4D Flow MRI in Ascending Aortic Aneurysms: Reproducibility of Hemodynamic Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. MRI Acquisition
2.3. Image Analysis
2.4. Observer Training
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davies, R.; Gallo, A.; Coady, M.A.; Tellides, G.; Botta, D.M.; Burke, B.; Coe, M.P.; Kopf, G.S.; Elefteriades, J.A. Novel Measurement of Relative Aortic Size Predicts Rupture of Thoracic Aortic Aneurysms. Ann. Thorac. Surg. 2006, 81, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Hiratzka, L.F.; Bakris, G.L.; Beckman, J.; Bersin, R.M.; Carr, V.F.; Casey, D.; Eagle, K.A.; Hermann, L.K.; Isselbacher, E.M.; Kazerooni, E.A.; et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM Guidelines for the Diagnosis and Management of Patients with Thoracic Aortic Disease. J. Am. Coll. Cardiol. 2010, 55, e27–e129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Members, T.F.; Erbel, R.; Aboyans, V.; Boileau, C.; Bossone, E.; di Bartolomeo, R.; Eggebrecht, H.; Evangelista, A.; Falk, V.; Frank, H.; et al. 2014 ESC Guidelines on the Diagnosis and Treatment of Aortic Diseases. Eur. Hear. J. 2014, 35, 2873–2926. [Google Scholar] [CrossRef] [Green Version]
- Pape, L.A.; Tsai, T.T.; Isselbacher, E.M.; Oh, J.K.; O’Gara, P.T.; Evangelista, A.; Fattori, R.; Meinhardt, G.; Trimarchi, S.; Bossone, E.; et al. Aortic Diameter ≥ 5.5 Cm Is Not a Good Predictor of Type A Aortic Dissection. Circulation 2007, 116, 1120–1127. [Google Scholar] [CrossRef] [Green Version]
- Heuts, S.; Adriaans, B.P.; Rylski, B.; Mihl, C.; Bekkers, S.C.A.M.; Olsthoorn, J.R.; Natour, E.; Bouman, H.; Berezowski, M.; Kosiorowska, K.; et al. Evaluating the Diagnostic Accuracy of Maximal Aortic Diameter, Length and Volume for Prediction of Aortic Dissection. Heart 2020, 106, 892–897. [Google Scholar] [CrossRef]
- Glower, D.D. Indications for Ascending Aortic Replacement: Size Alone Is Not Enough. J. Am. Coll. Cardiol. 2011, 58, 585–586. [Google Scholar] [CrossRef] [Green Version]
- Van Hout, M.; Juffermans, J.; Lamb, H.; Kröner, E.; Boogaard, P.V.D.; Schalij, M.; Dekkers, I.; Scholte, A.; Westenberg, J. Ascending Aorta Curvature and Flow Displacement Are Associated with Accelerated Aortic Growth at Long-Term Follow-Up: A MRI Study in Marfan and Thoracic Aortic Aneurysm Patients. IJC Hear. Vasc. 2021, 38, 100926. [Google Scholar] [CrossRef]
- Korpela, T.; Kauhanen, S.P.; Kariniemi, E.; Saari, P.; Liimatainen, T.; Jaakkola, P.; Vanninen, R.; Hedman, M. Flow Displacement and Decreased Wall Shear Stress Might Be Associated with the Growth Rate of an Ascending Aortic Dilatation. Eur. J. Cardio-Thoracic Surg. 2021, 61, 395–402. [Google Scholar] [CrossRef]
