Pulmonary Artery Remodeling and Advanced Hemodynamics: Magnetic Resonance Imaging Biomarkers of Pulmonary Hypertension
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Cardiac Magnetic Resonance Imaging Protocol
2.3. Standard Cardiac Imaging Analysis
2.4. 4D-Flow Data Analysis
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Anatomical Remodeling
3.3. Hemodynamic Characteristics
3.4. Univariate Analysis
3.5. Sex Matching for Women
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Galiè, N.; Humbert, M.; Vachiery, J.-L.; Gibbs, S.; Lang, I.; Torbicki, A.; Simonneau, G.; Peacock, A.; Vonk Noordegraaf, A.; Beghetti, M.; et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endor. Eur. Heart J. 2016, 37, 67–119. [Google Scholar] [CrossRef]
- Deng, Y.; Guo, S.-L.; Wu, W.-F.; Wang, Q.; Su, H.-Y.; Tan, Z.; Wang, F.; He, Q.-Y. Right atrial evaluation in patients with pulmonary hypertension. J. Ultrasound Med. 2016, 35, 49–61. [Google Scholar] [CrossRef]
- Freed, B.H.; Collins, J.D.; Francois, C.J.; Barker, A.J.; Cuttica, M.J.; Chesler, N.C.; Markl, M.; Shah, S.J. MR and CT imaging for the evaluation of pulmonary hypertension. JACC Cardiovasc. Imaging 2016, 9, 715–732. [Google Scholar] [CrossRef]
- Nordmeyer, S.; Riesenkampff, E.; Crelier, G.; Khasheei, A.; Schnackenburg, B.; Berger, F.; Kuehne, T. Flow-sensitive four-dimensional cine magnetic resonance imaging for offline blood flow quantification in multiple vessels: A validation study. J. Magn. Reson. Imaging 2010, 32, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Barker, A.J.; Roldán-Alzate, A.; Entezari, P.; Shah, S.J.; Chesler, N.C.; Wieben, O.; Markl, M.; Francois, C.J. Four-dimensional flow assessment of pulmonary artery flow and wall shear stress in adult pulmonary arterial hypertension: Results from two institutions. Magn. Reson. Med. 2015, 73, 1904–1913. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, M.; Barker, A.J.; Kheyfets, V.; Stenmark, K.R.; Crapo, J.; Yeager, M.E.; Truong, U.; Buckner, J.K.; Fenster, B.E.; Hunter, K.S. Helicity and vorticity of pulmonary arterial flow in patients with pulmonary hypertension: Quantitative analysis of flow formations. J. Am. Hear. Assoc. 2017, 6. [Google Scholar] [CrossRef] [Green Version]
- Tang, B.T.; Pickard, S.S.; Chan, F.P.; Tsao, P.S.; Taylor, C.A.; Feinstein, J.A. Wall shear stress is decreased in the pulmonary arteries of patients with pulmonary arterial hypertension: An image-based, computational fluid dynamics study. Pulm. Circ. 2012, 2, 470–476. [Google Scholar] [CrossRef] [Green Version]
- Boerrigter, B.; Mauritz, G.-J.; Marcus, J.T.; Helderman, F.; Postmus, P.; Westerhof, N.; Vonk-Noordegraaf, A. Progressive dilatation of the main pulmonary artery is a characteristic of pulmonary arterial hypertension and is not related to changes in pressure. Chest 2010, 138, 1395–1401. [Google Scholar] [CrossRef]
