Assessment on the Properties of Biomass-Aggregate Geopolymer Concrete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Cementitious Materials
2.1.2. Crushed Coconut Shell
2.1.3. Synthesized Biomass Recycled Aggregates
2.2. Mix Proportions
2.3. Testing Methods
2.3.1. Thermal Conductivity
2.3.2. Self-Shrinkage of Concrete
2.3.3. Compressive Strength
3. Results
3.1. Compressive Strength and Density
3.2. Ultrasonic Pulse Velocity Test
3.3. Self-Shrinkage Rate of Concretes
3.4. Thermal Conductivity of Concrete
3.5. Economic Evaluation and Strength–Economic efficiency
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Biernacki, J.J.; Bullard, J.W.; Sant, G.; Brown, K.; Glasser, F.P.; Jones, S.; Ley, T.; Livingston, R.; Nicoleau, L.; Olek, J.; et al. Cements in the 21st century: Challenges, perspectives, and opportunities. J. Am. Ceram. Soc. 2017, 100, 2746–2773. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Zhang, M.; Song, Y. Exploring China’s carbon emissions peak for different carbon tax scenarios. Energy Policy 2019, 129, 1245–1252. [Google Scholar] [CrossRef]
- Ma, M.; Ma, X.; Cai, W.; Cai, W. Low carbon roadmap of residential building sector in China: Historical mitigation and prospective peak. Appl. Energy 2020, 273, 115247. [Google Scholar] [CrossRef]
- Fang, K.; Tang, Y.; Zhang, Q.; Song, J.; Wen, Q.; Sun, H.; Ji, C.; Xu, A. Will China peak its energy-related carbon emissions by 2030? Lessons from 30 Chinese provinces. Appl. Energy 2019, 255, 113852. [Google Scholar] [CrossRef]
- Mahlia, T.M.I.; Taufiq, B.N.; Ismail; Masjuki, H.H. Correlation between thermal conductivity and the thickness of selected insulation materials for building wall. Energy Build. 2007, 39, 182–187. [Google Scholar] [CrossRef]
- Moreno, M.L.; Kuwornu, J.K.M.; Szabo, S. Overview and Constraints of the Coconut Supply Chain in the Philippines. Int. J. Fruit Sci. 2020, 20, S524–S541. [Google Scholar] [CrossRef]
- Bheel, N.; Mahro, S.K.; Adesina, A. Influence of coconut shell ash on workability, mechanical properties, and embodied carbon of concrete. Environ. Sci. Pollut. Res. 2021, 28, 5682–5692. [Google Scholar] [CrossRef]
- Palanisamy, M.; Kolandasamy, P.; Awoyera, P.; Gobinath, R.; Muthusamy, S.; Krishnasamy, T.R.; Viloria, A. Permeability properties of lightweight self-consolidating concrete made with coconut shell aggregate. J. Mater. Res. Technol. 2020, 9, 3547–3557. [Google Scholar] [CrossRef]
- Poonyakan, A.; Rachakornkij, M.; Wecharatana, M.; Smittakorn, W. Potential Use of Plastic Wastes for Low Thermal Conductivity Concrete. Materials 2018, 11, 1938. [Google Scholar] [CrossRef] [Green Version]
- Ismail, Z.Z.; Al-Hashmi, E.A. Use of waste plastic in concrete mixture as aggregate replacement. Waste Manag. 2008, 28, 2041–2047. [Google Scholar] [CrossRef]
- Ramesh Kumar, G.B.; Kesavan, V. Study of structural properties evaluation on coconut fiber ash mixed concrete. Mater. Today Proc. 2020, 22, 811–816. [Google Scholar] [CrossRef]
- Ikponmwosa, E.E.; Ehikhuenmen, S.; Emeshie, J.; Adesina, A. Performance of Coconut Shell Alkali-Activated Concrete: Experimental Investigation and Statistical Modelling. Silicon 2021, 13, 335–340. [Google Scholar] [CrossRef]
- Kanojia, A.; Jain, S.K. Performance of coconut shell as coarse aggregate in concrete. Constr. Build. Mater. 2017, 140, 150–156. [Google Scholar] [CrossRef]
- Mathew, S.P.; Nadir, Y.; Muhammed Arif, M. Experimental study of thermal properties of concrete with partial replacement of coarse aggregate by coconut shell. Mater. Today Proc. 2020, 27, 415–420. [Google Scholar] [CrossRef]
- Aïtci, P. Cements of Yesterday and Today: Concrete of Tomorrow; Elsevier Ltd.: New York, NY, USA, 2000; pp. 1349–1359. [Google Scholar]
