Mixed-Integer Linear Programming for Decentralized Multi-Carrier Optimal Energy Management of a Micro-Grid
Abstract
:1. Introduction
2. Literature Review
3. Introducing the Proposed System
4. Modeling Agents
4.1. Upstream Network
4.2. Micro-Grid Agent
4.3. Thermal Agent
4.4. Hydrogen Agent
4.5. Rubbish Burning Agent
4.6. Renewable Agent
4.7. Storage Agent
4.8. Load Collector Agent
4.9. Agents’ Connection
4.10. LSTM
5. Linearization
6. Simulation
6.1. Input Data
6.2. Results
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Cost of power exchange | Fuel consumption of micro-turbine | ||
Exchanged power | Constant that relates PT and PTT | ||
Price of power exchange | Boiler efficiency | ||
Electrical power of micro-turbine | Fuel consumption of boiler | ||
Electrical power of waste power plant | Price of natural gas | ||
Electrical power of wind turbine | Status of micro-turbine (0 or 1) | ||
Electrical AC power of inverter | Price of micro-turbine O&M | ||
Electrical AC power of rectifier | Start/stop rate of micro-turbine | ||
Electrical power demand | Emission rate of micro-turbine | ||
Thermal power of micro-turbine | Emission rate of boiler | ||
Thermal power of fuel cell | Fuel cell efficiency | ||
Thermal power of boiler | Reformer efficiency | ||
Charging/discharging of thermal storage | Higher heating value of methane | ||
Thermal power demand | Fuel consumption of fuel cell | ||
Emissions of micro-turbine | Constant that relates PFC and PTFC | ||
Emissions of fuel cell | Quantity of electrical storage | ||
Emissions of waste power plant | Charging energy of electrical storage | ||
Emissions of boiler | Discharging energy of electrical storage | ||
Fuel cost of micro-turbine | Data vector of cell block, forget, and input gates at time t | ||
O&M cost of micro-turbine | Bias vector for cell block, forget, input, and output gates | ||
Start/stop cost of micro-turbine | Data vector of output gate at time t | ||
Fuel cost of fuel cell | State vector of current layer at state t | ||
O&M cost of fuel cell | State vector of layer l at state t | ||
Start/stop cost of fuel cell | Weight vector for output of previous state input gate, forget gate, cell block, and output gate | ||
Fuel cost of waste power plant | Weight vector for input of current state input gate, forget gate, cell block, and output gate | ||
O&M cost of waste power plant | Period of time | ||
Start/Stop cost of waste power plant | Status of boiler (0 or 1) | ||
O&M cost of wind turbine | Amount of stored hydrogen | ||
O&M cost of thermal storage | Charging/discharging output of the HT | ||
O&M cost of hydrogen tank | Electrical DC power of inverter | ||
O&M cost of electrical storage | Electrical DC power of rectifier | ||
Micro-turbine efficiency | Inverter efficiency | ||
Higher heating value of gas | Rectifier efficiency |
References
- Li, Y.; Liang, W.; Tan, R. Optimal design of installation capacity and operation strategy for distributed energy system. Appl. Therm. Eng. 2017, 125, 756–766. [Google Scholar] [CrossRef]
- Allison, J. Robust multi-objective control of hybrid renewable microgeneration systems with energy storage. Appl. Therm. Eng. 2017, 114, 1498–1506. [Google Scholar] [CrossRef] [Green Version]
- Mohseni, S.; Moghaddas-Tafreshi, S.M. A multi-agent system for optimal sizing of a cooperative self-sustainable multi-carrier microgrid. Sustain. Cities Soc. 2018, 38, 452–465. [Google Scholar] [CrossRef]
- Väisänen, S.; Mikkilä, M.; Havukainen, J.; Sokka, L.; Luoranen, M.; Horttanainen, M. Using a multi-method approach for decision-making about a sustainable local distributed energy system: A case study from Finland. J. Clean. Prod. 2016, 137, 1330–1338. [Google Scholar] [CrossRef]
- Yang, G.; Zhai, X. Optimization and performance analysis of solar hybrid CCHP systems under different operation strategies. Appl. Therm. Eng. 2018, 133, 327–340. [Google Scholar] [CrossRef]
- Luo, Z.; Wu, Z.; Li, Z.; Cai, H.; Li, B.; Gu, W. A two-stage optimization and control for CCHP microgrid energy management. Appl. Therm. Eng. 2017, 125, 513–522. [Google Scholar] [CrossRef]
- Kumar, K.P.; Saravanan, B. Recent techniques to model uncertainties in power generation from renewable energy sources and loads in microgrids–A review. Renew. Sustain. Energy Rev. 2017, 71, 348–358. [Google Scholar] [CrossRef]