- Kramer, C.M.; Barkhausen, J.; Bucciarelli-Ducci, C.; Flamm, S.D.; Kim, R.J.; Nagel, E. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. J. Cardiovasc. Magn. Reson. 2020, 22, 17. [Google Scholar] [CrossRef]
- Garcia, J.; Sheitt, H.; Bristow, M.S.; Lydell, C.; Howarth, A.G.; Heydari, B.; Prato, F.S.; Drangova, M.; Thornhill, R.E.; Nery, P.; et al. Left atrial vortex size and velocity distributions by 4D flow MRI in patients with paroxysmal atrial fibrillation: Associations with age and CHA 2 DS 2 -VASc risk score. J. Magn. Reson. Imaging 2020, 51, 871–884. [Google Scholar] [CrossRef]
- Garcia, J.; Beckie, K.; Hassanabad, A.F.; Sojoudi, A.; White, J.A. Aortic and mitral flow quantification using dynamic valve tracking and machine learning: Prospective study assessing static and dynamic plane repeatability, variability and agreement. JRSM Cardiovasc. Dis. 2021, 10. [Google Scholar] [CrossRef]
- Geeraert, P.; Jamalidinan, F.; Hassanabad, A.F.; Sojoudi, A.; Bristow, M.; Lydell, C.; Fedak, P.W.M.; White, J.A.; Garcia, J. Bicuspid aortic valve disease is associated with abnormal wall shear stress, viscous energy loss, and pressure drop within the ascending thoracic aorta. Medicine 2021, 100, e26518. [Google Scholar] [CrossRef] [PubMed]
- Geeraert, P.; Jamalidinan, F.; Burns, F.; Jarvis, K.; Bristow, M.S.; Lydell, C.; Tobon, S.S.H.; Alonso, B.d.C.; Fedak, P.W.M.; White, J.A.; et al. Hemodynamic assessment in bicuspid aortic valve disease and aortic dilation: New insights from voxel-by-voxel analysis of reverse flow, stasis, and energetics. Front. Bioeng. Biotechnol. 2022, 9, 725113. [Google Scholar] [CrossRef] [PubMed]
- Hassanabad, A.F.; Burns, F.; Bristow, M.S.; Lydell, C.; Howarth, A.G.; Heydari, B.; Gao, X.; Fedak, P.W.; White, J.A.; Garcia, J. Pressure drop mapping using 4D flow MRI in patients with bicuspid aortic valve disease: A novel marker of valvular obstruction. Magn. Reson. Imaging 2020, 65, 175–182. [Google Scholar] [CrossRef]
- Rose, M.J.; Jarvis, K.; Chowdhary, V.; Barker, A.J.; Allen, B.D.; Robinson, J.D.; Markl, M.; Rigsby, C.; Schnell, S. Efficient method for volumetric assessment of peak blood flow velocity using 4D flow MRI. J. Magn. Reson. Imaging 2016, 44, 1673–1682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ooij, P.v.; Garcia, J.; Potters, W.V.; Malaisrie, S.C.; Collins, J.D.; Carr, J.C.; Markl, M.; Barker, A.J. Age-related changes in aortic 3D blood flow velocities and wall shear stress: Implications for the identification of altered hemodynamics in patients with aortic valve disease. J. Magn. Reson. Imaging 2016, 43, 1239–1249. [Google Scholar] [CrossRef] [PubMed]