- Gülşan, M.E.; Alzeebaree, R.; Rasheed, A.A.; Niş, A.; Kurtoğlu, A.E. Development of fly ash/slag based self-compacting geopolymer concrete using nano-silica and steel fiber. Constr. Build. Mater. 2019, 211, 271–283. [Google Scholar] [CrossRef]
- Liu, H.; Li, Q.; Ni, S.; Wang, L.; Yue, G.; Guo, Y. Effect of nano-silica dispersed at different temperatures on the properties of cement- based materials. J. Build. Eng. 2021, 46, 103750. [Google Scholar] [CrossRef]
- Zhang, P.; Gao, Z.; Wang, J.; Guo, J.; Hu, S.; Ling, Y. Properties of fresh and hardened fly ash/slag based geopolymer concrete: A review. J. Clean. Prod. 2020, 270, 122389. [Google Scholar] [CrossRef]
- Prusty, J.K.; Pradhan, B. Multi-response optimization using Taguchi-Grey relational analysis for composition of fly ash-ground granulated blast furnace slag based geopolymer concrete. Constr. Build. Mater. 2020, 241, 118049. [Google Scholar] [CrossRef]
- Islam, A.; Alengaram, U.J.; Jumaat, M.Z.; Bashar, I.I.; Kabir, S.M.A. Engineering properties and carbon footprint of ground granulated blast-furnace slag-palm oil fuel ash-based structural geopolymer concrete. Constr. Build. Mater. 2015, 101, 503–521. [Google Scholar] [CrossRef]
- Chowdhury, S.; Mohapatra, S.; Gaur, A.; Dwivedi, G.; Soni, A. Study of various properties of geopolymer concrete—A review. Mater. Today Proc. 2021, 46, 5687–5695. [Google Scholar] [CrossRef]
- Ustaoglu, A.; Kurtoglu, K.; Gencel, O.; Kocyigit, F. Impact of a low thermal conductive lightweight concrete in building: Energy and fuel performance evaluation for different climate region. J. Environ. Manag. 2020, 268, 110732. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.Z.N.; Shaikh, F.U.A.; Hao, Y.; Hao, H. Synthesis of high strength ambient cured geopolymer composite by using low calcium fly ash. Constr. Build. Mater. 2016, 125, 809–820. [Google Scholar] [CrossRef]
- Zhan, B.J.; Xuan, D.X.; Poon, C.S.; Scrivener, K.L. Characterization of interfacial transition zone in concrete prepared with carbonated modeled recycled concrete aggregates. Cem. Concr. Res. 2020, 136, 106175. [Google Scholar] [CrossRef]
- Djerbi, A. Effect of recycled coarse aggregate on the new interfacial transition zone concrete. Constr. Build. Mater. 2018, 190, 1023–1033. [Google Scholar] [CrossRef]
- Gunasekaran, K.; Kumar, P.S.; Lakshmipathy, M. Mechanical and bond properties of coconut shell concrete. Constr. Build. Mater. 2011, 25, 92–98. [Google Scholar] [CrossRef]
- Abate, S.Y.; Song, K.; Song, J.; Lee, B.Y.; Kim, H. Internal curing effect of raw and carbonated recycled aggregate on the properties of high-strength slag-cement mortar. Constr. Build. Mater. 2018, 165, 64–71. [Google Scholar] [CrossRef]
- El-Hawary, M.; Al-Sulily, A. Internal curing of recycled aggregates concrete. J. Clean. Prod. 2020, 275, 122911. [Google Scholar] [CrossRef]
- Hossain, F.M.Z.; Shahjalal, M.; Islam, K.; Tiznobaik, M.; Alam, M.S. Mechanical properties of recycled aggregate concrete containing crumb rubber and polypropylene fiber. Constr. Build. Mater. 2019, 225, 983–996. [Google Scholar] [CrossRef]
- Karakurt, C.; Kurama, H.; Topçu, I.B. Utilization of natural zeolite in aerated concrete production. Cem. Concr. Compos. 2010, 32, 1–8. [Google Scholar] [CrossRef]
- Ghadami, N.; Gheibi, M.; Kian, Z.; Faramarz, M.G.; Naghedi, R.; Eftekhari, M.; Fathollahi-Fard, A.M.; Dulebenets, M.A.; Tian, G. Implementation of solar energy in smart cities using an integration of artificial neural network, photovoltaic system and classical Delphi methods. Sustain. Cities Soc. 2021, 74, 103149. [Google Scholar] [CrossRef]
- Tang, C. Effect of presoaking degree of lightweight aggregate on the properties of lightweight aggregate concrete. Comput. Concr. 2017, 19, 69–78. [Google Scholar] [CrossRef]
- Kim, H.K.; Jeon, J.H.; Lee, H.K. Workability, and mechanical, acoustic and thermal properties of lightweight aggregate concrete with a high volume of entrained air. Constr. Build. Mater. 2012, 29, 193–200. [Google Scholar] [CrossRef]