- Melamed, M.; Ben-Tal, A.; Golany, B. A multi-period unit commitment problem under a new hybrid uncertainty set for a renewable energy source. Renew. Energy 2018, 118, 909–917. [Google Scholar] [CrossRef]
- Bernal-Agustín, J.L.; Dufo-Lopez, R. Simulation and optimization of stand-alone hybrid renewable energy systems. Renew. Sustain. Energy Rev. 2009, 13, 2111–2118. [Google Scholar] [CrossRef]
- Van Roy, J.; Leemput, N.; Geth, F.; Büscher, J.; Salenbien, R.; Driesen, J. Electric vehicle charging in an office building microgrid with distributed energy resources. IEEE Trans. Sustain. Energy 2014, 5, 1389–1396. [Google Scholar] [CrossRef]
- Lasseter, R.; Akhil, A.; Marnay, C.; Stephens, J.; Dagle, J.; Guttromsom, R.; Meliopoulous, A.S.; Yinger, R.; Eto, J. Integration of distributed energy resources. In The CERTS Microgrid Concept; No. LBNL-50829; Lawrence Berkeley National Lab.(LBNL): Berkeley, CA, USA, 2002. [Google Scholar]
- Nazari-Heris, M.; Abapour, S.; Mohammadi-Ivatloo, B. Optimal economic dispatch of FC-CHP based heat and power micro-grids. Appl. Therm. Eng. 2017, 114, 756–769. [Google Scholar] [CrossRef]
- Prinsloo, G.; Dobson, R.; Mammoli, A. Synthesis of an intelligent rural village microgrid control strategy based on smartgrid multi-agent modelling and transactive energy management principles. Energy 2018, 147, 263–278. [Google Scholar] [CrossRef]
- Malekpour, A.R.; Pahwa, A. Stochastic networked microgrid energy management with correlated wind generators. IEEE Trans. Power Syst. 2017, 32, 3681–3693. [Google Scholar] [CrossRef]
- Afrasiabi, M.; Mohammadi, M.; Rastegar, M.; Kargarian, A. Multi-agent microgrid energy management based on deep learning forecaster. Energy 2019, 186, 115873. [Google Scholar] [CrossRef]
- Elsied, M.; Oukaour, A.; Gualous, H.; Brutto, O.A.L. Optimal economic and environment operation of micro-grid power systems. Energy Convers. Manag. 2016, 122, 182–194. [Google Scholar] [CrossRef]
- Niknam, T.; Golestaneh, F.; Malekpour, A. Probabilistic energy and operation management of a microgrid containing wind/photovoltaic/fuel cell generation and energy storage devices based on point estimate method and self-adaptive gravitational search algorithm. Energy 2012, 43, 427–437. [Google Scholar] [CrossRef]
- Hussain, A.; Bui, V.H.; Kim, H.M. Optimal operation of hybrid microgrids for enhancing resiliency considering feasible islanding and survivability. IET Renew. Power Gener. 2017, 11, 846–857. [Google Scholar] [CrossRef]
- Mohammadi, S.; Soleymani, S.; Mozafari, B. Scenario-based stochastic operation management of microgrid including wind, photovoltaic, micro-turbine, fuel cell and energy storage devices. Int. J. Electr. Power Energy Syst. 2014, 54, 525–535. [Google Scholar] [CrossRef]
- Nikmehr, N.; Najafi-Ravadanegh, S.; Khodaei, A. Probabilistic optimal scheduling of networked microgrids considering time-based demand response programs under uncertainty. Appl. Energy 2017, 198, 267–279. [Google Scholar] [CrossRef]
- Bracco, S.; Delfino, F.; Pampararo, F.; Robba, M.; Rossi, M. A mathematical model for the optimal operation of the University of Genoa Smart Polygeneration Microgrid: Evaluation of technical, economic and environmental performance indicators. Energy 2014, 64, 912–922. [Google Scholar] [CrossRef]
- Bracco, S.; Brignone, M.; Delfino, F.; Pampararo, F.; Rossi, M.; Ferro, G.; Robba, M. An optimization model for polygeneration microgrids with renewables, electrical and thermal storage: Application to the savona campus. In 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe); IEEE: Piscataway Township, NJ, USA, 2018; pp. 1–6. [Google Scholar]
- Urbanucci, L.; Testi, D.; Bruno, J.C. An operational optimization method for a complex polygeneration plant based on real-time measurements. Energy Convers. Manag. 2018, 170, 50–61. [Google Scholar] [CrossRef]
- Sigarchian, S.G.; Malmquist, A.; Martin, V. The choice of operating strategy for a complex polygeneration system: A case study for a residential building in Italy. Energy Convers. Manag. 2018, 163, 278–291. [Google Scholar] [CrossRef]
- La Scala, M.; Vaccaro, A.; Zobaa, A.F. A goal programming methodology for multiobjective optimization of distributed energy hubs operation. Appl. Therm. Eng. 2014, 71, 658–666. [Google Scholar] [CrossRef] [Green Version]
- Kampouropoulos, K.; Andrade, F.; Sala, E.; Espinosa, A.G.; Romeral, L. Multiobjective optimization of multi-carrier energy system using a combination of ANFIS and genetic algorithms. IEEE Trans. Smart Grid 2016, 9, 2276–2283. [Google Scholar] [CrossRef] [Green Version]