- Ramaekers, M.J.; Adriaans, B.P.; Juffermans, J.F.; van Assen, H.C.; Bekkers, S.C.; Scholte, A.J.; Kenjeres, S.; Lamb, H.J.; Wildberger, J.E.; Westenberg, J.J.; et al. Characterization of Ascending Aortic Flow in Patients with Degenerative Aneurysms. Investig. Radiol. 2021, 56, 494–500. [Google Scholar] [CrossRef]
- Bm, S.P.K.; Hedman, M.; Kariniemi, E.; Jaakkola, P.; Vanninen, R.; Saari, P.; Liimatainen, T. Aortic Dilatation Associates with Flow Displacement and Increased Circumferential Wall Shear Stress in Patients Without Aortic Stenosis: A Prospective Clinical Study. J. Magn. Reson. Imaging 2019, 50, 136–145. [Google Scholar] [CrossRef] [Green Version]
- Dux-Santoy, L.; Guala, A.; Teixidó-Turà, G.; Ruiz-Muñoz, A.; Maldonado, G.; Villalva, N.; Galian, L.; Valente, F.; Gutiérrez, L.; González-Alujas, T.; et al. Increased Rotational Flow in the Proximal Aortic Arch Is Associated With Its Dilation in Bicuspid Aortic Valve Disease. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 1407–1417. [Google Scholar] [CrossRef] [PubMed]
- Bissell, M.M.; Hess, A.T.; Biasiolli, L.; Glaze, S.J.; Loudon, M.; Pitcher, A.; Davis, A.; Prendergast, B.; Markl, M.; Barker, A.J.; et al. Aortic Dilation in Bicuspid Aortic Valve Disease. Circ. Cardiovasc. Imaging 2013, 6, 499–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, J.; Barker, A.J.; Collins, J.D.; Carr, J.C.; Markl, M. Volumetric Quantification of Absolute Local Normalized Helicity in Patients with Bicuspid Aortic Valve and Aortic Dilatation. Magn. Reson. Med. 2017, 78, 689–701. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, R.; Bock, J.; Barker, A.J.; von Knobelsdorff-Brenkenhoff, F.; Wallis, W.; Korvink, J.G.; Bissell, M.M.; Schulz-Menger, J.; Markl, M. 4D Flow Magnetic Resonance Imaging in Bicuspid Aortic Valve Disease Demonstrates Altered Distribution of Aortic Blood Flow Helicity. Magn. Reson. Med. 2013, 71, 1542–1553. [Google Scholar] [CrossRef] [Green Version]
- Sigovan, M.; Hope, M.D.; Dyverfeldt, P.; Saloner, D. Comparison of Four-Dimensional Flow Parameters for Quantification of Flow Eccentricity in the Ascending Aorta. J. Magn. Reson. Imaging 2011, 34, 1226–1230. [Google Scholar] [CrossRef]
- Hope, M.D.; Sigovan, M.; Wrenn, S.J.; Saloner, D.; Dyverfeldt, P. MRI Hemodynamic Markers of Progressive Bicuspid Aortic Valve-Related Aortic Disease. J. Magn. Reson. Imaging 2014, 40, 140–145. [Google Scholar] [CrossRef] [Green Version]
