Mobility by Using Furan as Spacer in Thieno[3,2-b]Pyrrole and Alkylated-Diketopyrrolopyrrole Based Conjugated Copolymers. Appl. Sci. 2022, 12, 3150. https://doi.org/10.3390/app12063150
Gamage PL, Udamulle Gedara CM, Gunawardhana R, Bulumulla C, Ma Z, Shrivastava A, Biewer MC, Stefan MC. Enhancement in Charge Carrier Mobility by Using Furan as Spacer in Thieno[3,2-b]Pyrrole and Alkylated-Diketopyrrolopyrrole Based Conjugated Copolymers. Applied Sciences. 2022; 12(6):3150. https://doi.org/10.3390/app12063150
Chicago/Turabian StyleGamage, Prabhath L., Chinthaka M. Udamulle Gedara, Ruwan Gunawardhana, Chandima Bulumulla, Ziyuan Ma, Ashutosh Shrivastava, Michael C. Biewer, and Mihaela C. Stefan. 2022. "Enhancement in Charge Carrier Mobility by Using Furan as Spacer in Thieno[3,2-b]Pyrrole and Alkylated-Diketopyrrolopyrrole Based Conjugated Copolymers" Applied Sciences 12, no. 6: 3150. https://doi.org/10.3390/app12063150
APA StyleGamage, P. L., Udamulle Gedara, C. M., Gunawardhana, R., Bulumulla, C., Ma, Z., Shrivastava, A., Biewer, M. C., & Stefan, M. C. (2022). Enhancement in Charge Carrier Mobility by Using Furan as Spacer in Thieno[3,2-b]Pyrrole and Alkylated-Diketopyrrolopyrrole Based Conjugated Copolymers. Applied Sciences, 12(6), 3150. https://doi.org/10.3390/app12063150