- Potters, W.V.; Ooij, P.v.; Marquering, H.; vanBavel, E.; Nederveen, A.J. Volumetric arterial wall shear stress calculation based on cine phase contrast MRI. J. Magn. Reson. Imaging 2015, 41, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Barker, A.J.; Ooij, P.v.; Bandi, K.; Garcia, J.; Albaghdadi, M.; McCarthy, P.; Bonow, R.O.; Carr, J.; Collins, J.; Malaisrie, S.C.; et al. Viscous energy loss in the presence of abnormal aortic flow. Magn. Reson. Med. 2014, 72, 620–628. [Google Scholar] [CrossRef] [Green Version]
- Kroeger, J.R.; Stackl, M.; Weiss, K.; Baeßler, B.; Gerhardt, F.; Rosenkranz, S.; Maintz, D.; Giese, D.; Bunck, A.C. K-t accelerated multi-VENC 4D flow MRI improves vortex assessment in pulmonary hypertension. Eur. J. Radiol. 2021, 145, 110035. [Google Scholar] [CrossRef]
- Han, Q.J.; Witsche, W.R.T.; Fang-Yen, C.M.; Arkles, J.S.; Barker, A.J.; Forfia, P.R.; Han, Y. Altered right ventricular kinetic energy work density and viscous energy dissipation in patients with pulmonary arterial hypertension: A pilot study using 4D flow MRI. PLoS ONE 2015, 10, e0138365. [Google Scholar] [CrossRef] [Green Version]
- Helderman, F.; Maurit, G.-J.; Andringa, K.E.; Vonk-Noordegraaf, A.; Marcus, J.T. Early onset of retrograde flow in the main pulmonary artery is a characteristic of pulmonary arterial hypertension. J. Magn. Reson. Imaging 2011, 33, 1362–1368. [Google Scholar] [CrossRef] [PubMed]
- Kondo, C.; Caputo, G.R.; Masui, T.; Foster, E.; O’Sullivan, M.; Stulbarg, M.S.; Golden, J.; Catterjee, K.; Higgins, C.B. Pulmonary hypertension: Pulmonary flow quantification and flow profile analysis with velocity-encoded cine MR imaging. Radiology 1992, 183, 751–758. [Google Scholar] [CrossRef]
- Burger, I.A.; Husmann, L.; Herzog, B.A.; Buechel, R.R.; Pazhenkottil, A.P.; Ghadri, J.R.; Nkoulou, R.N.; Jenni, R.; Russi, E.W.; Kaufmann, P.A. Main pulmonary artery diameter from attenuation correction CT scans in cardiac SPECT accurately predicts pulmonary hypertension. J. Nucl. Cardiol. 2011, 18, 634–641. [Google Scholar] [CrossRef] [Green Version]
- Lange, T.J.; Bornia, C.; Stiefel, J.L.; Stroszczynski, C.; Arzt, M.; Pfeifer, M.; Hamer, O.W. Increased pulmonary artery diameter on chest computed tomography can predict borderline pulmonary hypertension. Pulm. Circ. 2013, 3, 363–368. [Google Scholar] [CrossRef] [Green Version]
- Badagliacca, R.; Poscia, R.; Pezzuto, B.; Papa, S.; Nona, A.; Mancone, M.; Mezzapesa, M.; Nocioni, M.; Sciomer, S.; Valli, G.; et al. Pulmonary arterial dilatation in pulmonary hypertension: Prevalence and prognostic relevance. Cardiology 2012, 121, 76–82. [Google Scholar] [CrossRef] [PubMed]
Pulmonary Hypertension (n = 17) | Controls (n = 33) | p-Value | |
---|---|---|---|
Age (years) | 55 ± 17 | 39 ± 15 | 0.001 |
Sex (% female) | 76 | 31 | 0.002 |
Height (m) | 1.64 ± 0.14 | 1.73 ± 0.10 | 0.023 |
BSA (m2) | 1.88 ± 0.28 | 1.92 ± 0.34 | 0.643 |
Weight (kg) | 78 ± 18 | 79 ± 21 | 0.791 |
Heart Rate (bpm) | 76 ± 16 | 66 ± 11 | 0.016 |
Systolic Blood Pressure (mmHg) | 114 ± 15 | 110 ± 16 | 0.396 |