- Reijer, P.M.D.; Sallee, D.; Van Der Velden, P.; Zaaijer, E.R.; Parks, W.J.; Ramamurthy, S.; Robbie, T.Q.; Donati, G.; Lamphier, C.; Beekman, R.P.; et al. Hemodynamic Predictors of Aortic Dilatation in Bicuspid Aortic Valve by Velocity-Encoded Cardiovascular Magnetic Resonance. J. Cardiovasc. Magn. Reson. 2010, 12, 4. [Google Scholar] [CrossRef] [Green Version]
- Geiger, J.; Hirtler, D.; Gottfried, K.; Rahman, O.; Bollache, E.; Barker, A.J.; Markl, M.; Stiller, B. Longitudinal Evaluation of Aortic Hemodynamics in Marfan Syndrome: New Insights from a 4D Flow Cardiovascular Magnetic Resonance Multi-Year Follow-Up Study. J. Cardiovasc. Magn. Reson. 2017, 19, 33. [Google Scholar] [CrossRef] [Green Version]
- Minderhoud, S.C.S.; Roos-Hesselink, J.W.; Chelu, R.G.; Bons, L.R.; Hoven, A.T.V.D.; Korteland, S.-A.; Bosch, A.E.V.D.; Budde, R.P.J.; Wentzel, J.J.; Hirsch, A. Wall Shear Stress Angle Is Associated with Aortic Growth in Bicuspid Aortic Valve Patients. Eur. Heart J. Cardiovasc. Imaging 2022, 22, jeab290. [Google Scholar] [CrossRef]
- Van Der Palen, R.L.F.; Roest, A.A.W.; Boogaard, P.J.V.D.; De Roos, A.; Blom, N.A.; Westenberg, J.J.M. Scan–Rescan Reproducibility of Segmental Aortic Wall Shear Stress As Assessed by Phase-Specific Segmentation With 4D Flow MRI in Healthy Volunteers. Magn. Reson. Mater. Physics Biol. Med. 2018, 31, 653–663. [Google Scholar] [CrossRef] [Green Version]
- Markl, M.; Wallis, W.; Harloff, A. Reproducibility of Flow and Wall Shear Stress Analysis Using Flow-Sensitive Four-Dimensional MRI. J. Magn. Reson. Imaging 2011, 33, 988–994. [Google Scholar] [CrossRef] [PubMed]
- Van Ooij, P.; Powell, A.L.; Potters, W.V.; Carr, J.C.; Markl, M.; Barker, J.A. Reproducibility and interobserver variability of systolic blood flow velocity and 3D wall shear stress derived from 4D flow MRI in the healthy aorta. J. Magn. Reson. Imaging 2016, 43, 236–248. [Google Scholar] [CrossRef] [PubMed]
- Dyverfeldt, P.; Bissell, M.; Barker, A.J.; Bolger, A.F.; Carlhäll, C.-J.; Ebbers, T.; Francios, C.J.; Frydrychowicz, A.; Geiger, J.; Giese, D.; et al. 4D Flow Cardiovascular Magnetic Resonance Consensus Statement. J. Cardiovasc. Magn. Reson. 2015, 17, 72. [Google Scholar] [CrossRef] [Green Version]
- Ms, S.P.; Dyverfeldt, P.; Ebbers, T. Assessment of the Accuracy of MRI Wall Shear Stress Estimation Using Numerical Simulations. J. Magn. Reson. Imaging 2012, 36, 128–138. [Google Scholar] [CrossRef] [Green Version]
- Juffermans, J.F.; Westenberg, J.J.; Boogaard, P.J.; Roest, A.A.; van Assen, H.C.; van der Palen, R.L.; Lamb, H.J. Reproducibility of Aorta Segmentation on 4D Flow MRI in Healthy Volunteers. J. Magn. Reson. Imaging 2021, 53, 1268–1279. [Google Scholar] [CrossRef] [PubMed]
