Design and Development of a Management System for Energy Microgrids Using Linear Programming
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microgrid Control System
2.2. Literature Review
2.3. Renewable Energy in Colombia
2.4. Proposed Optimization Approach
2.5. Computational Experiments
2.6. Instance Generation
2.7. Design of Scenarios
- How sensitive is the model to changes in demand? (Scenario 1)
- How sensitive is the model to changes in the availability of resources? (Scenario 2)
- What impact do the technical characteristics of the battery have? (Scenario 3)
- What is the impact of the penalty on the unserved demand? (Scenario 4)
3. Results
3.1. Sensitivity of the Model to Changes in Demand
3.2. Sensitivity of the Model to the Availability of Renewable Resources
3.3. Impact of the Characteristics of the Battery
3.4. Impact of the Penalty on Unmet Demand
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NCRES | Non-conventional renewable energy sources |
UC | Unit Commitment |
NIZ | Non-interconnected zones |
Aix A. Model Components
Variable | Description |
---|---|
Binary state (on/off) of the source i in the time interval t | |
Output power by the generation unit i in the time interval t [kW] | |
Output power by the battery unit in the time interval t [kW] | |
Power intended to load the storage unit during the time interval t [kW] | |
Energy level in the storage unit in the time interval t [kWh] | |
Power generated at the time interval t destined to cover the demand [kW] | |
Power discarded due to over generation in the time interval t [kW] | |
Binary state (discharging) of the battery in the time interval t | |
Counter of periods in which a discharging process starts | |
Binary state of the battery deep discharge level in period t | |
Binary state of the battery overcharge level in period t |
Parameter | Description |
---|---|
Energy demand in the microgrid at time interval t [kW] | |
Variable generation cost per contributed to the network by the generation unit i | |
Generation level for the solar panel under test conditions [kW] | |
Solar radiation test level for solar panel [kW/m2] | |
Average solar radiation during the time interval t [kW/m2] | |
Air density [kg/m3] | |
Wind turbine swept area [m2] | |
Wind turbine efficiency | |
Minimum wind speed for the turbine to start operating [m/s] | |
Wind speed for optimum turbine operation [m/s] | |
Maximum wind speed at which the turbine can operate [m/s] | |
Average wind speed during the time interval t [m/s] | |
Minimum power generated by the Diesel unit [kW] | |
Maximum power generated by the Diesel unit [kW] | |
Battery system discharge efficiency | |
Battery system charge efficiency | |
Installed battery capacity [kWh] | |
Minimum power for the battery system to enter the discharge state [kW] | |
Maximum amount of energy used to charge the battery per period of time [kW] | |
Maximum amount of energy to obtain from the battery per period of time [kW] | |
Battery charge level from which deep discharge is considered [kWh] | |
Battery charge level from which overcharge is considered [kWh] | |
Maximum number of periods in which deep discharge is allowed | |
Maximum number of periods in which overcharge is allowed |
Aix B. Installed Capacity for Experimental Locations
Localitation | Operation Capacity | Reserved Capacity |
---|---|---|
San Andrés (SA) | 157,230 kW | 18,700 kW |
Providencia (P) | 4482 kW | 0 kW |
Puerto Nariño (PN) | 640 kW | 130 kW |
References
- Guta, D.D. Determinants of household adoption of solar energy technology in rural Ethiopia. J. Clean. Prod. 2018, 204, 193–204. [Google Scholar] [CrossRef]
- Arizkun, A.; García de la Cruz, J.M. La Energía. Retos y Problemas. Dossieres EsF Economistas Sin Fronteras 2017, 24, 20–24. [Google Scholar]
- ONU. Energía—Desarrollo Sostenible. Available online: https://www.un.org/sustainabledevelopment/es/energy/ (accessed on 22 April 2021).