Diastolic Blood Pressure (mmHg) | 65 ± 10 | 63 ± 15 | 0.638 |
LVEF (%) | 59 ± 13 | 61 ± 6 | 0.752 |
LVEDV (ml) | 127 ± 48 | 160 ± 35 | 0.011 |
LVESV (ml) | 58 ± 42 | 66 ± 23 | 0.381 |
RVEF (%) | 55 ± 30 | 56 ± 7 | 0.878 |
RVEDV (ml) | 190 ± 79 | 173 ± 48 | 0.456 |
RVESV (ml) | 106 ± 72 | 77 ± 28 | 0.152 |
β–Blocker, n (%) | 3 (18) | ||
Calcium channel blockers, n (%) | 1 (6) | ||
Anticoagulants, n (%) | 5 (29) | ||
Diuretics, n (%) | 6 (35) | ||
ACE inhibitor, n (%) | 4 (24) | ||
Statin, n (%) | 2 (12) | ||
Digoxin, n (%) | 1 (6) |
Pulmonary Hypertension (n = 17) | Controls (n = 33) | p-Value | |
---|---|---|---|
LPA Diameter | |||
AP (mm) | 20 ± 4 | 19 ± 4 | 0.37 |
CC (mm) | 21 ± 4 | 19 ± 3 | 0.226 |
MPA Diameter | |||
AP (mm) | 32 ± 6 | 30 ± 4 | 0.05 |
RL (mm) | 32 ± 6 | 28 ± 3 | 0.005 |
RPA Diameter | |||
AP (mm) | 21 ± 4 | 19 ± 3 | 0.05 |
CC (mm) | 22 ± 4 | 21 ± 3 | 0.558 |
Bifurcation Distance | |||
MPA (mm) | 33 ± 5 | 30 ± 8 | 0.302 |
LPA (mm) | 34 ± 6 | 29 ± 8 | 0.043 |
RPA (mm) | 34 ± 5 | 27 ± 6 | <0.001 |
Bifurcation Angle (deg) | 93 ± 9 | 98 ± 15 | 0.208 |
LPA | MPA | PA | RPA | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pulmonary Hypertension (n = 17) | Controls (n = 33) | p-Value | Pulmonary Hypertension (n = 17) | Controls (n = 33) | p-Value | Pulmonary Hypertension (n = 17) | Controls (n = 33) | p-Value | Pulmonary Hypertension (n = 17) | Controls (n = 33) | p-Value | |
Max EL (µW) | 1.06 ± 0.75 | 2.12 ± 1.22 | 0.002 | 2.76 ± 1.20 | 4.30 ± 1.93 | 0.001 | 3.94 ± 1.71 | 7.27 ± 3.24 | <0.001 | 0.88 ± 0.70 | 2.06 ± 1.22 | 0.001 |
Mean EL (µW) | 1.76 ± 0.39 | 0.49 ± 0.51 | 0.022 | 1.24 ± 0.56 | 1.27 ± 0.45 | 0.8 | 1.76 ± 0.83 | 2.00 ± 1.09 | 0.439 | 0.06 ± 0.24 | 0.46 ± 0.56 | 0.001 |
Max WSS (Pa) | 0.75 ± 0.29 | 1.17 ± 0.26 | <0.001 | 0.97 ± 0.28 | 1.06 ± 0.18 | 0.224 | 0.98 ± 0.28 | 1.28 ± 0.28 | 0.001 | 0.64 ± 0.26 | 1.08 ± 0.30 | <0.001 |
Mean WSS (Pa) | 0.14 ± 0.05 | 0.19 ± 0.05 | 0.001 | 0.14 ± 0.03 | 0.17 ± 0.04 | 0.022 | 0.14 ± 0.03 | 0.18 ± 0.04 | 0.002 | 0.12 ± 0.04 | 0.17 ± 0.05 | 0.001 |
Mean WSS above 95% (Pa) | 0.73 ± 0.28 | 1.14 ± 0.26 | <0.001 | 0.94 ± 0.27 | 1.03 ± 0.17 | 0.234 | 0.96 ± 0.27 | 1.51 ± 1.44 | 0.123 | 0.63 ± 0.25 | 1.03 ± 0.32 | <0.001 |
Mean Highest 5% WSS (Pa) | 0.48 ± 0.20 | 0.76 ± 0.15 | <0.001 | 0.52 ± 0.13 | 0.68 ± 0.14 | <0.001 | 0.52 ± 0.14 | 0.74 ± 0.14 | <0.001 | 0.40 ± 0.16 | 0.70 ± 0.18 | <0.001 |
Max Vortex Volume (mm3) | 5.60 ± 3.01 | 4.44 ± 1.85 | 0.09 | 27.08 ± 10.66 | 20.33 ± 7.09 | 0.01 | 33.99 ± 12.14 | 27.47 ± 7.08 | 0.053 | 4.11 ± 2.22 | 3.70 ± 1.89 | 0.493 |
Mean Vortex Volume (mm3) | 3.55 ± 2.04 | 2.14 ± 1.11 | 0.014 | 19.00 ± 8.71 | 11.97 ± 4.76 | 0.005 | 24.55 ± 10.60 | 15.58 ± 5.41 | 0.004 | 2.61 ± 1.41 | 2.09 ± 1.19 | 0.175 |
Max KE (mJ) | 1.1 ± 0.7 | 2.2 ± 1.2 | <0.001 | 2.8 ± 1.1 | 4.2 ± 1.9 | 0.002 | 4.0 ± 1.7 | 7.3 ± 3.3 | <0.001 | 0.7 ± 0.5 | 2.0 ± 1.2 | <0.001 |