- Wentland, A.L. Editorial for “Reproducibility of Aorta Segmentation on 4D Flow MRI in Healthy Volunteers. J. Magn. Reson. Imaging 2021, 53, 1280–1281. [Google Scholar] [CrossRef]
- Della Corte, A.; Bancone, C.; Dialetto, G.; Covino, F.E.; Manduca, S.; Montibello, M.V.; De Feo, M.; Buonocore, M.; Nappi, G. The Ascending Aorta with Bicuspid Aortic Valve: A Phenotypic Classification with Potential Prognostic Significance. Eur. J. Cardio Thorac. Surg. 2014, 46, 240–247. [Google Scholar] [CrossRef] [Green Version]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Bland, J.M.; Altman, D.G. Statistical Methods for Assessing Agreement Between Two Methods of Clinical Measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- Meierhofer, C.; Schneider, E.P.; Lyko, C.; Hutter, A.; Martinoff, S.; Markl, M.; Hager, A.; Hess, J.; Stern, H.; Fratz, S. Wall Shear Stress and Flow Patterns in the Ascending Aorta in Patients with Bicuspid Aortic Valves Differ Significantly from Tricuspid Aortic Valves: A Prospective Study. Eur. Heart J. Cardiovasc. Imaging 2012, 14, 797–804. [Google Scholar] [CrossRef] [Green Version]
- Schnell, S.; Rose, M.J.; Wu, C.; García, J.; Robinson, J.D.; Markl, M.; Rigsby, C.K. Improved Assessment of Aortic Hemodynamics by K-T Accelerated Dual-Venc 4D Flow MRI in Pediatric Patients. J. Cardiovasc. Magn. Reson. 2016, 18, O96. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.E.; Markl, M.; Chow, K.; Vali, A.; Wu, C.; Schnell, S. Efficient triple-VENC phase-Contrast MRI for Improved Velocity Dynamic Range. Magn. Reson. Med. 2020, 83, 505–520. [Google Scholar] [CrossRef] [PubMed]
- Bons, L.R.; Duijnhouwer, A.L.; Boccalini, S.; Hoven, A.T.V.D.; van der Vlugt, M.J.; Chelu, R.G.; McGhie, J.S.; Kardys, I.; Bosch, A.E.V.D.; Siebelink, H.-M.J.; et al. Intermodality Variation of Aortic Dimensions: How, Where and When to Measure the Ascending Aorta. Int. J. Cardiol. 2019, 276, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Bell, V.; Mitchell, W.A.; Sigurðsson, S.; Westenberg, J.J.M.; Gotal, J.D.; Torjesen, A.A.; Aspelund, T.; Launer, L.J.; de Roos, A.; Gudnason, V.; et al. Longitudinal and Circumferential Strain of the Proximal Aorta. J. Am. Heart Assoc. 2014, 3, e001536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rengier, F.; Weber, T.F.; Henninger, V.; Böckler, D.; Schumacher, H.; Kauczor, H.-U.; von Tengg-Kobligk, H. Heartbeat-Related Distension and Displacement of the Thoracic Aorta in Healthy Volunteers. Eur. J. Radiol. 2012, 81, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Kilner, P.J.; Yang, G.Z.; Mohiaddin, R.H.; Firmin, D.N.; Longmore, D.B. Helical and Retrograde Secondary Flow Patterns in the Aortic Arch Studied by Three-Directional Magnetic Resonance Velocity Mapping. Circulation 1993, 88, 2235–2247. [Google Scholar] [CrossRef] [Green Version]
