Modeling and Identification of Nonlinear Effects in Massive MIMO Systems Using a Fifth-Order Cumulants-Based Blind Approach
Abstract
:1. Introduction
2. Mathematical Definitions
3. Problem
4. Theoretical Tools of HOC
- 1 partition of type: (1, 2, 3, 4, 5) with k = 1;
- 5 partitions of type: (1) (2, 3, 4, 5) with k = 2;
- 10 partitions of type: (1, 2) (3, 4, 5) with k = 2;
- 10 partitions of type: (1) (2) (3, 4, 5) with k = 3;
- 15 partitions of type: (1) (2, 3) (4, 5) with k = 3;
- 10 partitions of type: (1) (2) (3) (4, 5) with k = 4;
- 1 partition of type: (1) (2) (3) (4) (5) with k = 5.
5. Proposed Blind Approach
6. Performance Results
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Teodoro, S.; Silva, A.; Dinis, R.; Barradas, F.M.; Cabral, P.M.; Gameiro, A. Theoretical analysis of nonlinear amplification effects in massive MIMO systems. IEEE Access 2019, 7, 172277–172289. [Google Scholar] [CrossRef]
- Marques da Silva, M.; Dinis, R.; Guerreiro, J. A Low Complexity Channel Estimation and Detection for Massive MIMO Using SC-FDE. Telecom 2020, 1, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Guerreiro, J.; Dinis, R.; Montezuma, P.; da Silva, M.M. On the achievable performance of nonlinear MIMO systems. IEEE Commun. Lett. 2019, 23, 1725–1729. [Google Scholar] [CrossRef]
- Da Silva, M.M.; Dinis, R. A simplified massive MIMO implemented with pre or post-processing. Phys. Commun. 2017, 25, 355–362. [Google Scholar] [CrossRef]
- Guerreiro, J.; Dinis, R.; Carvalho, P.; Oliveira, R. Improving the performance of nonlinear OFDM Schemes with ML-based receivers. In Proceedings of the ISWCS 2013, The Tenth International Symposium on Wireless Communication Systems, Ilmenau, Germany, 27–30 August 2013; pp. 1–4. [Google Scholar]
- Guerreiro, J.; Dinis, R.; Montezuma, P.; Campos, M. On the Receiver Design for Nonlinear NOMA-OFDM Systems. In Proceedings of the 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 25–28 May 2020. [Google Scholar]
- Casal Ribeiro, F.; Guerreiro, J.; Dinis, R.; Cercas, F.; Silva, A. Reduced complexity detection in MIMO systems with SC-FDE modulations and iterative DFE receivers. J. Sens. Actuator Netw. 2018, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Madeira, J.; Guerreiro, J.; Dinis, R. Iterative frequency-domain detection and compensation of nonlinear distortion effects for MIMO systems. Phys. Commun. 2019, 37, 100869. [Google Scholar] [CrossRef]
- Guerreiro, J.; Dinis, R.; Montezuma, P. Approaching the maximum likelihood performance with nonlinearly distorted OFDM signals. In Proceedings of the 2012 IEEE 75th Vehicular Technology Conference (VTC Spring), Yokohama, Japan, 6–9 May 2012; pp. 1–5. [Google Scholar]
- Guerreiro, J.; Dinis, R.; Montezuma, P. Analytical performance evaluation of precoding techniques for nonlinear massive MIMO systems with channel estimation errors. IEEE Trans. Commun. 2017, 66, 1440–1451. [Google Scholar] [CrossRef] [Green Version]
- Alibakhshikenari, M.; Babaeian, F.; Virdee, B.S.; Aïssa, S.; Azpilicueta, L.; See, C.H.; Althuwayb, A.A.; Huynen, I.; Abd-Alhameed, R.A.; Falcone, F.; et al. A comprehensive survey on “Various decoupling mechanisms with focus on metamaterial and metasurface principles applicable to SAR and MIMO antenna systems”. IEEE Access 2020, 8, 192965–193004. [Google Scholar] [CrossRef]
- Althuwayb, A.A. Low-interacted multiple antenna systems based on metasurface-inspired isolation approach for MIMO applications. Arabian J. Sci. Eng. 2021, 1–10. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Virdee, B.S.; Shukla, P.; See, C.H.; Abd-Alhameed, R.; Khalily, M.; Falcone, F.; Limiti, E. Antenna mutual coupling suppression over wideband using embedded periphery slot for antenna arrays. Electronics 2018, 7, 198. [Google Scholar] [CrossRef] [Green Version]