LVEF | RVEF | |||
---|---|---|---|---|
R | p-Value | R | p-Value | |
Age | 0.180 | 0.232 | −0.145 | 0.384 |
Sex | 0.210 | 0.161 | 0.291 | 0.076 |
Height | −0.246 | 0.099 | −0.258 | 0.118 |
Weight | −0.001 | 0.997 | −0.290 | 0.078 |
BSA | −0.058 | 0.700 | −0.307 | 0.061 |
Heart Rate | −0.290 | 0.056 | −0.002 | 0.990 |
SBP | 0.075 | 0.665 | −0.246 | 0.168 |
DBP | −0.267 | 0.116 | −0.126 | 0.486 |
LVEDV | −0.277 | 0.062 | −0.237 | 0.152 |
LVESV | −0.610 | <0.001 | −0.123 | 0.463 |
RVEDV | −0.454 | 0.005 | −0.610 | <0.001 |
RVESV | −0.677 | <0.001 | −0.864 | <0.001 |
MPA-AP | 0.097 | 0.520 | 0.385 | 0.017 |
MPA-RL | 0.079 | 0.603 | 0.418 | 0.009 |
RPA-AP | −0.001 | 0.993 | 0.132 | 0.429 |
RPA-CC | −0.0179 | 0.234 | 0.081 | 0.629 |
LPA-AP | 0.061 | 0.688 | 0.069 | 0.679 |
LPA-CC | 0.003 | 0.982 | 0.168 | 0.312 |
MPA-distance | 0.184 | 0.221 | 0.082 | 0.626 |
RPA-distance | 0.024 | 0.874 | −0.037 | 0.825 |
LPA-distance | −0.072 | 0.635 | −0.136 | 0.416 |
Bifurcation Angle | −0.011 | 0.944 | −0.052 | 0.755 |
RVOT Peak Velocity | 0.451 | 0.002 | 0.416 | 0.009 |
MPA Peak Velocity | 0.489 | 0.001 | 0.373 | 0.021 |
RPA Peak Velocity | 0.527 | <0.001 | 0.42 | 0.009 |
LPA Peak Velocity | 0.454 | 0.002 | 0.401 | 0.013 |
MPA Net Flow | 0.196 | 0.193 | 0.017 | 0.917 |
RPA Net Flow | 0.267 | 0.073 | −0.031 | 0.854 |
LPA Net Flow | 0.100 | 0.508 | −0.012 | 0.944 |
MPA Retrograde Flow | 0.067 | 0.660 | 0.137 | 0.411 |
RPA Retrograde Flow | 0.281 | 0.059 | 0.169 | 0.311 |
LPA Retrograde Flow | −0.225 | 0.132 | 0.034 | 0.839 |
MPA RF | −0.447 | 0.002 | −0.298 | 0.069 |
RPA RF | 0.059 | 0.700 | −0.010 | 0.0954 |
LPA RF | 0.158 | 0.296 | −0.094 | 0.575 |
MPA Forward Flow | 0.195 | 0.194 | 0.011 | 0.950 |
RPA Forward Flow | 0.247 | 0.098 | −0.041 | 0.807 |
LPA Forward Flow | 0.112 | 0.458 | −0.014 | 0.936 |
Max EL | 0.261 | 0.080 | −0.006 | 0.971 |
Mean EL | 0.209 | 0.164 | −0.012 | 0.943 |
MPA Max WSS | 0.519 | <0.001 | 0.231 | 0.164 |
MPA Mean WSS | 0.393 | 0.007 | 0.281 | 0.088 |
RPA Max WSS | 0.170 | 0.260 | −0.037 | 0.826 |
RPA Mean WSS | 0.190 | 0.206 | −0.026 | 0.876 |
LPA Max WSS | 0.249 | 0.095 | 0.036 | 0.832 |
LPA Mean WSS | 0.306 | 0.038 | 0.076 | 0.651 |
MPA Max Vortex | −0.267 | 0.073 | −0.168 | 0.313 |
MPA Mean Vortex | −0.335 | 0.023 | −0.203 | 0.221 |
RPA Max Vortex | −0.107 | 0.478 | −0.229 | 0.167 |
RPA Mean Vortex | −0.122 | 0.420 | −0.222 | 0.180 |
LPA Max Vortex | 0.016 | 0.916 | −0.017 | 0.918 |
LPA Mean Vortex | −0.017 | 0.910 | 0.011 | 0.946 |
MPA Max KE | 0.332 | 0.024 | 0.097 | 0.564 |
RPA Max KE | 0.241 | 0.106 | 0.004 | 0.980 |
LPA Max KE | 0.279 | 0.060 | 0.054 | 0.749 |
Pulmonary Hypertension (n = 10) | Controls (n = 10) | p-Value | |
---|---|---|---|
Age (years) | 54 ± 17 | 39 ± 17 | 0.063 |
Height (m) | 1.59 ± 0.12 | 1.63 ± 0.04 | 0. 503 |