- Karavas, C.S.; Kyriakarakos, G.; Arvanitis, K.G.; Papadakis, G. A multi-agent decentralized energy management system based on distributed intelligence for the design and control of autonomous polygeneration microgrids. Energy Convers. Manag. 2015, 103, 166–179. [Google Scholar] [CrossRef]
- Karavas, C.S.; Arvanitis, K.; Papadakis, G. A game theory approach to multi-agent decentralized energy management of autonomous polygeneration microgrids. Energies 2017, 10, 1756. [Google Scholar] [CrossRef] [Green Version]
- Wasilewski, J. Optimisation of multicarrier microgrid layout using selected metaheuristics. Int. J. Electr. Power Energy Syst. 2018, 99, 246–260. [Google Scholar] [CrossRef]
- Roustai, M.; Rayati, M.; Sheikhi, A.; Ranjbar, A. A scenario-based optimization of Smart Energy Hub operation in a stochastic environment using conditional-value-at-risk. Sustain. Cities Soc. 2018, 39, 309–316. [Google Scholar] [CrossRef]
- Giaouris, D.; Papadopoulos, A.I.; Patsios, C.; Walker, S.; Ziogou, C.; Taylor, P.; Voutetakis, S.; Papadopoulou, S.; Seferlis, P. A systems approach for management of microgrids considering multiple energy carriers, stochastic loads, forecasting and demand side response. Appl. Energy 2018, 226, 546–559. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wang, X.; Ma, L. An optimal power allocation scheme of microgrid using grey wolf optimizer. IEEE Access 2019, 7, 137608–137619. [Google Scholar] [CrossRef]
- Mishra, S.; Bordin, C.; Tomasgard, A.; Palu, I. A multi-agent system approach for optimal microgrid expansion planning under uncertainty. Int. J. Electr. Power Energy Syst. 2019, 109, 696–709. [Google Scholar] [CrossRef]
- Samadi, E.; Badri, A.; Ebrahimpour, R. Decentralized multi-agent based energy management of microgrid using reinforcement learning. Int. J. Electr. Power Energy Syst. 2020, 122, 106211. [Google Scholar] [CrossRef]
- Jin, S.; Wang, S.; Fang, F. Game theoretical analysis on capacity configuration for microgrid based on multi-agent system. Int. J. Electr. Power Energy Syst. 2021, 125, 106485. [Google Scholar] [CrossRef]
- Jahangir, H.; Gougheri, S.S.; Vatandoust, B.; Golkar, M.A.; Golkar, M.A.; Ahmadian, A.; Hajizadeh, A. A Novel Cross-Case Electric Vehicle Demand Modeling Based on 3D Convolutional Generative Adversarial Networks. IEEE Trans. Power Syst. 2021, 37, 1173–1183. [Google Scholar] [CrossRef]
- Jahangir, H.; Tayarani, H.; Gougheri, S.S.; Golkar, M.A.; Ahmadian, A.; Elkamel, A. Deep Learning-Based Forecasting Approach in Smart Grids With Microclustering and Bidirectional LSTM Network. IEEE Trans. Ind. Electron. 2020, 68, 8298–8309. [Google Scholar] [CrossRef]
- Sadeghi, S.; Jahangir, H.; Vatandoust, B.; Golkar, M.A.; Ahmadian, A.; Elkamel, A. Optimal bidding strategy of a virtual power plant in day-ahead energy and frequency regulation markets: A deep learning-based approach. Int. J. Electr. Power Energy Syst. 2021, 127, 106646. [Google Scholar] [CrossRef]
- Jahangir, H.; Tayarani, H.; Ahmadian, A.; Golkar, M.A.; Miret, J.; Tayarani, M.; Gao, H.O. Charging demand of plug-in electric vehicles: Forecasting travel behavior based on a novel rough artificial neural network approach. J. Clean. Prod. 2019, 229, 1029–1044. [Google Scholar] [CrossRef]
- Khodayar, M.; Wang, J. Spatio-temporal graph deep neural network for short-term wind speed forecasting. IEEE Trans. Sustain. Energy 2018, 10, 670–681. [Google Scholar] [CrossRef]
- Gougheri, S.S.; Jahangir, H.; Golkar, M.A.; Ahmadian, A.; Golkar, M.A. Optimal participation of a virtual power plant in electricity market considering renewable energy: A deep learning-based approach. Sustain. Energy Grids Netw. 2021, 26, 100448. [Google Scholar] [CrossRef]
- Norouzi, N.; Tavakkoli-Moghaddam, R.; Ghazanfari, M.; Alinaghian, M.; Salamatbakhsh, A. A new multi-objective competitive open vehicle routing problem solved by particle swarm optimization. Netw. Spat. Econ. 2012, 12, 609–633. [Google Scholar] [CrossRef]
- Glover, F.; Woolsey, E. Converting the 0–1 polynomial programming problem to a 0–1 linear program. Oper. Res. 1974, 22, 180–182. [Google Scholar] [CrossRef] [Green Version]
- Soroudi, A. Power System Optimization Modeling in GAMS; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Power Data. Available online: http://www.ieso.ca/power-data (accessed on 20 May 2021).