- Dux-Santoy, L.; Rodríguez-Palomares, J.F.; Teixidó-Turà, G.; Ruiz-Muñoz, A.; Casas, G.; Valente, F.; Servato, M.L.; Galian-Gay, L.; Gutiérrez, L.; González-Alujas, T.; et al. Registration-Based Semi-Automatic Assessment of Aortic Diameter Growth Rate from Contrast-Enhanced Computed Tomography Outperforms Manual Quantification. Eur. Radiol. 2021, 32, 1997–2009. [Google Scholar] [CrossRef]
- Van Hout, M.J.; Scholte, A.J.; Juffermans, J.F.; Westenberg, J.J.; Zhong, L.; Zhou, X.; Schalla, S.M.; Hope, M.D.; Bremerich, J.; Kramer, C.M.; et al. How to Measure the Aorta Using MRI: A Practical Guide. J. Magn. Reson. Imaging 2020, 52, 971–977. [Google Scholar] [CrossRef]
Characteristic | Quantity |
---|---|
Population size | 20 |
Male (%) | 18 (90%) |
Age (years) | 53 ± 14 |
Height (cm) | 186 ± 8 |
Weight (kg) | 90 ± 11 |
TAA diameter (mm) | 50.8 ± 2.7 |
Heart rate (bpm) | 68 ± 11 |
Stroke Volume (mL) | 105 ± 24 |
Cardiac Output (L min−1) | 7.0 ± 1.8 |
Systolic blood pressure (mm Hg) | 132 ± 14 |
Diastolic blood pressure (mm Hg) | 81 ± 7 |
Trigger delay peak systole—2 phases (ms) | 102 ± 31 |
Trigger delay peak systole—1 phase (ms) | 133 ± 32 |
Trigger delay peak systole (ms) | 163 ± 34 |
Trigger delay peak systole + 1 phase (ms) | 194 ± 35 |
Trigger delay peak systole + 2 phases (ms) | 224 ± 36 |
Parameter | Anatomical Segments | |||||
---|---|---|---|---|---|---|
AoR | pAA | dAA | AoA | pDA | dDA | |
Flow Displacement (%) | 7.5 (5.3–10.2) | 9.8 (7.1–16.2) | 6.3 (4.9–9.0) | 5.7 (4.7–6.5) | 6.5 (5.8–7.6) | 4.7 (4.1–5.7) |
Flow Jet Angle (°) | 17.6 (13.7–21.9) | 17.6 (11.9–27.0) | 14.8 (10.2–21.3) | 14.6 (12.5–17.3) | 15.7 (13.1–18.4) | 9.1 (7.6–10.6) |
WSS magnitude (mPa) | 561 (483–654) | 763 (570–896) | 750 (595–955) | 746 (560–992) | 877 (706–1112) | 939 (785–1179) |
Axial WSS (mPa) | 371.9 (335–478) | 627.9 (432–734) | 702.6 (551–893) | 700.6 (525–949) | 801.5 (670–1045) | 915.2 (748–1145) |
Circumferential WSS (mPa) | 331 (286–410) | 331 (247–405) | 204 (159–262) | 182 (153–215) | 243 (180–296) | 205 (147–244) |
WSS angle (°) | 42.5 (37.4–45.7) | 32.0 (26.8–37.1) | 18.3 (13.7–24.0) | 14.0 (12.1–16.9) | 16.8 (14.4–20.2) | 11.7 (9.6–14.4) |
Vorticity Norm (s−1∙mL−1) | 18,882 (16,767–21,131) | 12,909 (10,629–15,526) | 10,390 (7695–12,407) | 11,338 (9273–14,205) | 14,422 (11,800–19,372) | 14,150 (11,164–17,990) |