BSA (m2) | 1.85 ± 0.30 | 1.59 ± 0.26 | 0.050 |
Weight (kg) | 79 ± 21 | 61 ± 10 | 0.027 |
Heart Rate (bpm) | 79 ± 19 | 67 ± 14 | 0.124 |
Systolic Blood Pressure (mmHg) | 116 ± 18 | 104 ± 16 | 0.171 |
Diastolic Blood Pressure (mmHg) | 63 ± 11 | 60 ± 13 | 0.596 |
LVEF (%) | 64 ± 7 | 60 ± 7 | 0.208 |
LVEDV (ml) | 118 ± 32 | 128 ± 24 | 0.437 |
LVESV (ml) | 48 ± 20 | 61 ± 32 | 0.317 |
RVEF (%) | 66 ± 33 | 61 ± 4 | 0.733 |
RVEDV (ml) | 163 ± 74 | 122 ± 35 | 0.233 |
RVESV (ml) | 75 ± 49 | 49 ± 14 | 0.197 |
MPA-AP (mm) | 35 ± 5 | 28 ± 3 | 0.002 |
MPA-RL (mm) | 34 ± 7 | 27 ± 2 | 0.007 |
RPA-AP (mm) | 21 ± 4 | 17 ± 3 | 0.025 |
RPA-CC (mm) | 22 ± 4 | 20 ± 3 | 0.123 |
LPA-AP (mm) | 20 ± 5 | 18 ± 3 | 0.349 |
LPA-CC (mm) | 21 ± 4 | 18 ± 2 | 0.087 |
MPA-distance (mm) | 33 ± 5 | 31 ± 7 | 0.455 |
RPA-distance (mm) | 34 ± 6 | 27 ± 2 | 0.001 |
LPA-distance (mm) | 33 ± 7 | 28 ± 7 | 0.079 |
Bifurcation Angle (deg) | 91 ± 10 | 97 ± 10 | 0.187 |
Max EL MPA (µW) | 2.8 ± 1.0 | 3.1 ± 1.0 | 0.517 |
Mean EL MPA (µW) | 1.4 ± 0.5 | 1.0 ± 0.1 | 0.025 |
MPA Max WSS (Pa) | 1.02 ± 0.21 | 1.02 ± 0.15 | 0.962 |
MPA Mean WSS (Pa) | 0.15 ± 0.02 | 0.16 ± 0.02 | 0.473 |
RPA Max WSS (Pa) | 0.65 ± 0.26 | 1.09 ± 0.33 | 0.003 |
RPA Mean WSS (Pa) | 0.13 ± 0.04 | 0.16 ± 0.04 | 0.059 |
LPA Max WSS (Pa) | 0.77 ± 0.30 | 1.09 ± 0.27 | 0.019 |
LPA Mean WSS (Pa) | 0.15 ± 0.05 | 0.17 ± 0.03 | 0.296 |
MPA Max Vortex (mm3) | 28.40 ± 9.73 | 16.04 ± 5.53 | 0.003 |
MPA Mean Vortex (mm3) | 20.25 ± 8.49 | 9.15 ± 3.38 | 0.001 |
RPA Max Vortex (mm3) | 3.95 ± 1.95 | 2.78 ± 1.81 | 0.181 |
RPA Mean Vortex (mm3) | 2.60 ± 1.35 | 1.46 ± 0.86 | 0.037 |
LPA Max Vortex (mm3) | 6.50 ± 3.08 | 3.79 ± 1.07 | 0.017 |
LPA Mean Vortex (mm3) | 4.33 ± 2.16 | 1.65 ± 0.53 | 0.001 |
MPA Max KE (mJ) | 2.83 ± 0.93 | 3.20 ± 1.0 | 0.413 |
RPA Max KE (mJ) | 0.67 ± 0.03 | 1.44 ± 0.67 | 0.004 |
LPA Max KE (mJ) | 1.17 ± 0.66 | 1.74 ± 0.94 | 0.131 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, Z.M.; Garcia, J. Pulmonary Artery Remodeling and Advanced Hemodynamics: Magnetic Resonance Imaging Biomarkers of Pulmonary Hypertension. Appl. Sci. 2022, 12, 3518. https://doi.org/10.3390/app12073518
Hong ZM, Garcia J. Pulmonary Artery Remodeling and Advanced Hemodynamics: Magnetic Resonance Imaging Biomarkers of Pulmonary Hypertension. Applied Sciences. 2022; 12(7):3518. https://doi.org/10.3390/app12073518
Chicago/Turabian StyleHong, Zachary M., and Julio Garcia. 2022. "Pulmonary Artery Remodeling and Advanced Hemodynamics: Magnetic Resonance Imaging Biomarkers of Pulmonary Hypertension" Applied Sciences 12, no. 7: 3518. https://doi.org/10.3390/app12073518
APA StyleHong, Z. M., & Garcia, J. (2022). Pulmonary Artery Remodeling and Advanced Hemodynamics: Magnetic Resonance Imaging Biomarkers of Pulmonary Hypertension. Applied Sciences, 12(7), 3518. https://doi.org/10.3390/app12073518