- Renewable Energy Policy Network for the 21st Century. Available online: http://climate.weather.gc.ca/historicaldata/searchhistoricdatae.html (accessed on 20 May 2021).
- Moghaddam, A.A.; Seifi, A.; Niknam, T.; Pahlavani, M.R.A. Multi-objective operation management of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source. Energy 2011, 36, 6490–6507. [Google Scholar] [CrossRef]
- Zhang, L.; Xiang, J. The performance of a grid-tied microgrid with hydrogen storage and a hydrogen fuel cell stack. Energy Convers. Manag. 2014, 87, 421–427. [Google Scholar] [CrossRef]
Emission Factors (kg/MWh) | Start/Stop Cost (USD) | O&M Cost (USD/kWh) | Electrical Power Range (kW) | Thermal Power Range (kW) | Efficiency (%) | Fuel Cost | KThermal | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NOx | CO2 | SO2 | Min | Max | Min | Max | ||||||
Micro-Turbine | 0.2 | 724 | 0.0036 | 0.11 | 0.005 | 6 | 30 | 15.6 | 78 | 26 | 0.41 USD/m3 | 2.6 |
Fuel Cell | 0.013 | 489 | 0.0027 | 0.148 | 0.008 | 3 | 25 | 4.2 | 35 | 40 | 0.12 USD/kWh | 1.4 |
Boiler | 1.81 | 845 | 2.545 | - | - | - | - | 3 | 80 | 90 | - | - |
Waste Power Plant | 0.2 | 300 | 0.1 | 0.12 | 0.006 | 6 | 30 | - | - | 30 | 0.02 USD/kWh | - |
Case | Total Cost (USD/Day) | Total Emission (kg/Day) | CPU Optimization Time (s) |
---|---|---|---|
Nonlinear MCS | 51.7 | 1080 | 32 |
Linear MCS | 51.9 | 1081.25 | 2.6 |
Centralized | 144.3 | 1330.81 | 69 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faghiri, M.; Samizadeh, S.; Nikoofard, A.; Khosravy, M.; Senjyu, T. Mixed-Integer Linear Programming for Decentralized Multi-Carrier Optimal Energy Management of a Micro-Grid. Appl. Sci. 2022, 12, 3262. https://doi.org/10.3390/app12073262
Faghiri M, Samizadeh S, Nikoofard A, Khosravy M, Senjyu T. Mixed-Integer Linear Programming for Decentralized Multi-Carrier Optimal Energy Management of a Micro-Grid. Applied Sciences. 2022; 12(7):3262. https://doi.org/10.3390/app12073262
Chicago/Turabian StyleFaghiri, Mohammad, Shadi Samizadeh, Amirhossein Nikoofard, Mahdi Khosravy, and Tomonobu Senjyu. 2022. "Mixed-Integer Linear Programming for Decentralized Multi-Carrier Optimal Energy Management of a Micro-Grid" Applied Sciences 12, no. 7: 3262. https://doi.org/10.3390/app12073262
APA StyleFaghiri, M., Samizadeh, S., Nikoofard, A., Khosravy, M., & Senjyu, T. (2022). Mixed-Integer Linear Programming for Decentralized Multi-Carrier Optimal Energy Management of a Micro-Grid. Applied Sciences, 12(7), 3262. https://doi.org/10.3390/app12073262