Absolute Helicity (m∙s−2∙mL−1) | 3084 (2327–3603) | 1997 (1287–2729) | 1098 (624–1544) | 1207 (950–1749) | 1873 (1149–2990) | 1464 (1059–2263) |
Absolute Local Normalized Helicity Volume (mL) | 19.4 (10.5–27.3) | 24.8 (18.9–30.2) | 15.2 (10.4–21.7) | 9.4 (7.0–13.6) | 15.6 (12.2–18.2) | 17.7 (13.7–19.6) |
Volume (mL) | 44.1 (25.2–59.8) | 53.2 (36.9–59.7) | 41.1 (31.0–53.8) | 28.6 (20.0–31.5) | 38.4 (29.9–45.2) | 31.5 (24.2–38.0) |
Centerline Length (mm) | 31.0 (24.3–37.1) | 40.8 (36.6–44.0) | 40.0 (36.7–44.3) | 37.3 (34.0–38.7) | 65.4 (57.0–69.2) | 64.1 (58.0–68.9) |
Maximal Diameter (mm) | 48.7 (40.0–51.3) | 44.7 (40.4–46.6) | 41.2 (35.4–44.9) | 34.3 (31.5–36.3) | 31.3 (28.2–32.6) | 27.3 (24.9–29.7) |
Curvature Radius (mm) | 51.4 (42.9–71.1) | 38.5 (36.2–46.6) | 50.6 (43.3–61.3) | 46.1 (40.8–59.7) | 45.5 (37.3–53.7) | 138.1 (102.0–164.5) |
Study | Bland–Altman | COV (%) | Spearman RankCorrelation Coefficient | Intraclass Correlation Coefficient | LoAdiff (%) | |
---|---|---|---|---|---|---|
Mean Diff | LoA | |||||
Flow Displacement (%) | ||||||
IA-O | −0.1 | 2.8 | 19 | 0.81 | 0.94 | −9 |
IE-O1 | −0.5 | 4.8 | 32 | 0.70 | 0.84 | 15 |
IE-O2 | 0.1 | 4.4 | 30 | 0.70 | 0.85 | 3 |
IE-O3 | 0.6 | 4.1 | 27 | 0.79 | 0.87 | 7 |
Flow Jet Angle (°) | ||||||
IA-O | 0.3 | 5.0 | 16 | 0.92 | 0.93 | −16 |
IE-O1 | −0.3 | 8.0 | 25 | 0.80 | 0.83 | −4 |
IE-O2 | 0.2 | 7.1 | 23 | 0.85 | 0.86 | −9 |
IE-O3 | 0.5 | 8.7 | 27 | 0.78 | 0.80 | −4 |
WSS Magnitude (mPa) | ||||||
IA-O | 0 | 43 | 3 | 1.00 | 1.00 | −15 |
IE-O1 | −33 | 232 | 14 | 0.90 | 0.93 | −10 |
IE-O2 | 17 | 161 | 10 | 0.93 | 0.97 | −25 |
IE-O3 | 50 | 242 | 15 | 0.89 | 0.93 | 30 |
Axial WSS (mPa) | ||||||
IA-O | −0 | 47 | 3 | 1.00 | 1.00 | −59 |
IE-O1 | −30 | 240 | 16 | 0.92 | 0.94 | −58 |
IE-O2 | 19 | 163 | 11 | 0.95 | 0.97 | −51 |
IE-O3 | 49 | 244 | 17 | 0.92 | 0.94 | 51 |
Circumferential WSS (mPa) | ||||||
IA-O | −1 | 39 | 8 | 0.98 | 0.98 | 11 |
IE-O1 | 0 | 96 | 19 | 0.89 | 0.87 | −18 |
IE-O2 | 3 | 73 | 15 | 0.93 | 0.93 | 0 |
IE-O3 | 3 | 103 | 20 | 0.86 | 0.87 | −23 |
WSS Angle (°) | ||||||
IA-O | 0.1 | 3.3 | 7 | 0.99 | 0.99 | −47 |
IE-O1 | 0.2 | 8.9 | 19 | 0.89 | 0.94 | −8 |
IE-O2 | −0.7 | 7.5 | 16 | 0.95 | 0.96 | −21 |
IE-O3 | −0.9 | 8.7 | 18 | 0.91 | 0.95 | 5 |
Vorticity Norm (s−1∙mL−1) | ||||||
IA-O | 37 | 860 | 3 | 1.00 | 1.00 | −40 |
IE-O1 | 180 | 2001 | 7 | 0.97 | 0.98 | −4 |
IE-O2 | 93 | 2485 | 9 | 0.96 | 0.97 | −22 |
IE-O3 | −87 | 2779 | 10 | 0.96 | 0.96 | 6 |
Absolute Helicity (m∙s−2∙mL−1) | ||||||
IA-O | 30 | 223 | 6 | 1.00 | 1.00 | −9 |
IE-O1 | −16 | 394 | 10 | 0.98 | 0.98 | 14 |
IE-O2 | 17 | 603 | 15 | 0.96 | 0.96 | −14 |
IE-O3 | 32 | 631 | 16 | 0.96 | 0.96 | 21 |