- Valencia-López, D.; Carvajal Quintero, S.; Pineda-Agudelo, J. Design of demand management programs for the efficient use of electricity by industrial users. Ingeniería Competitividad 2017, 19, 207–218. [Google Scholar]
- Stirling, A. Diversity and sustainable energy transitions: Multicriteria diversity analysis of electricity portfolios. In Analytical Methods for Energy Diversity and Security; Elsevier Ltd.: Amsterdam, The Netherlands, 2008; pp. 1–29. [Google Scholar] [CrossRef]
- Chowdhury, S.A.; Aziz, S.; Groh, S.; Kirchhoff, H.; Leal Filho, W. Off-grid rural area electrification through solar-diesel hybrid minigrids in Bangladesh: Resource-efficient design principles in practice. J. Clean. Prod. 2015, 95, 194–202. [Google Scholar] [CrossRef]
- International Electrotechnical Commission. IEC 60050—International Electrotechnical Vocabulary—Details for IEV Number 617-04-22: “Microgrid”. 2017. Available online: https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=617-04-22 (accessed on 29 September 2021).
- Fan, Z.; Kulkarni, P.; Gormus, S.; Efthymiou, C.; Kalogridis, G.; Sooriyabandara, M.; Zhu, Z.; Lambotharan, S.; Chin, W.H. Smart grid communications: Overview of research challenges, solutions, and standardization activities. IEEE Commun. Surv. Tutor. 2013, 15, 21–38. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, R.C.; Wolfram, C.; De Jong, K.P.; Gross, R.; Lewis, N.S.; Boardman, B.; Ragauskas, A.J.; Ehrhardt-Martinez, K.; Crabtree, G.; Ramana, M.V. The frontiers of energy. Nat. Energy 2016, 1, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764. [Google Scholar] [CrossRef]
- Arul, P.G.; Ramachandaramurthy, V.K.; Rajkumar, R.K. Control strategies for a hybrid renewable energy system: A review. Renew. Sustain. Energy Rev. 2015, 42, 597–608. [Google Scholar] [CrossRef]
- Zahraee, S.M.; Khalaji Assadi, M.; Saidur, R. Application of Artificial Intelligence Methods for Hybrid Energy System Optimization. Renew. Sustain. Energy Rev. 2016, 66, 617–630. [Google Scholar] [CrossRef]
- Liu, X.; Ding, M.; Han, J.; Han, P.; Peng, Y. Dynamic economic dispatch for microgrids including battery energy storage. In Proceedings of the 2nd International Symposium on Power Electronics for Distributed Generation Systems, PEDG 2010, Hefei, China, 16–18 June 2010; pp. 914–917. [Google Scholar] [CrossRef]
- Ventosa, M.; Baíllo, Á.; Ramos, A.; Rivier, M. Electricity market modeling trends. Energy Policy 2005, 33, 897–913. [Google Scholar] [CrossRef]
- Viteri, J.P.; Henao, F.; Cherni, J.; Dyner, I. Optimizing the insertion of renewable energy in the off-grid regions of Colombia. J. Clean. Prod. 2019, 235, 535–548. [Google Scholar] [CrossRef]
- Wu, H.; Liu, X.; Ding, M. Dynamic economic dispatch of a microgrid: Mathematical models and solution algorithm. Int. J. Electr. Power Energy Syst. 2014, 63, 336–346. [Google Scholar] [CrossRef]
- Wu, X.; Wang, X.; Bie, Z. Optimal generation scheduling of a microgrid. In Proceedings of the IEEE PES Innovative Smart Grid Technologies Conference Europe, Berlin, Germany, 14–17 October 2012. [Google Scholar] [CrossRef]
- Liu, C.; Wang, X.; Liu, S.; Zhu, Z.; Wu, X.; Duan, J.; Hou, F.; Xie, L. Economic dispatch model considering battery lifetime for microgrid. Dianli Zidonghua Shebei/Electric Power Autom. Equip. 2015, 35, 29–36. [Google Scholar] [CrossRef]
- Alomoush, M.I. Microgrid combined power-heat economic-emission dispatch considering stochastic renewable energy resources, power purchase and emission tax. Energy Convers. Manag. 2019, 200, 112090. [Google Scholar] [CrossRef]
- Rigo-Mariani, R.; Sareni, B.; Roboam, X.; Turpin, C. Optimal power dispatching strategies in smart-microgrids with storage. Renew. Sustain. Energy Rev. 2014, 40, 649–658. [Google Scholar] [CrossRef] [Green Version]
- Gil-González, W.; Montoya, O.D.; Holguín, E.; Garces, A.; Grisales-Noreña, L.F. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model. J. Energy Storage 2019, 21, 1–8. [Google Scholar] [CrossRef]
- Nemati, M.; Braun, M.; Tenbohlen, S. Optimization of unit commitment and economic dispatch in microgrids based on genetic algorithm and mixed integer linear programming. Appl. Energy 2018, 210, 944–963. [Google Scholar] [CrossRef]
- SerColombia—Asociacion de Energías Renovables. Potencial para Desarrollar Energías Renovables en Colombia Atrae a Inversionistas Extranjeros|Sala de Prensa|PROCOLOMBIA. 2020. Available online: https://ser-colombia.org/2020/noticias-del-sector/https-www-elinformador-com-co-index-php-general-185-economia-231603-potencial-para-desarrollar-energias-renovables-en-colombia-atrae-a-inversionistas-extranjeros/ (accessed on 21 January 2022).