- Alibakhshikenari, M.; Virdee, B.S.; Limiti, E. Study on isolation and radiation behaviours of a 34 × 34 array-antennas based on SIW and metasurface properties for applications in terahertz band over 125–300 GHz. Optik 2020, 206, 163222. [Google Scholar] [CrossRef] [Green Version]
- Marques da Silva, M.; Dinis, R. Power-ordered NOMA with massive MIMO for 5G systems. Appl. Sci. 2021, 11, 3541. [Google Scholar] [CrossRef]
- Marques da Silva, M.; Dinis, R.; Martins, G. On the Performance of LDPC-Coded Massive MIMO Schemes with Power-Ordered NOMA Techniques. Appl. Sci. 2021, 11, 8684. [Google Scholar] [CrossRef]
- Dai, L.; Wang, B.; Ding, Z.; Wang, Z.; Chen, S.; Hanzo, L. A survey of non-orthogonal multiple access for 5G. IEEE Commun. Surv. Tutor. 2018, 20, 2294–2323. [Google Scholar] [CrossRef] [Green Version]
- Guerreiro, J.; Dinis, R.; Montezuma, P. Low-complexity SC-FDE techniques for massive MIMO schemes with low-resolution ADCs. IEEE Trans. Commun. 2018, 67, 2368–2380. [Google Scholar] [CrossRef]
- Zhidkov, S.V.; Dinis, R. Belief propagation receivers for near-optimal detection of nonlinearly distorted OFDM signals. In Proceedings of the 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), Kuala Lumpur, Malaysia, 28 April–1 May 2019; pp. 1–6. [Google Scholar]
- Felix, J.; Guerreiro, J.; Dinis, R.; Montezuma, P. Reduced-Complexity Quasi-Optimum Detection for MIMO-OFDM Signals with Strong Nonlinear Distortion. In Proceedings of the 2019 IEEE Globecom Workshops (GC Wkshps), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar]
- Guerreiro, J.; Dinis, R.; Montezuma, P. Equivalent nonlinearities for studying nonlinear effects on sampled OFDM signals. IEEE Commun. Lett. 2015, 19, 529–532. [Google Scholar] [CrossRef] [Green Version]
- Guerreiro, J.; Dinis, R.; Montezuma, P. Optimum and sub-optimum receivers for OFDM signals with strong nonlinear distortion effects. IEEE Trans. Commun. 2013, 61, 3830–3840. [Google Scholar] [CrossRef] [Green Version]
- Guerreiro, J.; Dinis, R.; Montezuma, P.; da Silva, M.M. Nonlinear effects in NOMA signals: Performance evaluation and receiver design. In Proceedings of the 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, 22–25 September 2019; pp. 1–5. [Google Scholar]
- Alshebeili, S.A.; Venetsanopoulos, A.N.; Cetin, A.E. Cumulant based identification approaches for nonminimum phase FIR systems. IEEE Trans. Signal Process. 1993, 41, 1576–1588. [Google Scholar] [CrossRef]
- Giannakis, G.B.; Mendel, J.M. Identification of nonminimum phase systems using higher order statistics. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 360–377. [Google Scholar] [CrossRef]
- Martin, J.K.; Nandi, A.K. Blind system identification using second, third and fourth order cumulants. J. Frankl. Inst. 1996, 333, 1–13. [Google Scholar] [CrossRef]
- Fernandes, C.E.R.; Favier, G.; Mota, J.C.M. Blind channel identification algorithms based on the PARAFAC decomposition of cumulant tensors: The single and multiuser cases. Signal Process. 2008, 88, 1382–1401. [Google Scholar] [CrossRef]
- De Lathauwer, L.; Castaing, J.; Cardoso, J.F. Fourth-order cumulant-based blind identification of underdetermined mixtures. IEEE Trans. Signal Process. 2007, 55, 2965–2973. [Google Scholar] [CrossRef] [Green Version]
- Safi, S.; Zeroual, A. Blind identification in noisy environment of nonminimum phase finite impulse response (FIR) system using higher order statistics. Syst. Anal. Model. Simul. 2003, 43, 671–681. [Google Scholar] [CrossRef]
- Stogioglou, A.G.; McLaughlin, S. MA parameter estimation and cumulant enhancement. IEEE Trans. Signal Process. 1996, 44, 1704–1718. [Google Scholar] [CrossRef]