Absolute Local Normalized Helicity Volume (mL) | ||||||
IA-O | 0.0 | 3.3 | 10 | 0.99 | 0.98 | −18 |
IE-O1 | 0.2 | 5.9 | 18 | 0.95 | 0.92 | 6 |
IE-O2 | 0.9 | 8.4 | 26 | 0.88 | 0.86 | −28 |
IE-O3 | 0.7 | 6.3 | 20 | 0.92 | 0.91 | −10 |
Volume (mL) | ||||||
IA-O | 0.2 | 6.8 | 9 | 0.98 | 0.98 | 4 |
IE-O1 | 1.0 | 12.7 | 18 | 0.93 | 0.90 | −21 |
IE-O2 | 1.9 | 15.7 | 22 | 0.89 | 0.86 | −13 |
IE-O3 | 0.9 | 10.8 | 15 | 0.94 | 0.92 | −41 |
Centerline Length (mm) | ||||||
IA-O | 0.9 | 7.1 | 8 | 0.94 | 0.97 | −7 |
IE-O1 | 0.2 | 11.9 | 14 | 0.90 | 0.92 | −36 |
IE-O2 | 3.5 | 12.2 | 14 | 0.89 | 0.92 | −20 |
IE-O3 | 3.3 | 8.0 | 9 | 0.94 | 0.96 | −53 |
Maximal Diameter (mm) | ||||||
IA-O | −0.2 | 1.9 | 3 | 0.99 | 0.99 | −14 |
IE-O1 | −0.0 | 4.0 | 6 | 0.98 | 0.97 | −3 |
IE-O2 | −0.9 | 5.0 | 7 | 0.98 | 0.96 | −42 |
IE-O3 | −0.9 | 4.3 | 6 | 0.98 | 0.97 | −36 |
Curvature Radius (mm) | ||||||
IA-O | 2.3 | 37.2 | 29 | 0.87 | 0.92 | 30 |
IE-O1 | −2.7 | 46.4 | 35 | 0.77 | 0.90 | 14 |
IE-O2 | 3.6 | 42.4 | 34 | 0.77 | 0.90 | −72 |
IE-O3 | 6.3 | 43.5 | 34 | 0.72 | 0.92 | −70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juffermans, J.F.; van Assen, H.C.; te Kiefte, B.J.C.; Ramaekers, M.J.F.G.; van der Palen, R.L.F.; van den Boogaard, P.; Adriaans, B.P.; Wildberger, J.E.; Dekkers, I.A.; Scholte, A.J.H.A.; et al. 4D Flow MRI in Ascending Aortic Aneurysms: Reproducibility of Hemodynamic Parameters. Appl. Sci. 2022, 12, 3912. https://doi.org/10.3390/app12083912
Juffermans JF, van Assen HC, te Kiefte BJC, Ramaekers MJFG, van der Palen RLF, van den Boogaard P, Adriaans BP, Wildberger JE, Dekkers IA, Scholte AJHA, et al. 4D Flow MRI in Ascending Aortic Aneurysms: Reproducibility of Hemodynamic Parameters. Applied Sciences. 2022; 12(8):3912. https://doi.org/10.3390/app12083912
Chicago/Turabian StyleJuffermans, Joe F., Hans C. van Assen, Bastiaan J. C. te Kiefte, Mitch J. F. G. Ramaekers, Roel L. F. van der Palen, Pieter van den Boogaard, Bouke P. Adriaans, Joachim E. Wildberger, Ilona A. Dekkers, Arthur J. H. A. Scholte, and et al. 2022. "4D Flow MRI in Ascending Aortic Aneurysms: Reproducibility of Hemodynamic Parameters" Applied Sciences 12, no. 8: 3912. https://doi.org/10.3390/app12083912
APA StyleJuffermans, J. F., van Assen, H. C., te Kiefte, B. J. C., Ramaekers, M. J. F. G., van der Palen, R. L. F., van den Boogaard, P., Adriaans, B. P., Wildberger, J. E., Dekkers, I. A., Scholte, A. J. H. A., Schalla, S., Lamb, H. J., & Westenberg, J. J. M. (2022). 4D Flow MRI in Ascending Aortic Aneurysms: Reproducibility of Hemodynamic Parameters. Applied Sciences, 12(8), 3912. https://doi.org/10.3390/app12083912