- IPSE. IPSE—Transformamos Territorios. Available online: https://ipse.gov.co/ (accessed on 20 October 2021).
- International Renewable Energy Agency. Renewable Power Generation Costs in 2019; IRENA: Masdar City, Abu Dhabi, 2018; p. 160. [Google Scholar]
- UPME. Guia práctica para la aplicación de los incentivos tributarios de la Ley 1715 de 2014. Ministerio Minas Energía 2014, 1, 28. [Google Scholar]
- Rodríguez-Urrego, D.; Rodríguez-Urrego, L. Photovoltaic energy in Colombia: Current status, inventory, policies and future prospects. Renew. Sustain. Energy Rev. 2018, 92, 160–170. [Google Scholar] [CrossRef]
- ENAIR ENERGY. Aeronogenerador E200—La Última Tecnología. Available online: https://www.enair.es/es/aerogeneradores/e200 (accessed on 25 January 2022).
- Pfenninger, S.; Staffell, I. Renewables Ninja. Available online: https://www.renewables.ninja/ (accessed on 19 February 2021).
- NASA. MERRA. Available online: https://gmao.gsfc.nasa.gov/reanalysis/MERRA/ (accessed on 9 December 2020).
- Azimian, M.; Amir, V.; Javadi, S.; Siano, P.; Alhelou, H.H. Enabling demand response for optimal deployment of multi-carrier microgrids incorporating incentives. IET Renew. Power Gener. 2022, 16, 547–564. [Google Scholar] [CrossRef]
- Espitia-Ibarra, M. Microgrids Management Package. Available online: https://github.com/MateoEspitia/microgrids_management (accessed on 24 January 2022).
Component | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 |
---|---|---|---|---|
Demand () | [, , , ] | [] | [] | [] |
Diesel capacity | [] | [] | [] | [] |
Solar capacity | [] | [, , , , , , ] | [] | [] |
Wind capacity | [] | [, , , , , , ] | [] | [] |
Battery capacity | [500] | [500] | [, , ] | [500] |
[2] | [2] | [0, 1, 2] | [2] | |
[2] | [2] | [0, 1, 2] | [2] | |
[100] | [100] | [, , ] | [100] | |
[100] | [100] | [, , ] | [100] | |
Unattended demand cost | [] | [] | [] | [] |
Battery Capacity | Demand Supply % | Variation % | Savings % |
---|---|---|---|
0.90% | – | 36.04 | |
1.54% | 71.11% | 36.51 | |
1.97% | 27.92% | 36.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espitia-Ibarra, M.; Maya-Duque, P.; Jaramillo-Duque, Á. Design and Development of a Management System for Energy Microgrids Using Linear Programming. Appl. Sci. 2022, 12, 3980. https://doi.org/10.3390/app12083980
Espitia-Ibarra M, Maya-Duque P, Jaramillo-Duque Á. Design and Development of a Management System for Energy Microgrids Using Linear Programming. Applied Sciences. 2022; 12(8):3980. https://doi.org/10.3390/app12083980
Chicago/Turabian StyleEspitia-Ibarra, Mateo, Pablo Maya-Duque, and Álvaro Jaramillo-Duque. 2022. "Design and Development of a Management System for Energy Microgrids Using Linear Programming" Applied Sciences 12, no. 8: 3980. https://doi.org/10.3390/app12083980
APA StyleEspitia-Ibarra, M., Maya-Duque, P., & Jaramillo-Duque, Á. (2022). Design and Development of a Management System for Energy Microgrids Using Linear Programming. Applied Sciences, 12(8), 3980. https://doi.org/10.3390/app12083980