- Wang, H.Y.; Tsai, K.C. Engineering properties of lightweight aggregate concrete made from dredged silt. Cem. Concr. Compos. 2006, 28, 481–485. [Google Scholar] [CrossRef]
- Alghamdi, A.A.; Alharthi, H.A. Multiscale 3D finite-element modelling of the thermal conductivity of clay brick walls. Constr. Build. Mater. 2017, 157, 101418. [Google Scholar] [CrossRef]
- Kubiś, M.; Pietrak, K.; Cieślikiewicz, Ł.; Furmański, P.; Wasik, M.; Seredyński, M.; Wiśniewski, T.S.; Łapka, P. On the anisotropy of thermal conductivity in ceramic bricks. J. Build. Eng. 2020, 31, 101418. [Google Scholar] [CrossRef]
- Ramamurthy, K.; Nambiar, E.K.; Ranjani, G.I.S. A classification of studies on properties of foam concrete. Cem. Concr. Compos. 2009, 31, 388–396. [Google Scholar] [CrossRef]
- Li, P.; Wu, H.; Liu, Y.; Yang, J.; Fang, Z.; Lin, B. Preparation and optimization of ultra-light and thermal insulative aerogel foam concrete. Constr. Build. Mater. 2019, 205, 529–542. [Google Scholar] [CrossRef]
- Yoon, H.; Lim, T.; Jeong, S.; Yang, K. Thermal transfer and moisture resistances of nano-aerogel-embedded foam concrete. Constr. Build. Mater. 2020, 236, 117575. [Google Scholar] [CrossRef]
Indicators | Ground, Granulated Blast-Furnace Slag | Fly Ash |
---|---|---|
CaO | 36.5 | 4.6 |
SiO2 | 29 | 56.2 |
Al2O3 | 14.1 | 30 |
MgO | 8.7 | 0.4 |
CO2 | 5.4 | / |
Fe2O3 | 0.4 | 5.5 |
SO3 | 2.1 | 0.9 |
TiO2 | 1.6 | 1.5 |
K2O | 0.6 | / |
Specific surface area (kg/m3) | 407 | 420 |
- | Apparent Density (kg/m3) | Bulk Density (kg/m3) | Water Absorption (%) | Aggregate Crushing Value (%) | Shell Thickness (mm) |
---|---|---|---|---|---|
Coconut shell | 1270 | 887 | 21.6 | 2.6 | 4.7–7 |
Cementitious Materials | Na2SiO3 Solution (kg) | NaOH Solution (kg) | Extra Water (kg) | |
---|---|---|---|---|
GGBS (kg) | FA (kg) | |||
320 | 80 | 193 | 79 | 20 |
Item | GGBS | FA | Natural Aggregate | Crushed Coconut Shell | Synthesized Biomass Recycled Aggregate |
---|---|---|---|---|---|
Apparent density | 2930 | 2910 | 2670 | 1270 | 1585 |
Mix Proportions (kg/m3) | |||||||
---|---|---|---|---|---|---|---|
Coarse Aggregates | Binder | Sand | Alkaline Solution | Extra Water | |||
Type | Weight | GGBS | FA | Na2SiO3 | NaOH | ||
NA | 1010 | 280 | 70 | 799 | 79 | 193 | 15 |
CCSA | 508 | 280 | 70 | 799 | 79 | 193 | 15 |
SBRA | 632 | 280 | 70 | 799 | 79 | 193 | 15 |
Density | NAC | CCSAC | SBRAC |
2380 | 1820 | 1945 |
Curing Age | NA | CCSA | SBRA |
---|---|---|---|
0 d | 2.6 | 19.8 | 17.4 |
28 d | 0.9 | 14.8 | 17.1 |
GGBS | FA | Sand | Na2SiO3 | NaOH | NA | CCSA | SBRA | |
---|---|---|---|---|---|---|---|---|
Cost | 60.3 | 49.2 | 14.5 | 127 | 317.5 | 15.9 | 3.2 | 17.9 |
Item | GGBS | Na2SiO3 | NaOH | Sand | Coarse Aggregate | Total |
---|---|---|---|---|---|---|
NAC | 16.9 | 26 | 25.1 | 10.8 | 13.7 | 96.4 |
CCSAC | 16.9 | 26 | 25.1 | 10.8 | 1.6 | 85.7 |
SBRAC | 16.9 | 26 | 25.1 | 10.8 | 11.3 | 95.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Li, Q.; Quan, H.; Xu, X.; Wang, Q.; Ni, S. Assessment on the Properties of Biomass-Aggregate Geopolymer Concrete. Appl. Sci. 2022, 12, 3561. https://doi.org/10.3390/app12073561
Liu H, Li Q, Quan H, Xu X, Wang Q, Ni S. Assessment on the Properties of Biomass-Aggregate Geopolymer Concrete. Applied Sciences. 2022; 12(7):3561. https://doi.org/10.3390/app12073561
Chicago/Turabian StyleLiu, Haibao, Qiuyi Li, Hongzhu Quan, Xiaolong Xu, Qianying Wang, and Songyuan Ni. 2022. "Assessment on the Properties of Biomass-Aggregate Geopolymer Concrete" Applied Sciences 12, no. 7: 3561. https://doi.org/10.3390/app12073561
APA StyleLiu, H., Li, Q., Quan, H., Xu, X., Wang, Q., & Ni, S. (2022). Assessment on the Properties of Biomass-Aggregate Geopolymer Concrete. Applied Sciences, 12(7), 3561. https://doi.org/10.3390/app12073561