- Tugnait, J.K. New results on FIR system identification using higher-order statistics. In Proceedings of the Fifth ASSP Workshop on Spectrum Estimation and Modeling, Rochester, NY, USA, 10–12 October 1990; pp. 202–206. [Google Scholar]
- Tugnait, J.K. Identification and deconvolution of multichannel linear non-Gaussian processes using higher order statistics and inverse filter criteria. IEEE Trans. Signal Process. 1997, 45, 658–672. [Google Scholar] [CrossRef]
- Zidane, M.; Safi, S.; Sabri, M.; Boumezzough, A. Comparative study between blind identification algorithms and least mean square algorithm for non minimum phase channel. In Proceedings of the 2014 International Conference on Multimedia Computing and Systems (ICMCS), Marrakech, Morocco, 14–16 April 2014; pp. 191–196. [Google Scholar]
- Zidane, M.; Safi, S.; Sabri, M.; Boumezzough, A. Identification and equalization using higher order cumulants in MC-CDMA systems. In Proceedings of the 2014 5th Workshop on Codes, Cryptography and Communication Systems (WCCCS), El Jadida, Morocco, 27–28 November 2014; pp. 81–85. [Google Scholar]
- Sadler, B.M.; Giannakis, G.B.; Lii, K.S. Estimation and detection in non-Gaussian noise using higher order statistics. IEEE Trans. Signal Process. 1994, 42, 2729–2741. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Leung, H. Blind system identification using symbolic dynamics. IEEE Access 2018, 6, 24888–24903. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Li, B.; Leung, H. Blind System Identification in Noise Using a Dynamic-Based Estimator. IEEE Access 2021, 9, 12861–12878. [Google Scholar] [CrossRef]
- Glentis, G.O.; Koukoulas, P.; Kalouptsidis, N. Efficient algorithms for Volterra system identification. IEEE Trans. Signal Process. 1999, 47, 3042–3057. [Google Scholar] [CrossRef]
- Koukoulas, P.; Tsoulkas, V.; Kalouptsidis, N. A cumulant based algorithm for the identification of input–output quadratic systems. Automatica 2002, 38, 391–407. [Google Scholar] [CrossRef] [Green Version]
- Mileounis, G.; Kalouptsidis, N. Blind identification of second order Volterra systems with complex random inputs using higher order cumulants. IEEE Trans. Signal Process. 2009, 57, 4129–4135. [Google Scholar] [CrossRef]
- Ralston, J.C.; Zoubir, A.M.; Boashash, B. Identification of a class of nonlinear systems under stationary non-Gaussian excitation. IEEE Trans. Signal Process. 1997, 45, 719–735. [Google Scholar] [CrossRef]
- Tan, H.Z.; Aboulnasr, T. Blind identifiability of third-order Volterra nonlinear systems. In Proceedings of the 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’03), Hong Kong, China, 6–10 April 2003; Volume 6, p. VI-665. [Google Scholar]
- Stathaki, T.; Scohyers, A. A constrained optimisation approach to the blind estimation of Volterra kernels. In Proceedings of the 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, Munich, Germany, 21–24 April 1997; Volume 3, pp. 2373–2376. [Google Scholar]
- Chen, Y.W.; Narieda, S.; Yamashita, K. Blind nonlinear system identification based on a constrained hybrid genetic algorithm. IEEE Trans. Instrum. Meas. 2003, 52, 898–902. [Google Scholar] [CrossRef]
- Ozertem, U.; Erdogmus, D. Second-order volterra system identification with noisy input–output measurements. IEEE Signal Process. Lett. 2008, 16, 18–21. [Google Scholar] [CrossRef]
- Bai, B.; Zhang, L. HOC based blind identification of hydroturbine shaft Volterra system. Shock Vib. 2017, 2017, 6732704. [Google Scholar] [CrossRef]
- Tan, H.Z.; Aboulnasr, T. Tom-based blind identification of nonlinear volterra systems. IEEE Trans. Instrum. Meas. 2006, 55, 300–310. [Google Scholar] [CrossRef]
- Tan, H.Z.; Huang, Y.; Fu, J. Blind identification of sparse Volterra systems. Int. J. Adapt. Control Signal Process. 2008, 22, 652–662. [Google Scholar] [CrossRef]
- Cho, Y.S.; Powers, E.J. Quadratic system identification using higher order spectra of iid signals. IEEE Trans. Signal Process. 1994, 42, 1268–1271. [Google Scholar] [CrossRef]
- Chow, T.W.; Tan, H.Z. HOS-based nonparametric and parametric methodologies for machine fault detection. IEEE Trans. Ind. Electron. 2000, 47, 1051–1059. [Google Scholar] [CrossRef]
- Antari, J.; Chabaa, S.; Iqdour, R.; Zeroual, A.; Safi, S. Identification of quadratic systems using higher order cumulants and neural networks: Application to model the delay of video-packets transmission. Appl. Soft Comput. 2011, 11, 1–10. [Google Scholar] [CrossRef]
- Zidane, M.; Safi, S.; Sabri, M. Extending HOC-based methods for identifying the diagonal parameters of quadratic systems. Signal, Image Video Process. 2018, 12, 125–132. [Google Scholar] [CrossRef]
- Tseng, C.H.; Powers, E.J. Identification of cubic systems using higher order moments of iid signals. IEEE Trans. Signal Process. 1995, 43, 1733–1735. [Google Scholar] [CrossRef]
- Tan, H.Z.; Aboulnasr, T. TOM-based blind identification of cubic nonlinear systems. In Proceedings of the 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal, QC, Canada, 17–21 May 2004; Volume 2, p. II-873. [Google Scholar]
- Zidane, M.; Dinis, R. Mixed third- and fourth-order cumulants-based algorithm for nonlinear kernels identification in cubic systems. Signal, Image Video Process. 2022, 16, 651–659. [Google Scholar] [CrossRef]
- Ma, W.; Chen, B.; Zhao, H.; Gui, G.; Duan, J.; Principe, J.C. Sparse least logarithmic absolute difference algorithm with correntropy-induced metric penalty. Circuits Syst. Signal Process. 2016, 35, 1077–1089. [Google Scholar] [CrossRef]
- Leonov, V.P.; Shiryaev, A.N. On a method of calculation of semi-invariants. Theory Probab. Appl. 1959, 4, 319–329. [Google Scholar] [CrossRef]
- Shiryayev, A.N. Probability; Springer: New York, NY, USA, 1984. [Google Scholar]
- Karfoul, A.; Albera, L.; Birot, G. Blind underdetermined mixture identification by joint canonical decomposition of HO cumulants. IEEE Trans. Signal Process. 2009, 58, 638–649. [Google Scholar] [CrossRef] [Green Version]
Approach | ± | 0 dB | 8 dB | 16 dB | 24 dB |
---|---|---|---|---|---|
AlgCum5 | ± | ± | ± | ± | ± |
± | ± | ± | ± | ± | |
± | ± | ± | ± | ± | |
CIMLLAD [56] | ± | ± | ± | ± | ± |
± | ± | ± | ± | ± | |
± | ± | ± | ± | ± | |
Approach | System I | System II |
---|---|---|
AlgCum5 | ||
CIMLLAD [56] |
SNR | ± | 0 dB | 8 dB | 16 dB | 24 dB |
---|---|---|---|---|---|
± | ± | ± | ± | ± | |
± | ± | ± | ± | ± | |
AlgCum5 | ± | ± | ± | ± | ± |
± | ± | ± | ± | ± | |
± | ± | ± | ± | ± | |
± | ± | ± | ± | ± | |
± | ± | ± | ± | ± | |
CIMLLAD [56] | ± | ± | ± | ± | ± |
± | ± | ± | ± | ± | |
± | ± | ± | ± | ± | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zidane, M.; Dinis, R. Modeling and Identification of Nonlinear Effects in Massive MIMO Systems Using a Fifth-Order Cumulants-Based Blind Approach. Appl. Sci. 2022, 12, 3323. https://doi.org/10.3390/app12073323
Zidane M, Dinis R. Modeling and Identification of Nonlinear Effects in Massive MIMO Systems Using a Fifth-Order Cumulants-Based Blind Approach. Applied Sciences. 2022; 12(7):3323. https://doi.org/10.3390/app12073323
Chicago/Turabian StyleZidane, Mohammed, and Rui Dinis. 2022. "Modeling and Identification of Nonlinear Effects in Massive MIMO Systems Using a Fifth-Order Cumulants-Based Blind Approach" Applied Sciences 12, no. 7: 3323. https://doi.org/10.3390/app12073323
APA StyleZidane, M., & Dinis, R. (2022). Modeling and Identification of Nonlinear Effects in Massive MIMO Systems Using a Fifth-Order Cumulants-Based Blind Approach. Applied Sciences, 12(7), 3323. https://doi.org/10.3390/app12073323